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We consider the tight-binding Hamiltonian on strongly modulated aperiodic chains (e.g. , quasiperiod-
ic, self-similar, random). The site energies are distributed according to a given binary sequence
(V„=+V), the hopping integral t being a constant. We investigate the strong-modulation regime

( V &&t) by means of degenerate perturbation theory. We thus derive systematic expansions in powers of
t/V for the spectrum, the density of states, and other quantities of interest, like the total electronic bind-

ing energy. This investigation goes beyond the molecular approximation; it amounts to exploring recur-
sively the pattern of resonances between molecular states along the structure, which can be either "lo-
cal" or "itinerant. " The approach is worked out in detail on several classical examples of self-similar
chains: Fibonacci, Thue-Morse, period doubling. The hierarchy of gaps thus obtained is put in perspec-
tive with the rigorous gap-labeling theory; the quantitative predictions for the density of states and the
binding energy are extensively compared with numerical data.

I. INTRODUCTION

The investigation of physical properties of determinis-
tic aperiodic structures has been the subject of an intense
activity in the past years, revived by the experimental
discovery of quasicrystals. ' Aperiodic structures
represent an intermediate type of order between the
periodic (crystalline) and the random (amorphous, glassy)
states of matter.

Physical properties of aperiodic structures are very
rich, even if one restricts oneself to linear equations (lat-
tice dynamics, electron propagation), and to the test case
of one-dimensional (1D) structures, i.e., sequences or
chains. The spectra of these linear problems are generi-
cally singular continuous The a.ssociated eigenfunctions
are neither extended (absolutely continuous spectrum),
nor localized (pure point spectrum), but they exhibit an
intermediate kind of behavior, referred to as critical.
These peculiarities can given rise to a novel kind of quan-
turn transport, somewhat intermediate between ballistic
and diffusive. There is some numerical evidence for the
presence of critical states in 2D and 3D quasicrystal mod-
els. ' Furthermore, the existence of critical states may
provide an explanation of the unusual properties of the
electrical conductivity of quasicrystals: It decreases if
temperature is lowered, and if the structural quality of
the sample is improved by annealing. These features can
be understood by assuming that the propagation of elec-
trons is difFusive on length scales larger than the mean
free path, but is unconventional (nonballistic) on smaller
scales.

Most results obtained so far concern 1D aperiodic
chains. The prototype model is the discrete Schrodinger
equation, describing electrons in the tight-binding ap-
proximation

(&tp)„=t Q„ i+ t g„+i+ V„g„=EQ„.
The site energies V„ form an arbitrary deterministic
aperiodic sequence, with sufficient homogeneity proper-
ties, whereas the hopping integral t is assumed to be con-
stant. A case of special interest is that of self-similar
chains, modeled by a sequence V„of site energies gen-
erated by a substitution. A substitution is a set of rules
for constructing iteratively self-similar structures (se-
quences, chains, tilings, etc.), made of a finite number p of
symbols or letters (bonds, tiles, etc.) A few classical ex-
amples will be recalled and investigated below. It is
worth noticing that all the quasicrystalline symmetries
observed so far, with axes of order 5, 8, 10, and 12, corre-
spond to those of tilings generated by binary substitutions
(p =2). ' Furthermore any aperiodic sequence may now
have a physical realization, in the form of an epitaxially
grown semiconductor superlattice.

A considerable amount of work has been devoted to
theoretical investigations of spectral properties of self-
similar chains, using various analytical or numerical ap-
proaches. We shall only quote the review papers, '

which provide overviews of these topics. From the stand-
point of mathematical physics, the essential results are as
follows. Linear operators, such as the Hamiltonian (1.1),
built from deterministic aperiodic structures, have gener-
ically a singular continuous spectrum, supported by a
Cantor set with zero Lebesgue measure, i.e., zero band-
width. This has been proven rigorously for several self-
similar sequences: Fibonacci, ' ' Thue-Morse, ' period
doubling. ' A general analysis has been presented more
recently, ' which applies to most sequences of interest, in-
cluding all those we have just quoted, but not, e.g., to the
Rudin-Shapiro sequence.

Another important feature of these problems is the
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A atom: V„=V (e„=1),
B atom: V„=—V (e„=—1) .

(1.2)

The setup of this paper is as follows. In Sec. II we

gap-labeling property. The spectral gaps can be labeled

by integers, for a large class of structures, in any dimen-
sion, including quasiperiodic and self-similar ones. ' '

This means that in every gap the (constant) integrated
density of states (IDOS) is an integer linear combination
of a known, finite or infinite, set of basic numbers. For
1D sequences taking finitely many values, those numbers
are the frequencies f(w) of all the possible words, i.e.,
finite patterns m in the sequence.

A detailed analysis of spectral properties is possible in
several limiting cases. The regime of a weak modulation
(V„«t) can be investigated by perturbative methods.
For quasiperiodic chains, quantitative results can be de-
rived, concerning the spectrum, the density of states
(DOS), and the electronic binding energy, as exemplified

by the analysis of the canonical 1D quasicrystal model,
generalizing the Fibonacci chain. For arbitrary self-
similar chains, a perturbative analysis of the IDOS (Refs.
23 and 24} shows that the spectral gaps can still be relat-
ed to singularities of the Fourier transform of the se-

quence. This yields predictions for the scaling behavior
of the width 6 of a given gap as a function of the modula-
tion strength V. One has the power law 6- V
where a is the local Holder exponent of the Fourier in-

tensity, at the wave vector qo where the gap opens in the

V~O limit, i.e., f ',S(q)dq-s . If qo is a Bragg

diffraction (a=O}, the gap opens linearly; if qo is a peak
of singular scattering (a & 0), ' the gap width is smaller
than linear in the weak-modulation regime.

