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Model for fracture in fibrous materials
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A fiber-bundle model in (1+1)dimensions for the breaking of fibrous composite matrix is introduced.

The model consists of N parallel fibers fixed in two plates. When one of the plates is pulled in the direc-

tion parallel to the fibers, these can be broken with a probability that depends on their elastic energy.

The mechanism of rupture is simulated by the breaking of neighboring fibers that can generate random

cracks spreading up through the system. Due to the simplicity of the model we have virtually no compu-

tational limitation. The model is sensitive to external conditions such as temperature and traction veloc-

ity. The energy versus temperature behavior, the diagrams of stress versus strain, and the histograms of
the frequency versus the size of cracks are obtained.

I. INTRODUCTION

Fracture is an important problem in material sciences
and engineering. The response of a solid under load de-
pends on the features of the material, the external condi-
tions (temperature, humidity, etc.), and how the load is
applied (uniaxial, radial, shear, etc.). The main features
of the fracture processes can be found in the classical
Young's experiment. Let us consider a homogeneous bar
of initial length Lo and cross section S pulled by a uniaxi-
al force F parallel to the length. In the diagram of
o =F(t)/S(t) vs 5=bL/Lo one can observe an elastic
(linear and nonlinear) region and a plastic region. The
elastic region occurs at the beginning of the traction,
when the material returns to Lo if the traction is stopped.
On the other hand, the material acquires a permanent de-
formation when the force vanishes in the plastic region.
If the material breaks in the elastic regime, the fracture is
called brittle (like glass at room temperature). Otherwise,
if the material breaks in the plastic region the fracture is
called ductile (like an eraser).

The presence of disorder in the material is an impor-
tant feature that determines the rupture processes. '

These inhomogeneities strongly influence the mechanical
behavior of the material and are responsible for the pat-
terns obtained experimentally. In the last decade, some
models taking into account the disorder were proposed to
simulate the breaking processes of disordered media.
The material, in general, is represented by a network of
structural units whose rate of rupture depends on the lo-
cal conditions and inhomogeneities. These models,
which were proposed to simulate the rupture of polymer
fibers or thin films (models of lattice springs) and to
study the interface properties of breaking processes, '

have been studied mostly by computational experiments.

However, these models provide just a partial description
of the problem. At most, only the fracture pattern and
the stress vs strain diagram can be obtained. These mod-
els do not allow an analysis of the dependence of rupture
features on traction velocity and temperature because
they are sensitive to changes in only one of the external
conditions.

In this paper, a fiber-bundle model to simulate the
failure processes of fibrous material is introduced. Frac-
ture of fiber-reinforced materials is an important field of
investigation, because these materials have a higher
Young's modulus and other diferent mechanical proper-
ties than unreinforced ones. ' Fiber-bundle models were
introduced to study the strength of material where fibers
are held together by friction forces. They are also used to
study the breaking of composite materials where the
fibers of the material are joined together by other homo-
geneous material, such as a fiberglass-reinforced compos-
ite. When a fiber fails, the load that it carries is shared by
intact fibers in the bundle. An important effect to study
these models was carried out by calculation of the cumu-
lative breaking probability of the chain of fiber bun-
dles 10—12

Our model considers the amount of elastic energy in
the material, the spread of a local crack, and the fusion of
cracks, as the breaking mechanism. Some features al-
ready proposed in the literature are used in the definition
of our model —the computation of the breaking probabil-
ity from the elastic energy of a fiber and a deformation
limit for an isolated fiber like the threshold in the
random-fuse-network model ' In addition, we adopt the
cascade of breaking fibers as the mechanism to form the
cracks into the fiber bundle. This last characteristic is
clearly inspired by self-organizing criticality. ' Our at-
tention is focused on computational simulation for the
breaking of a fiber bundle when we have a uniaxial force
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(parallel to the fibers) in (1+1)dimensions. The fracture
processes are described by the energy of the rupture pro-
cess vs temperature, the diagram of stress vs strain, and
the size of the cracks that occur in the breaking. This pa-
per is organized as follows: in Sec. II, the model is
presented; the results of the computational experiments
are shown and discussed in Sec. III; finally, the con-
clusions are given in the last section.

