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Local density of states of ( 110)-split interstitials and their neighbors in molybdenum
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In a previous paper we studied the dynamics of self-interstitial atoms in bcc metals and calculated the
local density of states of the ( 110) dumbbell in Mo using a Green's-function method. In this paper, we

calculate the local density of states of neighbors of the dumbbell which a6ect the properties of the irradi-
ated metal significantly. The local density of states of the neighbors show the same well-known reso-
nance and localized modes shown by the dumbbell spectrum. However, the amplitude of vibrations of
neighbors in the resonant modes is, in general, very small so that only the spectrum of the closest neigh-

bor in the (110)plane shows clearly aB the resonant modes found with the dumbbell spectrum. The re-
sult is discussed in the light of Mossbauer measurements of irradiated Mo "Co. Contrary to earlier ex-

pectations, the vibrational modes of the Mossbauer atom located at a substitutional site nearest to a
dumbbell atom do not explain the observed reduction in the Debye-Wailer factor.

I. INTRODUCTION

In most of the studies of self-interstitial atoms (SIA's}
in metals, the focus of attention has been the fcc met-
als' ' and, in comparison, less attention has been paid
to bcc metals: though the symmetry and structure of
SIA's have been investigated by computer simulation and
the (110)-dumbbell configuration, at least in u-Fe, Mo,
and W, has been found, ' studies on the dynamics of this
defect are still lacking. In a detailed investigation of irra-
diated Mo Co Marangos, Mansel, and Vogl' have
identified different sites for single- and di-interstitials
trapped at the Co atom. It is proposed that a (110)
self-interstitial is trapped at a Co atom on a substitu-
tional lattice site (Fig. 1) and that this configuration is un-

X
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FIG. 1. (110)-dumbbell configuration in the bcc lattice
showing the defect space. o, host atom; , dumbbell atom; and

the nearest neighbor to be substituted by the Mossbauer im-
purity Co.

stable on annealing above 125 K. Further, to study the
dynamical behavior of trapped interstitials, Marangos,
Mansel, and Wahl' measured the temperature depen-
dence of the Mossbauer spectra before irradiation and
after post-irradiation annealing at 124 K and found a
large reduction in the Debye-Wailer factor. These au-
thors explained the measurements by invoking a resonant
mode at 0.1~,„and a localized mode just above co,„for
the defect complex, and believe that the low-frequency
mode should correspond essentially to the resonant mode
of the (110)-split interstitial in Mo. However, a strong
reduction in the Debye-%aller factor with increasing
temperature has to be attributed to a strong shift of the
density of states of the Mossbauer impurity to lower fre-
quencies.

Recently one of us (P.N.R.) reported a calculation of
the local density of states of the (110) dumbbell in Mo. '

As might be expected, many of the characteristics of the
behavior of SIA's in fcc metals are also exhibited by
SIA's in bcc metals: the (110)-dumbbell spectrum
shows a number of low-frequency resonant modes and
high-frequency localized modes, and the resonance modes
lead to much-enhanced thermal displacements of the de-
fect, and can explain the large reduction in shear moduli
and provide a consistent picture of long-range migration
of SIA's in Mo. The result of enhanced thermal displace-
ments was seen to be consistent with the Mossbauer
study of trapped interstitials at Co by Marangos, Man-
sel, and Wahl. ' However, it was felt that for a detailed
comparison with experiment the appropriate quantity is
the square of the thermal displacement of one of the
neighbors of the dumbbell in the (110}plane which is
supposed to be substituted by the Mossbauer impurity
(Fig. 1). Though in a resonant mode the motion of the
neighbor is in phase with that of the dumbbell atom and
thus the same resonance is involved in the vibration of
the dumbbell as well as the neighboring Co atom, the
observed strong reduction in the Debye-Wailer factor has
to be explained with the use of the local density of states
of the neighbor, which is expected to show possible reso-
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nant modes contributing to the vibrational behavior of
the concerned atom. This is one of the reasons for the
present study.