The converse situation of a strong modulation (V„»t}
has also been investigated. Several authors (Refs. 26—29,
23} have underlined the key importance of atomic and
molecular states in that regime. The molecular approxi-
mation, to be recalled below, has been shown to yield a
good quantitative understanding of the spectrum and the
IDOS in a large variety of examples. By means of pertur-
bative, and/or real-space renormalization-group argu-
ments, ' ' the hjerarchjcal band-spljttjng pattern of
the spectra of specific quasiperiodic and hierarchical
models has been explained. Some scaling features of the
wave functions of these models at special energies have
also been interpreted in this framework.

The main goal of this paper is to develop a systematic
and quantitative perturbation theory in the strong-
modulation regime, going beyond the molecular approxi-
mation. Unlike renormalization-group approaches, the
present work does not rely on self-similarity, and is there-
fore of quite general applicability; its e%cjency will be
demonstrated through a detailed comparison with nu-
merical data. We will consider, for the sake of simplicity,
binary chains, made of two types of atoms, called A and
B. Without loss of generality, we can assume that the site
energies take two opposite values, namely Vn=Vc.„,
where c.„=21 is dictated by the type of the nth atom
along the chain, according to the rule

A. Degenerate perturbation theory

The purpose of this section is to derive a systematic
perturbative expansion for the spectrum and the IDOS of
the tight-binding Hamiltonian (1.1), with a binary se-
quence of site energies, in the regime of a strong modula-
tion (t « V).

We recall that the IDOS, denoted hereafter by H(E),
is the fraction of eigenstates with energies less than E.
This reads formally

H(E) =Tr8(E %)= l—im —g 8(E E, ), —1

N~~N )&, &N
(2.1)

with 8(x} being Heaviside function, and where Tr(.)
denotes the density of trace of an operator, i.e., its trace
per site in the thermodynamic limit of an infinitely long
chain. The explicit form in Eq. (2.1}involves the N ener-

gy levels I E, ) associated with a finite patch of the struc-
ture containing N atoms; the limit is independent of
boundary conditions. The DOS p(E) is the formal
derivative of H(E), i.e.,

p(E) =dH /dE =Tr5(%( E)—
= lim — g 5(E, E) . —1

N )

(2.2)

In tnost of the situations considered hereafter, the DOS is
a singular continuous measure, so that p(E) has to be
thought of as a generalized function, or a distribution.
The reader is referred to Ref. 30 for a mathematical ex-
position of these topics.

The starting point of our perturbative analysis is as fol-
lows. The Hamiltonian (1.1) can be recast as

(2.3)

In this expression, the unperturbed Hamiltonian ~'0' is
diagonal, and its matrix elements read

n, n n (2.4)

with the notation (1.2), whereas the perturbation consists
in the nondiagonal part of gf, i.e., the hopping integrals.
The small expansion parameter is the dimensionless ratio

(2.5}

and 8' js the tridiagonal hopping matrix

~m, n ~m, n+1+~m, n —1 (2.6)

with Kronecker symbols.
We look for a formal power-series expansion of the

solutions of the eigenvalue equation (1.1), of the form

present our general approach to the problem, using de-
generate perturbation theory in quantum mechanics.
The next sections are devoted to an application of this
formalism to several classical examples of self-similar
aperiodic chains, already considered, e.g., in Refs. 19, 20,
21, and 23: Fibonacci (Sec. III), Thue-Morse (Sec. IV),
period doubling (Sec. V). Section VI contains a short dis-
cussion.

II. GENERAL RESULTS
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E= V(E'"+XE")+X'E(2)+X3E(3)+ g' ' to Eq. (2.8b), we get
(2.7)

By expanding Eq. (1.1), we obtain the recursive system of
equations

(~(0) E(0) )y(0) —()

(~(0) E (0)
)y(1)—( g () ) IV)q(0)

(2.8a)

(2.8b)

(~(0) E(0) )y(2) (E(1) pr)y() )+E(2)y(0) (2.8c)

(~(0) E (0) )y(3) —(E(1) pr )q(2) + E (2)y(1)+Z (3)y(0)

1. Zeroth order: the atomic approximation

Equation (2.8a) expresses that g( ' is an eigenstate of
the diagonal Hamiltonian %( ', and that the associated
ei envalue is one of the reduced site energies, namely
E '= +1. The hopping between different atoms is entire-
ly neglected, whence the name of atomic approximation.

We define for further reference the eigenspace S(E( ')
of %( ' associated with the eigenvalue E( ', with
E' '=+1. Consider a finite patch of the sequence, con-
sisting of N z A atoms and Nz B atoms, i.e.,
N=N„+N~ atoms in total. It is obvious that the eigen-
value E' '=1 of &( ' is N„ times degenerate, whereas
E' '= —1 is Nz times degenerate. In other words, the di-
mension of $(l) is Nz, and the dimension of I( —1) is

Nz. Both eigenspaces, as well as all subspaces to be con-
sidered hereafter, are thus extensively degenerate.