II. THE MODEL

Our model consists of No parallel fibers, each of them
with the same elastic constant k. These fibers are fixed in
parallel as shown in Fig. 1. Note that the first and last
fibers make contact with only one neighbor while the
inner fibers have two neighbors. For convenience one
plate is fixed and the other is pulled by a force F in the
direction parallel to the fibers with constant velocity v.
This means that at each time step ~ the amount of defor-
mation of the nonbroken fibers is equal to (b,z=u Xr),
where u is the velocity (in our units r= 1 ). When the de-
formation is z, the elastic energy for each fiber is given by

e= —'kz' .
2

We define the critical elastic energy for each fiber as

e, =
—,'kz

(2.1)

(2.2)

P, (z) = exp —(5 —1)
1 1

(n;+1) t
(2.3)

Here n; is the number of nonbroken neighbor fibers of the
fiber i (in this paper n; could be 0, 1, or 2),

Ec
(2.4)

Force
.' 4'.h'

where z, is imposed as the maximum deformation sup-
ported by an individual fiber. We assume that an isolated
fiber has a purely linear elastic behavior with a breaking
probability which increases with the deformation z of the
fiber, being equal to unity at z =z, . The probability of
rupture of the fiber i is

is the normalized temperature, kz is the Boltzmann con-
stant (in our unity system it is equal to 1), and

z6=-
zc

(2.5)

is the strain of the material. The dependence on the non-
broken neighbors fibers simulates the existence of an in-
teraction between the fibers. This dependence is respon-
sible for the distribution of the load between neighboring
fibers and allows a fiber having an elastic energy greater
than e, . In this sense, one can observe fibers with z & z, if
they have at least one nonbroken neighboring fiber.

Initially all the fibers have the same length and zero de-
formation. In each time step of the simulation the system
is pulled by Az, and we randomly choose N =qXNO
fibers that can be broken, where q is a positive number.
This means that the probability of rupture for the materi-
al does not depend on the number of fibers in the fiber
bundle. This assumption is in agreement with the obser-
vation that systems with different sizes must have the
same rupture features for the same external conditions
(temperature and traction velocity). Obviously the force
and the energy needed to break the bundle must depend
on the system size, but not the stress vs strain diagrams
or the size of the cracks that arise in the breaking pro-
cesses. This assumption also makes possible the appear-
ance of cracks in different parts of the materia1 for the
same deformation. Let us consider a chosen fiber. The
breaking probability is evaluated and compared with a
random number in the interval [0,1). If the random num-
ber is less than the breaking probability, the fiber breaks.
The load spreads to the neighbor fibers and their break-
ing probability increases because of the decrease of the
parameters n;, and n;+, . This procedure describes the
propagation of the crack through the fiber bundle. Then,
the same steps are performed for one of the neighboring
fibers. Note that if it breaks, a cascade begins. It stops in
a given fiber, when the test of the probability does not al-
low its rupture, or when a hole in the bundle is found (an
old crack). The propagation of the crack is done in either
"left" or "right" directions, perpendicular to the force
applied on the system. When the cascade process stops,
another fiber in the N set is chosen and all steps already
described are repeated. After the N trials, we pull the
system to a new displacement hz and the breaking pro-
cedure begins again. The simulation continues until the
rupture of the system, when no more entire fibers exist.

fibers

ftxed plate

FIG. l. Schematic representation of our model. %'e have
shaded in deep gray the fibers on a plate at rest (lower plate),
with the tops fixed on a moving plate, pulled with constant dis-
placement.

III. RESULTS AND DISCUSSION

At t =0 it is easy to see that the model breaks at
5=1.0 with a maximum force F=Nokz, . All the fibers
break at the same time and we have just one crack
spreading in the entire system (the limit of a brittle frac-
ture). For finite temperatures different behaviors are ob-
served when the traction velocity is varied. The number
of fibers is chosen in such a way that it does not affect the
propagation of the cracks. This means that a crack
greater than or equal to the size of the system, for the
values of t and v used in the simulation, occurs with a
negligible probability. In order to investigate this pic-
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Nkz

No
(3.1)

The strain 5 was defined in Eq. (2.5). We compare our re-
sults with the description obtained experimentally in or-
der to classify the fracture as brittle or ductile. ' Figure 2
shows the result of a computational simulation carried
out in just one fiber bundle. In this case, averages are
avoided. For t =0.1 one observes a brittle behavior, i.e.,
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ture, we have performed simulations in systems

No =10 -10 . The probability is controlled by determin-

ing the distribution of cracks vs the sizes of the cracks
arising in the process of fracture. We have used the fol-
lowing values for the parameters: q =0.1, NO=10,
z, =1, and k =1.

As a preliminary, we have obtained the stress vs strain
diagrams for di8erent temperatures and traction veloci-
ties. When the deformation of the bundle is z and the
number of nonbroken fibers is N, the stress 0. is defined as

the fiber bundle breaks in the elastic region. Note that
the a vs 5 plot is purely linear for the highest velocity
(U =0.1). At t =1.0 and for high and intermediate ve-

locities the fracture occurs in the brittle-ductile transition
region. The rupture of the material is ductile for low ve-
locities and it occurs in the plastic or deformation region.
For high temperatures (t =4.0), the shape of the stress vs
strain plot is typically ductile for intermediate and low
velocities. For high velocities the fracture occurs in the
brittle-ductile transition region.