Following our earlier work we have calculated the lo-
cal density of states of not only the dumbbell atom but
also its neighboring atoms falling in the cluster of first
and second neighbors of the defect site. Apart from the
well-known resonant and localized modes seen in the lo-
cal density of states of the dumbbell atom, the local den-
sities of states of the close neighbors of the interstitial do
not show any additional resonant or localized modes.
The amplitudes of vibrations of the neighbors are much
smaller than those of the dumbbell atom so that the in-

tensity of the resonant modes is much reduced in the case
of the neighbor-atom spectra. As a matter of fact, the
frequency spectrum of atom 4 (Fig. 1},a nearest-neighbor
atom in the (110}plane, barely shows resonant structures
while the spectrum of atom 8, the next-nearest neighbor
on the z axis, does not show resonant structure at all.
Though the frequency spectrum of the closest neighbor in
the (110) plane (atom 2) shows all the resonant modes,
their intensities are much reduced. The spectrum shifts
equally to low- and high-frequency regions giving, respec-
tively, resonant and localized modes. However, because
of the reduced intensity of resonant modes the calculated
mean-square displacement of atom 2 shows only a slight
increase over the mean-square displacement of a host
atom. This result is contrary to earlier expectations' '
that the spectrum of atom 2 would be shifted to the low-

frequency region, resulting in a large increase in the
mean-square displacement and consequently a large
reduction in the Debye-Wailer factor.

II. THEORY

If we consider the same-site Green's function, the total
density of states of the lattice can be expressed as the sum
of the imaginary parts of the lattice Green's function over
all the lattice sites,

Obviously, the total density of states of the lattice can be
expressed as the sum of the local density of states of all
the atoms in all three directions,

and

Gxx(d, d;co) =G„),(d, d;co)

= —,
' [Gcc( A )+Gcc(B ) )

+Gcc(B2 ) +Gcc(B3 (6a}

Gzz(d, d;co) = ,' [Gcc—(B2)+Gcc(B,„)], (6b)

Gcc(~) ((I cc (t cR GRR (o2}NRc™cc~
scribes the local vibrational properties of the interstitial
whose poles (quasipoles) determine the frequencies of lo-
calized (resonant) modes. Here, Pcc is the Einstein force
constant for the interstitial space while pcR or $RC de-
scribes the coupling of the interstitial with the neighbors;
the Green's function CRR refers to the host space when

the interstitial is fixed. The Green's functions for the
neighboring atoms are found to be

Z(co)=+Z (l, co) .
l, a

In order to obtain the local density of states we use a
defect model with second-nearest-neighbor interactions.
The defect model to be used has been described previous-
ly. ' ' The defect space for the ( 110) -dumbbell
configuration is shown in Fig. 1. The defect is described
by an assumed vacancy at the origin and interstitial
atoms at (+x,+x,0)a/2, where a is the lattice constant.
In this model the dumbbell is surrounded by eight nearest
neighbors and six second-nearest neighbors, and as such
the defect space consists of 17 sites and one has to deal
with 51X51 matrices. In order to reduce the complexity
of the calculation, group theory is used to decompose the
defect space into various irreducible representations. For
the dumbbell atom the defect Green's function is

Z(co) = g ImG (I,I;co),2coM

7T

where a monatomic lattice is considered. Here, I
represents the lattice site and a the Cartesian coordi-
nates. We define the local density of states of atom I in
the a direction as'

Z (l, co)= ImG (1,1;co) .
2coM

If we write the Careen's function in terms of the eigenvec-
tors U(l, s) of the dynamical matrix of the lattice, then
the expression for the local density of states for site I will
transform to

Z (l,co)=g iU (l, s)i 5(co, —co), co)0,

with

Gxx(2 2'co) =Ger(2 2'co)

,
'

[GRR ( Ag )+GR—R(B,g )+GR„'(B2g )

+GRR(B3g )+GRR ( Au )+GRR(Blu )

+GRR( 2u )+GRR(B3u )]

Gzz(2, 2;co)= ~ [GRR ( Ag )+GRR (B2g )

+G„R(B,„)+GRR (B3u ) ],

Gxx(4, 4;co) =Ger(4, 4;co)

+GRR(B3g)+GR'R(A. }+GRR(Bi.)