The evaluation of the DOS within this approximation
goes as follows. Let f ( A) =limN „(Nz /N) and
f(8)=lim)v „(N~/N) denote the frequencies of both
types of letters in the infinite sequence. We thus obtain

p' '(E) =f ( A )5( V E)+f(B)5(——V E) . —(2.9)

2. First order: the molecular approximation

Equation (2.8b), and the next ones, can be solved in the
following elegant way, along the lines of Ref. 31. We
choose once for all the value of E' ', with E' '=+1. Let
P' ' be the orthogonal projector onto 4( )=4(E( '), and
g(0) —1 P(0)

By applying P' ' to Eq. (2.8b), we obtain an eigenvalue
equation for 1J)( ', of the form

(~() ) E(1))y(0)—0 (2.10)

(2.8d)

Solving the system (2.8) amounts to the standard problem
of degenerate perturbation theory in quantum mechanics.
In this paper we shall need explicit results up to the third
order included, in an arbitrary degenerate situation. The
derivations exposed below follow the spirit of the book by
Piron. '

g (0)q( ) ) — G (0) pre(0)

where the Green's function

G (0)—g (0)(~(0) E(0) )
—1g (0)

(2.12}

(2.13)

is the pseudoinverse of (&( ' —E' '). The other com-
ponent P' )1(t") remains undetermined so far.

In the present situation, the effective Hamiltonian &"'
can be diagonalized explicitly. Choose E'"'= 1 for
definiteness. The operator &("only couples neighboring
A atoms. It sufBces therefore to consider the molecules,
i.e., the connected clusters made of A atoms. On such a
molecule, consisting of exactly N atoms, the eigenvalue
equation of %(" reads, after a suitable renumbering of
the atoms

(&'"g)„=f„++)g„)=E("g„(1& n ~ N), (2.14)

with Dirichlet boundary conditions ($0= (t)tv+) =0).
Equation (2.14) admits N molecular states, labeled by

an integer 1 ~ a ~ N, with energies

E,"'=2cos, i.e. , E, = V+ 2t cos

(2.15)

The associated normalized wave functions read
1/2

2
N+1

an+
N+1 (2.16)

As a consequence, the DOS of tight-binding electrons
on an arbitrary chain can be written in the molecular ap-
proximation, in analogy with Eq. (2.9). We have

p")(E)= g f(nA) g 5 V+2t cos E—
n~1 1~a &n n+1

Equation (2.8c) can be solved in analogy with Eq.
(2.8b}. We assume that g( ' belongs to 4(", the linear
space of common solutions to both Eqs. (2.8a) and (2.10).
Let P'" be the orthogonal projector onto 4'", and
g(1) 1 P(1) and g(1) g(1) g(0) P(0) P(1)

By applying P' ' to Eq. (2.8c), we get

+f(nB) g 5 —V+2t cos E—
l~a&n n+1

(2. 17)

where f (n A) [respectively, f (nB)] denote the frequen-
cies of the molecules made of n A atoms (respectively, of
n 8 atoms). The results (2.9) and (2.17) are compatible
because of the sum rules g„&)nf(nA)=f(A),
g„))nf (n8)=f(B).

3. Second order

where the first-order efFective Hamiltonian &(", defined
as an operator on 4' ', reads

(~(l) E(1))p(0)y() ) E(2)y(0) p(0) erg(0)y() ) (2.18)

%")=P'"WP(0) . (2.11)

Furthermore, by applying the supplementary projector

By acting with P'" on Eq. (2.18}, and using the result
(2.12), we obtain again an eigenvalue equation for 1f(0), of
the form



49 ELECTRONIC SPECTRA OF STRONGLY MODULATED. . . 15 007

(~2) ~(2))y(0) —0 (2.19)

where the second-order effective Hamiltonian, defined as
an operator on S"', reads

~(2) P(1)WG(0) WP(1) (2.20)

Furthermore, by applying Q"' to Eq. (2.18), and using
again Eq. (2.12), we also get

Q(1)y(1) G(1)WG(0) Wy(0)

where the Green's function

G (1) g (1)(~(1) E(1))
—1g (1)

(2.21}

(2.22)

is the pseudoinverse of (&")—E"') in 4{ '. The other
component P{"{(t)")remains undetermined so far.

4. Third order

Finally, Eq. (2.8d) can be solved in analogy with Eqs.
(2.8b) and (2.8c). We assume that g{ ' belongs to /{2), the
linear space of common solutions to Eqs. (2.8a), (2.10),
and (2.19). Let P' ' be the orthogonal projector onto 4{2),
and Q' '=1 P' '—

By applying successively the projectors P' ', P"', and
P'2' to Eq. (2.8d), and after some manipulations using the
results (2.12) and (2.21), we are again left with an eigen-
value equation for 1(r{ ', of the form

(~(&) E(3))y(0) —() (2.23}

(2.24)

5. Comments

Degenerate perturbation theory in quantum mechan-
ics, and more generally for operators in Hilbert space,
may seem to be a standard and well-studied subject. To
our surprise the results derived above are not easy to find
in the literature.

First, in the absence of any degeneracy, i.e., if the spec-
trum of %{ ' consists of discrete nondegenerate energies
E„' ', the Rayleight-Schrodinger formulas are recovered.
Indeed, Eqs. (2.11), (2.20), and (2.24), respectively, yield

E(2)— W Wn, m m, n

n (0) (0)
m~n E. —Em

E(3)— W
Wn, m m, n

II Il~ll g (E{0) E{0))2mAn n m

Wn, l ~l, m Wm, n

(2.25a)

(2.25b)

(2.25c)

Equations (2.25a) and (2.25b) can be found in most text-
books on quantum mechanics, whereas the result (2.25c)
is much more seldomly given (see, e.g., Ref. 32).