Now let us discuss the behavior of the energy of rup-
ture as a function of temperature. This energy is defined
as the work done to break the material and it can be ob-
tained from the stress vs strain diagrams. It is well
known that the breaking of materials has a strong depen-
dence on temperature. In general, some material under-

go brittle fracture at low temperature and ductile fracture
at high ones. This means that the energy of the fracture
process has a small value in the brittle region and a
greater value in the ductile region. The plots of the nor-
malized averaged energy of the breaking process per fiber

(Ef ) vs the normalized temperature t are shown in Fig.
3. We have considered 10 samples with 10 fibers each,
with velocities v =0.001, 0.002, and 0.005 in the simula-
tions. At low temperatures the energy of the fracture be-
comes independent of the traction velocity. For velocity
v =0.005 the energy increases with temperature. On the
other hand, for slow traction (v =0.001) the energy in-
creases up to a maximum (near t -0.5) and for t & 0.5 it
decays smoothly. For an intermediate value of the veloc-
ity (v =0.002), the energy remains closely constant at
high temperatures.

Figure 4 shows the frequency of the cracks H, vs the
size of the cracks S, that arise in the breaking process.
The frequency of the cracks is averaged over the samples
(10 in this simulation). Two features can be observed in
this figure. For low temperatures (t =0.1, typically brit-
tle fracture), one observes cracks of very diff'erent sizes.
For low velocities, one observes cracks with a maximum
size -10 . For high velocities (v =0.1), the size of the
cracks tends to the entire system (10 fibers). This means
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FIG. 2. Stress vs strain plots for different normalized temper-
atures (indicated in the diagrams) and velocities (v =0.001, full
line; v =0.01, dashed line; v =0.1, long-dashed line). The plots
were made with just one simulation with a sample of 10 fibers
for each pair of parameters.
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FIG. 3. Energy of fracture process Sber (Ef ) vs normalized
temperature t. The value of the velocities for each curve is
shown in the inner box.
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cracks becomes smaller. When one has many cracks of
small sizes the fracture is clearly ductile. These cracks
appear in different parts of the material and the shape of
the curve of H, vs S, changes. The curve has a max-
irnum at S, =2, instead of S,=1 as occurs for brittle frac-
tures.

A quite different feature can be observed for slow trac-
tion (U =0.001) and high temperatures (t)0.5), when
we have obtained a ductile fracture with an unusually low
energy of rupture (see Fig. 3). Only cracks of small size
are present in the system (S, ( 12). Now the system fails

when a force smaller than the one needed to break it at
higher velocities is applied. This could indicate that the
system is in a different state at high temperatures and
that we have observed it in disaggregation.

that the system is pulled essentially unbroken until a cer-
tain time when a large crack arises in the material. After
this large crack, small ones are observed because of the
rupture of the remaining fibers. The brittle process is
characterized by the existence of cracks with different
sizes, and a remarkable feature is the presence of cracks
with sizes near to the system size. The curves that
represent H, vs S, have a maximum at S,=1. Note that
at the beginning H, decreases linearly. In order to verify
this last feature, we adjust the data using

(3.2)H -S
C C

A good fit for this linear part is obtained with a-1.02
(see Fig. 5).

As long as the temperature is increased the size of the

IV. CONCLUSIONS
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FIG. 5. Regression (dotted lines) for the diagrams of frequen-
cy of cracks H, vs crack sizes S, for t =0.1 for different veloci-
ties (indicated in the inner box).

We have introduced a fiber-bundle model to simulate
fractures in fibrous materials. The model is sensitive to
external conditions which are present in some problems
of material sciences: traction velocity and temperature.
The simplicity of the model allows us to perform compu-
tations on very large systems. Because of this feature we
can explore all diagrams of the failure processes.

We have obtained stress vs strain diagrams showing
features of the two principal types of fractures: brittle
and ductile. For low temperatures the system undergoes
brittle fracture, independent of the traction velocity.
When the temperature increases, the fracture is
influenced by the traction velocity. We can observe a
transition from the brittle to the ductile regime. The
amount of energy needed to rupture the material is
dependent on the traction velocity. For high velocities
more energy is needed. This comes from the fact that the
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size of the cracks depends on the temperature. For high
temperatures and low velocities we observe a curious
behavior. In this case the energy is smaller than that
needed to break the material in the brittle regime. This
could indicate that we have a disaggregation process at
this temperature, and the interaction between the fibers
exerts a small influence in the rupture process. These re-
sults are independent of the number of fibers in the fiber
bundle, because we have chosen values of the parameters
v and t for which the maximum crack sizes obtained in
our simulations are less than No.

Several questions remain open. The first one is the
behavior of this model in (2+1) dimensions for various

lattice topologies. This could allow the comparison of
our results with those observed in realistic systems. The
behavior of the model at high temperatures and low ve-

locities needs a more accurate investigation. It would be
interesting to verify if those features remain in (2+ 1) di-
mensions.
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