+GRR (B2„)+GRR (B3u )],

(7a)

(7b)

(Sa)

f dmZ (I,co)=g
~

U (I,s)~ =1 .
0

(4)
Gzz(4 4'~}= l[GRR(Ag)+GRR(B3g)

+ RR(Blu )+GRR( 2u )]
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G~x(6, 6;co) = ,' [—GRR( A
g )+GRR (B,g )

+GRR(B3„)+GRR(B3~)],
Grr(6, 6;c0}= 4 [GRR ( Ag ) +GRR (B)g )

+GRR (B3„)+G„R(B3~ )],
Gzz(6, 6;co)= 4 [GRR(B3g )+ GRR(G3g )

+GRR(Au)+GER(B3. }]

Gxx (8, 8;co)=G) r(8, 8;c0)

4 [GRR(B2g }+GRR (B3g }

+ GRR (B3„)+GR~R (B3g )],

(9a)

(9b)

(9c)

(loa)
B&U

B)g B29

BgU

Gzz(8, 8;c0)=T~[GR~R( Ag )+GRR(B]„}], (10b}

where the atoms are numbered according to Fig.
1 and where the Green's function GRR = [((}RR—pRc6cc(co)pcR —MRRco ]

' gives the vibrations of the
host lattice in the presence of the interstitial, while at the
same time eliminating the additional degrees of freedom
due to its presence. Here QRR represents the force con-
stant in the host space when the interstitial is fixed, and
the Green s function Ccc refers to the interstitial vibra-
tions in a frozen lattice. The Green's function Gzz can
also be expressed in terms of the perfect-lattice Green's
function 6 and the perturbation including the interstitial
reaction to the lattice system,

GRR =G(1+vRR G )

with

VRR —
ERR k PRCCCCfCR

and, therefore, the condition for localized and resonance
modes is given by

Re det(1+ vRR 6 ) =0 . (12)

This equation gives all possible localized and resonance
modes including those in which the dumbbell atom is at
rest. Now the local density of states of a particular atom
1S

Z(l, l;co) = Im[Gxx(l, l;c0)+ G&&(l, l;co)
2coM

+Gzz(l, 1;co)] . (13)

From the elements of the Green's function for the
dumbbell atom and its neighbors one can already see the
displacement pattern of atoms in the defect space for
various irreducible representations. This can also be in-
ferred from the symmetry coordinates. The motion of
the dumbbell atom and four of its closest neighbors in the
(110) plane referring to various irreducible representa-
tions is indicated in Fig. 2. The displacement amplitudes
shown in Fig. 2 in our earlier paper' for the Bz~, B&„,
and B3„modes are in error and have now been corrected.
As can be inferred from Fig. 2, except for irreducible rep-
resentation A, where a more dominant longitudinal
force constant between dumbbell atoms is involved, in all

FIG. 2. Vibrational modes of the (110) dumbbell in the bcc
lattice showing the vibrational amplitudes of the dumbbell atom
and its nearest neighbors in the (110)plane: localized ( A~ ) and
resonant modes.

other irreducible representations the nature of the vibra-
tional modes is controlled by transverse force constants
and consequently the nature of the characteristic mode is
determined by the phase shift between motions of the
dumbbell atom and its neighbors: they are in phase in
resonant modes and out of phase in localized modes. Not
surprisingly, the local density of states of the dumbbell
shows only localized modes pertaining to breathing
modes (A

&g
or Ag), whereas both localized and resonant

modes are found for other modes. '