In an arbitrary degenerate situation, one is led to diag-

where the third-order efFective Hamiltonian, defined as
an operator on 4' ', reads

%' '=P' 'WG' '(W —WG"'W E"')G' 'WP—' ' .

onalize the successive effective Hamiltonians ff"' of Eq.
(2.11), %{ ' of Eq. (2.20), %{ ' of Eq. (2.24), and so on.
Most textbooks only mention %"), whereas Piron ' also
derives&' ', and%' 'is novel as far as we know.

Coming back to tight-binding electrons, the molecular
approximation yields the result (2.17) for an arbitrary
chain (periodic, aperiodic, random). The DOS p"'(E) of
Eq. (2.17) consists of 5 functions, which correspond to
discontinuities in the IDOS H'"(E). The amplitudes, or
weights, hH of these discontinuities are equal to the fre-
quencies of the relevant molecules. In spite of its simpli-
city, this approximation is not very well-known. In the
context of deterministic aperiodic structures, it seems to
have been derived first for the Thue-Morse sequence, 22

before it was generalized and applied to many other ex-
amples in Ref. 23. A similar approach had actually been
applied before to the Anderson Hamiltonian on a disor-
dered binary chain, where each atom is at random either
of type A, or of type 8, with respective probabilities p
and r =1—p. In this situation, the sums in Eq. (2.17}run
over all the possible values n ~ 1 of the molecular size,
and the corresponding frequencies are the statistical
weights f(nA)=r p", f(nB)=p r". The corresponding
prediction of the form (2.17) has been investigated at
length, especially in connection with Lifshitz tails. ' A
closely related problem, namely the study of harmonic
excitations (phonons) of a binary alloy, with atomic
masses m„=m or m„= ~, has been solved even longer
ago.

The situation becomes more involved with the next or-
ders of the perturbation theory exposed above, which
amounts to a systematic investigation of all possible reso-
nances between molecular states, starting with the second
order, which brings corrections of order t /V to the ex-
tensively degenerate energy levels of the molecular states.
The resonance pattern depends on the underlying struc-
ture in an intricate way, so that no general formula can
be written down explicitly. The outcome of the second-
or third-order perturbations will be evaluated on several
examples in the next sections of this paper.

Two alternatives can occur, at any order p of the
strong-modulation perturbation theory. (i) The effective
Hamiltonian &{1') only couples finitely many molecular
states. We thus obtain local resonances, strictly support-
ed by finite patches of the chain. The relevant subspaces
remain extensively degenerate. The corresponding con-
tribution to the DOS consists of 5 functions. (ii) The
effective Hamiltonian %{~)couples infinitely many molec-
ular states. We thus obtain itinerant resonances, propa-
gating along the whole chain. The diagonalization of
%'~) in the relevant subspace is usually as complicated a
task as the diagonalization of the original Hamiltonian

The corresponding contribution to the DOS in a
(continuous) band.

In both cases, the weights AH of the 5 and of the
bands are equal to the frequencies f (w) of given words w

in the sequence. As a consequence, the IDOS in every
gap which appears at any order in perturbation theory is
an integer linear combination of such frequencies. This is
in accord with the gap-labeling theory. ' ' On the other
hand, since the matrix elements of both W ' and W are
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The DOS of the tight-binding Hamiltonian (1.1) obeys
exact nonperturbative integral identities, known as sum
rules, which will be used extensively hereafter as cross-
checks for our perturbative results. A simple derivation
of the sum rules goes as follows. Consider the moments

pk of the DOS of any order k &0. These quantities are
defined as

pk =Tr&"=f E"p(E)dE, (2.26)

with the normalization pa=1. These moments can be al-
ternatively evaluated in the basis of atomic orbitals,
namely

(2.27)

where we have introduced the Cesaro average ( ) of
a local quantity along the chain. Equation (2.27) yields
closed-form expressions for the moments pk, which hold
for any physically reasonable sequence, with suScient
homogeneity properties. The first ones read

p =&V„),

p,,=( V„')+2t',

q, =( V3)+6t'& V„),
@4=(V„)+4t (2( V„)+(V„V„+,) )+6t

(2.28a}

(2.28b)

(2.28c)

(2.28d)

III. THE FIBONACCI CHAIN

A. Definition

The Fibonacci sequence is the simplest of all deter-
ministic aperiodic sequences. It is built recursively by the
following rules, acting on two letters:

A —+AB
F B (3.1)

Such a transformation is called a substitution. It acts
on symbols called letters. Reference 7 provides a com-
plete mathematical review on these topics, whereas Refs.
36 and 9 give comprehensive introductions to more phys-
ical aspects.

To the Fibonacci substitution is attached the substitu-
tion matrix, or counting matrix

No. of A's in oz(A) No. of A's in crz(B)

No. of 8's in oz(A) No. of 8's in o I;(8)

all equal to +1, the construction of the successive Hamil-
tonians %'~' is essentially a matter of combinatorics.
These points will become clearer in the next sections,
where several examples will be investigated in detail.

B. Sum rules for the DOS

A, , =~ and A,2= —~ ', where

r=(1+ v'5)/2 (3.3)

is the golden mean, which obeys the quadratic equation
H=r+ l.

Consider the words Ak=o~(A) and Bi, =o~(8), ob-
tained by acting repeatedly with o.F on the initial letters.
Both series of words converge to the infinite Fibonacci se-
quence I' = AB A AB AB A AB A AB. . . , which is self-
similar, since it obeys F=o ~(F), and the substitution o ~
acts on large distances as a similarity, i.e., a dilatation by
the scaling factor A,

&
=~. The word Ak =Bk+, consists of

Fk+2 atoms, among which Fk+, are A' s, and Fk are B's,
where Fk are the Fibonacci numbers, defined by the re-
cursion

Fk =Fk )+Fk 2 (k 2), (3.4)

with F0 =O, F& = 1. The identity Fk = [r"—( r')"]—/&5
makes the connection with the eigenvalues of the substi-
tution matrix of Eq. (3.2).

The Fibonacci sequence is also the simplest of all
quasicrystals. It is quasiperiodic, as it can, e.g., be gen-
erated by the cut-and-project algorithm from the square
lattice. Furthermore, as we have just argued, it is self-
similar with a scaling factor v. These properties are
shared by the 3D models of prefect icosahedral phases,
and by the celebrated 2D Penrose tiling.

B. The strong-modulation regime

1. First order

The Fibonacci chain is made of three types of mole-
cules: A, AA, and B. Their frequencies f (1A), f (2A),
and f (8) can be determined by means of the substitution
rules (3.1},and more precisely by expressing that the sub-
stitution acts as a dilatation by ~. We thus obtain the
equations f ( A)+f(B)=1 =sf( A), f( A)=sf(B), f (8)
=Hf(1A), and f(lA)+2f(2A)=f(A), which yield

f(1A)=r =5 3r, f(2—A)=r '=2m —3,
f(A)=r '=r —1, f(B)=r '=2 r. —(3.5)

The DOS of the Fibonacci Hamiltonian within the
molecular approximation is obtained by inserting the re-
sults (3.5) into the expression (2.17)

p"'(E)=r 5( —V E)+r 5( V t —E)——

+r 5(V E)+r 5(V+t —E) . —(3.6)

Let us now turn to the analysis of the tight-binding
Hamiltonian (1.1), with a Fibonacci sequence of site ener-
gies, according to the rule (1.2), as a first application of
the general approach exposed in Sec. II.

1 1

1 0 (3.2)
2. Second order

The eigenvalues A,; of a substitution matrix give access to
a great deal of geometrical and structural information
(see, e.g., Refs. 36 and 9). In the present case, they read

We now turn to the investigation of the splitting of
each of the extensively degenerate molecular levels of Eq.
(3.6), due to the second-order Hamiltonian W ' of Eq.
(2.20).
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p' '(E)= g bH (E E) . —
1 ~a+10

(3.9)

The energies E and the associated weights hH are list-
ed in Table I.

As an analytical check of the prediction (3.9), we have
used the sum rules of Sec. II B. For the Fibonacci chain,
we have ( V) =[1—2f'(B)]V=(2~—3)Vand

( V„V„+,) =[1 4f(B)]V =(4r —7)V—
so that Eq. (2.28) yields

p, =(2r—3)V, @~=V +2t, @3=(2~—3)V(V2+6t },
(3.10)

p~= V +4(4~ 5}V~t~+6t—

a. A molecules. In the Fibonacci chain, the A mole-
cules are separated from each other by a distance of at
least five lattice spacings. As a consequence, they are not
coupled by %' ', which decomposes into a product of in-
dependent l X l matrices supported by individual A mol-
ecules, which read %P„' = 1. The levels at E= V are thus
not split at this order, but only shifted by the amount
t'/V.

b. B molecules. The action of the second-order Hamil-
tonian &' ' distinguishes between the isolated B mole-
cules and those which come in pairs. (i) Isolated B mole-
cules: The isolated B molecules have the environment
A ABA A; they have a frequency ~ . Their situation is
similar to that of the A molecules. We readily get
&ItI = —1. (ii) Pairs of B molecules: The pairs of B mole-
cules have the environment AABABAA; they have a
frequency r &' '. acts on them as a product of in-

dependent 2 X 2 matrices

2 1

2X I B 2. (3.7)

with eigenvalues E' '= —
—,
' and —

—,'.
c. AA molecules. The situation of the AA molecules

with respect to the second-order Hamiltonian gf' ' is
similar to that of the B molecules. (i) Isolated A A rnole-

cules: The isolated AA molecules have the environment
BAB A AB AB; they have a frequency ~ . Each of them
supports two molecular states of the form [(2.15}, (16}].
We obtain &Ix'z„=—,', independently of the molecular

state under consideration. (ii} Pairs of AA rnolecules:
The pairs of A A molecules have the environment
BABAABAABAB; they have a frequency ~ . For
each of the two molecular states mentioned just above, la-
beled by the value of E' "=+1,%' ' acts as a product of
independent 2 X2 matrices, of the form

E( )

~zx2w 4 E(1) (3.8)

with eigenvalues E' '=
—,
' and —,'.

The DOS of the Fibonacci Hamiltonian to second or-
der in the strong-modulation regime can be evaluated by
gathering the results of this subsection. We thus obtain
ten groups of extensively degenerate energy levels, name-

ly

It is readily checked that the moments evaluated from
the prediction (3.9} coincide with the expressions (3.10),
up to terms of order t included.

C. Applications

1. Preliminaries: the trace map

Let us now compare the analytical results of the per-
turbative approach to numerical data concerning various
physical quantities. The latter have been obtained by
means of the transfer-matrix formalism and of the trace-
map technique, which we now summarize briefly.

The eigenvalue equation (1.1) can be recast as

En+1 1 n

=T. (3.11)

where the 2 X2 matrix with unit determinant

(E —V„)/t
(3.12)

is the transfer matrix associated with the nth atom of the
chain. We have either T„=Tz or T„=Tz. The propa-
gation along any patch of the chain is thus described by a
product of matrices T„.