III. NUMERICAL RESULTS AND DISCUSSION

In order to calculate the local density of states one has
to generate the ideal-lattice Green s functions in addition
to evaluating the force constants in the vicinity of the de-
fect. To compute the perfect-lattice phonons to be used
for the evaluation of lattice Green's functions, use has
been made of the third-nearest-neighbor axially sym-
metric force model obtained from Born-von Karman fits
to the measured phonons in neutron-scattering experi-
ments. ' For the calculation of Green's functions we fol-
low a modified Gilat-Raubenheimer method. ' We con-
sider interaction between two atoms to be represented by
the usual two force constants derived from the central
potential P(r), a longitudinal force constant d P(r) /dr !0
and a transverse force constant (1lr}(dgldr)!o, where
the suffix 0 indicates that the derivatives have to be evalu-
ated at the equilibrium distance between the atoms. For
the present defect model, we consider five sets of force
constants corresponding to five different distances be-
tween the following pairs of atoms (1,1), (1,2), (1,4), (1,6),
and (1,8) (see Fig. 1). The vacancy is described by zero
coupling to its neighbors. The equilibrium positions of
various atoms in the defect space have been determined
by the Green's-function method of lattice statics. ' For
calculating lattice distortion and various force constants
in the defect space, we use the potential constructed by
Johnson and Wilson (JW) from elastic constants and
unrelaxed-vacancy formation energy. The detailed pro-
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cedure for evaluating the force constants as well as a
justification for the use of the JW potential have been re-
ported earlier. '

The calculated local densities of states of the dumbbell
atom and its neighbors are plotted in Figs. 3—7. In these
figures the host-lattice spectrum is also included for corn-
parison. As found earlier, the frequency spectrum of the
dumbbell (Fig. 3) shows six resonant modes and six local-
ized modes. The frequencies of the resonant and local-
ized modes are given in Table I.

As for the frequency spectra of the neighboring atoms
(Figs. 4—7), the spectrum of atom 2 is remarkable in more
than one way: atom 2 being one of the closest neighbors
of the dumbbell, its vibrations are most strongly
influenced by the defect; its vibrations in the (110) plane
are expected to participate prominently in some of the
resonant modes shown by the dumbbell spectrum. As
can be seen from Fig. 4, all the resonance modes seen
with the dumbbell spectrum are present in this spectrum
as well but with much reduced intensity; there is
significant reduction in the density of high-frequency
modes, but unlike the dumbbell-atom spectrum there is
no matching increase in the intensity in the low-
frequency region. It is clear that part of the missing
modes at higher frequencies must be accounted for by lo-
calized modes above the maximum frequency. A fairly
clear idea about this behavior can be obtained if we com-
pare the integrated densities of states of the dumbbell
atom, atom 2, and a host atom up to the maximum fre-
quency co,„as well as in the low-frequency region, e.g. ,

up to co,„/2. The calculated values are

I Z(d, co)dc@=0.6322,
0

N /2I Z(d, a) )dco =0.500,
0

I Z(2, t0)dr0=0. 7144,

Z(2, co)dc@=0.1940,

TABLE I. Frequencies (in THz) of resonance and localized
modes.

Irreducible
representation

Ag
8 lg

82g
8 l„
82„
83„

Resonance
mode v„'

1.39, 7.995
2.73
3.55
3.11
2.59

Localized
mode v(

8.26, 12.77

12.17
12.38
8.07

10.965

'The frequencies of the 82„and 8&„resonant modes reported in
Ref. 16 are in error.

I Z(co)dc@ = 1.000,
0

co /2I Z(co)dao=0. 0935 .
0

This shows that, while for the dumbbell atom the shift of
the spectrum to the low-frequency region is quite
significant, the spectrum of atom 2 shows no such shift to
the lower frequencies. Though the dumbbell atom and
atom 2 are involved in the same resonance modes, the
amplitude of vibration of atom 2 is much smaller than
that of the dumbbell atom, especially for the low-
frequency resonant modes. Such a behavior for a reso-
nant mode is not unexpected. In fact, quite generally in
resonant modes the amplitude of vibration of an impurity
is greatly enhanced compared to its neighbors. This has
been explicitly demonstrated for a substitutional impurity
in the linear-chain model. ' In the analogous system of
the ( 100) dumbbell in a fcc metal, Zeller has estimated
the relative amplitudes of the dumbbell atom and its
neighbors for low-frequency resonant modes and has
found that the amplitude of the neighbors is much small-
er than that of the dumbbell atom.