We define the Ak as the products of transfer matrices
associated with the words Ak=oF(A). The traces of
those matrices

Xk tr Ak (3.13)

obey a remarkable polynomial recursion formula, known
as the trace map, ' namely

Xk Xk )Xk 2 Xk 3 (k 2) (3.14)

X i =(E+V)/t,with the initial conditions
Xo=(E —V)/t, Xi =(E V)/t 2— —

Consider the periodic approximant of the Fibonacci
chain obtained by repeating the word Ak in a periodic
way. The spectrum of the Hamiltonian (1.1) on that ap-
proximant consists of Fk+2 bands, one per atom in the
unit cell. The band edges are the solutions of the equa-
tions Xk(E)=+2. The trace Xk is indeed a polynomial in
E of degree Fk+2.

The trace-map approach, developed initially for the Fi-
bonacci sequence, has since then been shown to hold for
any substitutional sequence. ' It provides chiefly a very
accurate numerical tool; it has also been the starting
point of several rigorous investigations, such as Refs. 15,
19, and 41.

2. DOS

The analytical prediction (3.9} concerning the DOS of
the Fibonacci Hamiltonian in the strong-modulation re-
gime is compared in Fig. l with numerical data obtained
by means of the trace-map approach, for t/V=0. 5, and
k=12, i.e., F,4=377 atoms per cell (the difFerence in
IDOS between the Fibonacci chain and that approximant
is below the resolution of the plot). The agreement is ful-
ly satisfactory. In particular the ten discontinuities listed
in Table I are the most clearly visible structures of the
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FIG. 1. IDOS H(E) of tight-binding electrons on the Fi-
bonacci chain, plotted against reduced energy E/t: comparison
between numerical data (full line), and analytical prediction of
perturbation theory (3.9) (dashed line). The gaps are labeled ac-
cording to Eq. (3.15).

FIG. 2. Reduced total electronic binding energy E„,/V of
the Fibonacci chain, plotted against t/V: comparison between
numerical data (dots), and analytical prediction of perturbation
theory (3.17) (line).

plot. The nine corresponding gaps have been labeled by
integers m, according to the gap-labeling formula' '

H(gap) =Frac(m r), (3.15)

We have also tested the efficiency of the strong-
modulation perturbation theory on the total electronic
binding energy, a quantity that is sensitive to more global
aspects of the spectrum.

The total binding energy at zero temperature reads

E„,= f Ep(E)dE .

We assume, for the sake of simplicity, that the Fermi
energy lies at E+=0, in the main gap of the spectrum.
The result (3.9), together with the observation that the
binding energy is an even function of t, i.e., a function of
t, yields the estimate

E...= —r I(V+r'/V)+6(t4/V') . (3.17)

TABLE I ~ DOS of tight-binding electrons on the Fibonacci
chain in the strong-modulation regime: energies E and
weights hH entering the outcome (3.9) of second-order pertur-
bation theory.

hH

—V —3t'/2V
—V —t'/V
—V —t2/2V
V —t+ t'/4V
V—t+t /2V
V—&+3t'/4V
V+t'/V
V+t+t'/4V
V+t +t'/2V
V+t +3t'/4V

—4

—5

—4

—5
7

—6
7

—5

—4

—5

—6

—5

where Frac(x) =x —Int(x) denotes the fractional part of
the real number x.

3. Binding energy

Figure 2 presents a comparison between this prediction
and numerical values obtained by means of the trace-map
approach. A very good agreement can be observed for
t/V «1.

IV. THE THUE-MORSE CHAIN

A. Definition

The Thue-Morse sequence is defined by the binary sub-
stitution

A -+AB
+TM'

B~BA . (4.1)

The analysis of this example will follow closely the set-
up and the notation introduced in Sec. III. The associat-
ed substitution matrix, defined in analogy with Eq. (3.2),
namely

1 1
MTM=

1 1
(4.2)

has for eigenvalues )I,I=2 and A,2=0. The integer value
of A, I is related to the fact that both a TM(A) and OTM(B)
consist of two letters. Such substitutions of constant
length have been investigated extensively, in connection
with the theory of finite automata.

The words A k
=o TM( A ) and Bk =o TM(B) both consist

of 2 letters. Furthermore, these words are the mirror
image of each other, so that A atoms and B atoms play
equivalent roles in the infinite Thue-Morse chain
ABBAB A ABBA AB ABBA. . . . This peculiar symme-
try of the Thue-Morse sequence also explains the singular
continuous nature of its Fourier transform, whereas gen-
eral arguments, based on the analysis of the substitution
matrix (4.2) (see, e.g., Refs. 36 and 9), would predict a
limit-periodic sequence. Physical models based on the
Thue-Morse chain have been studied, e.g., in Refs. 42, 43,
33, 23, 41, and 17.
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B. The strong-modulation regime

As a consequence of the equivalence between both
types of letters in the Thue-Morse sequence, the spectrum
of the Hamiltonian (1.1) with Thue-Morse potential is
symmetric with respect to the origin of energies E=O.
We have in particular p(E) =p( E—), so that one can re-
strict the analysis to E)0, i.e., to A atoms in the strong-
modulation regime.

1. First order

E )0
V—t+t'/2V
V—t+t /2V+t /4V
V+t /V —&2t /4V
V+t'/V
V+t /V+&2t /4V
V+ t+ t'/2V —t'/4V'
V+t+t /2V

1/12
1/12
1/24
1/12
1/24
1/12
1/12

TABLE II. Same as Table I, for the Thue-Morse chain [see
Eq. (4.7)].

The Thue-Morse chain is made of two types of A mole-
cules: A and A A. Their frequencies can again be deter-
mined by means of the substitution rules (4.1}. We thus
obtain f(1A)+2f(2A}=f(A}=f(B} and 4f(2A)
=f(B}+f (2A },whence

f(1A)=f (2A)=f (1B)=f(2B}=1/6,

f ( A) =f (B)=1/2 .
(4.3)

The DOS of the Thue-Morse Hamiltonian within the
molecular approximation thus reads

p"'(E)=-,' [5( V t E)—+5—( V E)+5(V+—t E}]—

separately (i}.BABBA ABBAB environment: These A A

molecules have a frequency f=
—,', . For every value of

E'", the third-order Hamiltonian is the constant
%f'2„' = E"'/4—. (ii) BBABA ABABB environment:
These AA molecules also have a frequency f=

—,', . For
both values of E'", the third-order Hamiltonian van-
ishes: &i2„' =0. (iii) ABA ABBA ABA environment:
These A A molecules coupled in pairs have altogether a
frequency f=

—,', . In the subspace corresponding to every

value of E"', the third-order Hamiltonian is the 2X2
matrix

+(E~ E) . — (4.4)

~2X2A
(3)

1 —1

r

E(&j —1 1

8
(4.6)

2. Second order

The action of the second-order Hamiltonian %' ' on
the Thue-Morse chain does not couple any two different
A or AA molecules. As a result, we obtain the expres-
sions WPz =1 and %zz =

—,', the latter being independent

of the molecular state under consideration.

with eigenvalues E' '= E'"/4 an—d 0.
The DOS of the Thue-Morse Hamiltonian to third or-

der in the strong-modulation regime can be evaluated by
gathering the results of this subsection. We thus obtain
fourteen groups of energy levels that are extensively de-
generate, namely

3. Third order p' '(E)= g bH [5(E E)+5( E —E)] . — —(4.7)

In order to investigate the first splittings which take
place beyond the molecular approximation, we have to go
to third-order perturbation theory. The Thue-Morse
chain is the only example where such an analysis will be
performed in detail.

a. A molecules. (i) isolated A molecules: The isolated
A molecules occur in the following two mirror-
symmetric environments: A AB ABBA A and
A ABBAB A A; they have altogether a frequency
f=f(A)/8= —,'4. The corresponding third-order Hamil-
tonian vanishes: %P„' =0. (ii) triplets ofA molecules: The
triplets of A-molecules occur in the following two
mirror-symmetric environments: ABBAB A AB A and
ABAABABBA; they also have altogether a frequency
f=f ( A )/8= —,', . On each triplet, the third-order Hamil-

tonian defines a 3 X 3 matrix

The energies E & 0 and the associated weights hH are
listed in Table II.

As an analytical check of the prediction (4.7}, we have
used the sum rules of Sec. IIB. For the Thue-Morse
chain, we have ( V) = ( V ) =0, and

( V„V„+i)=[4f (2A) —1]V = —V /3,
so that Eq. (2.28) yields

p&=0, pz=V +2t, @3=0, @4=V +20V t /3+6t

(4.8)

It is readily checked that the moments evaluated from
the prediction (4.7) coincide with the expressions (4.8), up
to terms of order t included.

0 1 0
~3Xia = 1

(4.5}
0 —1 0

with eigenvalues E~ '=0 and %&2/4.
b AA molecules. .We define as 4"'=4' ' the sunspace

associated with the energy E'"=+1. The A A molecules
may have three different environments, to be considered

C. Applications

1. Trace map

We consider again, in analogy with the Fibonacci
chain, the traces Xk of the transfer matrices Ak associat-
ed with the words Ak =orM( A). Those quantities obey
the polynomial trace map
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1.0

0.8—
Thue —Morse
t/V= Q.5

11/12ii

5/6,
19/24 JI

2/3 LI

117/24

3. Binding energy

E„,= —V/2 t2—1(3V)+0(t4/V3) . (4.11)

With the conventions of Sec. III C 3, we obtain the fol-
lowing estimate for the total binding energy:

0.6—

0.4—

0.2—

0—4

5/12I

/, ~

'
I

,
[5/24

- 1/12 i

1/2

7/12
I Figure 4 presents a comparison between this prediction

and numerical values obtained by means of the trace-map
approach. A very good agreement can again be observed.

V. THE PERIOD-DOUBLING CHAIN

A. Definition

The period-doubling sequence is defined by the binary
substitution

FIG. 3. Same as Fig. 1, for the Thue-Morse chain [see Eqs.
(4.7) and (4.10)].

A~AB
» B (5.1)

X„=(X„,—2)Xk 2+2 (k 3), (4.9)

The analysis of this example will again follow closely the
setup and the notation introduced in Sec. III. The associ-
ated substitution matrix reads

with the initial conditions X1 =(E V) It—2and-
X2=(E + V )It 2(V /t —+2)E /t +2 .

1 2
MFD= (5.2)

2. DOS

1 m
K(gap) =——,

2n

with m (odd) and n ) 1 being natural integers.

(4.10)

—0.4

—0.5 ——i-O~y

No~ —0.6—

—0.7—

The analytical prediction (4.7) concerning the DOS of
the Thue-Morse Hamiltonian in the strong-modulation
regime is compared in Fig. 3 with numerical data ob-
tained by means of the trace-map approach, for
t/V=0. 5, and k=9, i.e., 2 =512 atoms per cell. The
agreement is again fully satisfactory.