Of the remaining neighbors for which frequency spec-
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with the interstitial diffusion stage ID at 40 K is responsi-
ble for the strong increase of (tt ).' A similar increase
in ( u ) for atom 2 is discernible at 40 K, but the contri-
bution of resonant modes is not strong enough to cause
significant increase. The slight increase in (tt ) of atom
2 is attributed to its low amplitude of vibrations in the
low-frequency resonant modes. The loss of modes from
the high-frequency side of the spectrum with no corre-
sponding gain in the low-frequency region is really re-
sponsible for this type of behavior, since the localized
modes contribute little to the mean-square displacement
because of the frequency factor in the denominator.

At this point a discussion of the present result in the
light of the Mossbauer measurements of irradiated
Mo Co by Marangos, Mansel, and Wahl' seems to be
in order. For a comparison with experiment the effect of
the change in mass and possible force-constant changes
on account of substitution of the host atom by the
Mossbauer impurity Co should be taken into account.
However, in the context of the Debye-Wailer factor, the
effects of mass change and force-constant change are
significant when the impurity gives rise to a low-

frequency resonance mode. With Co being lighter than
the host atom, a resonance mode of the substitutional im-

purity itself is not expected. In any case, in view of the
strong perturbation around the dumbbell atom with very
high force constants, the effect of possible force-constant
changes and mass change due to the Mossbauer impurity
seems to be of little consequence. We therefore feel that a
consideration of the vibrational behavior of atom 2 is
suScient for the present discussion.

That we get low-frequency resonant modes and high-
frequency localized modes in which both the dumbbell
atom and its neighbors (atom 2) participate is in agree-
ment with the Mossbauer measurements. However, the
explanation for the observed strong reduction in the
Debye-Wailer factor of the Mossbauer impurity is not
clear; while according to the suggestion of Marangos,
Mansel, and Wahl the vibrational modes of the Co
atom at a substitutional site nearest to the dumbbell are
responsible for the reduction in the Debye-Wailer factor,
the low amplitude of vibrations of atom 2 obtained in the
resonant modes induced by the defect complex, a seem-
ingly general feature of the defect-induced resonant

modes, makes such an explanation untenable. In fact,
contrary to the expectation of Marangos, Mansel, and
Wahl that there is a strong shift of the density of states of
the Mossbauer atom to the lower frequencies, the spec-
trum of atom 2 shows a general shift of modes to lower as
well as higher frequencies, with the amplitude of vibra-
tion being quite small in the low-frequency resonant
modes. On the other hand, if we assume a mixed-
dumbbell configuration for the defect complex it is more
likely that the vibrational modes of the Mossbauer atom
explain the reduction in the Debye-Wailer factor. How-
ever, the ratio (u )d„»,»/(u )„„,of the mean-square
displacement amplitudes of the dumbbell atom and a host
atom is not sufBciently high to account fully for the ob-
served reduction in Debye-Wailer factor; for example, at
80 K (u )»„»,»/(tt )„„,(=2) is one-third of the ob-
served ratio (u ),/(u ),„b (=6) of mean-square dis-

placement amplitudes of a "trapper" Co atom in the
configuration of Fig. 1 and a Co atom on a regular sub-
stitutional lattice site at the same temperature. " But
then in the mixed-dumbbell configuration, caging and ro-
tational motion of the mixed dumbbell are also possible.
A planar caging motion of the solute atom is possible,
giving rise to a reorientation of the dumbbell axis. In
any case, whether a caging motion of the solute atom, or
its vibrational modes in the mixed-dumbbell
configuration, is responsible for the strong reduction in
the Debye-Wailer factor is of interest only when the de-
fect complex is assumed to be a mixed dumbbell. In view
of the identification of the mixed-dumbbell configuration
with a defect above 125 K by Marangos, Mansel, and
Wahl, ' the question of interpretation of the strong
reduction in the Debye-Wailer factor should be con-
sidered as yet open, and apparently more theoretical as
well as experimental work is needed to clarify the situa-
tion.
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