The gaps predicted by Eq. (4.7) have been indexed ac-
cording to the rigorous gap-labeling formula' '

B. The strong-modulation regime

1. First order

The period-doubling chain consists of isolated B atoms,
and of two types of A molecules: A and AAA. Their
frequencies can again be determined by means of the sub-

stitution rules (5.1), which yield

f(1A)=f(3A)=1/6, f(A)=2/3, f(B)=1/3 .

(5.3)

The DOS of the period-doubling Hamiltonian within

the molecular approximation thus reads

P' "(E)= —,
'

15( —V E)+ —,
'

15( V t &—2 E)— —

+ ,'6(V E)+ ,'5(V-+t&—2 E-) . —(5.4)

2. Second order

and its eigenvalues are A. , =2 and A.z= —1. Here again,
the words Ak=apD(A) and Bk=opD(B) both consist of
2 letters. The period-doubling sequence is known to be
limit periodic. Physical models based on the period-
doubling chain have been studied in Refs. 23 and 18.

—0.8— Thue —Morse

—0.9
0

I

0.2
I

0.4
I

0.6
I

0.8 1.0

FIG. 4. Same as Fig. 2, for the Thue-Morse chain [see Eq.
(4.11)].

a. B molecules (i) isolated .B molecules: The isolated B
molecules have the environment A A ABA A A; they have
a frequency f=

—,', . The second-order Hamiltonian is a

constant on each of them: JVz '= —1. (ii) triplets of B
molecules: The triplets of B molecules have the environ-
ment AAABABABAAA. They also have a frequency

f=
—,', . On each of them, the second-order Hamiltonian

is the 3X3 matrix
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2 1 0
1

(5.5)

0 1 2

with eigenvalues E' '= —1 and —1++2/2.
b. A and AAA molecules. In the molecular approxima-

tion, every AA A molecule supports three eigenstates,
given by Eqs. (2.15) and (2.16). Their energies and wave
functions read

Q =2'

Q =3:

E'"=&2, g=(1/2, v 2/2, 1/2);
E"'=0, f=(&2/2, 0, —v 2/2);
E"'=—V2, g=(1/2, —V2/2, 1/2) .

(5.6)

(i) AAA molecules lo—cal resonances: As far as the states
with a = 1 and a =3 are concerned, the situation of the
A A A molecules is similar to that of the B atoms. Isolat-
ed AAA molecules: The isolated A A A molecules have the
environment BAB A A AB AB; they have a frequency

f=
—,', . The second-order Hamiltonian is a constant on

each of them, namely&'&x'3g —,', Triplets of AA A mole

Gules: The triplets of A A A molecules have the environ-
ment BA A AB A A AB A A AB; they also have a frequency

f=
—,', . On each of them, and for each state (a =1 or

a =3), the second-order Hamiltonian is the 3 X 3 matrix

2 1 0
1

1 2 1

0 1 2

(5.7)

with eigenvalues E' '=1/4 and (2k' 2)/8. (ii) A and
A A A molecules itinerant —resonances: The atomic states
of the A molecules are degenerate with the eigenstates of
the AA A molecules corresponding to a =2 in Eq. (5.6).
In the subspace spanned by all these states, the second-
order Hamiltonian %f' ' is an in6nite Jacobi (tridiagonal)
matrix. This phenomenon of itinerant resonance, alluded
to in Sec. II A 5, will be studied in detail in the present
example.

Let us denote A molecules by a letter X, and AAA
molecules by a letter Y. We thus obtain a binary se-
quence XYXXYYYXXYYY. . . , which inherits most of
the characteristics of the period-doubling sequence from
which it is derived. Both sequences are self-similar and
limit periodic; it can be shown by inspection that the X-Y
sequence is generated by the binary substitution

VSH, „, V(E+
2 Pband E (5.11)

The energies E and the associated weights hH are list-
ed in Table III. The case a=7 corresponds to the band
of resonant states studied just above. The corresponding
DOS is obtained by transforming pb, „z(E' ') according to
E=V+(t /V)E' '

As an analytical check of the prediction (5.11),we have
again used the sum rules of Sec. IIB. For the period-
doubling chain, we have ( V) = V/3, ( V ) = V /3, and

( V„V„,) = [4f( 3 A }—1 ]V = —V /3,
so that Eq. (2.28) yields

U»=l, Ur= 1/2, T»»=l/2, T» r =Tr»=&2/4,
(5.10)

Tr r= 1/4 .

The effective Hamiltonian &' ' of Eq. (5.9) is as com-
plicated as the tight-binding Harniltonian (1.1). Hence
we shall not be able to evaluate its DOS pb, „d(E' ') exact-
ly. Nevertheless, the parameters of %' ' have the re-
markable properties U~ —2T~ ~ = U~ —2T~ ~ =0 and

T» „/T»» =T„r/T„», which ensure that the bottom of
the spectrum lies at E' '=0, i.e., E= V for the original
tight-binding problem. More interestingly, the eigen-
states become asymptotically extended as E' '~0. The
technicalities are exposed in the Appendix.

The existence of extended states at E= V holds beyond
perturbation theory. Indeed at this special energy any
two successive A atoms are transparent, in the sense that
the corresponding transfer matrix reads T„=—1. As a
consequence, the eigenstates at E= V coincide on the
period-doubling chain and on the periodic chain with
unit cell AB. Furthermore E= V can be checked to be
an internal band edge of the latter periodic structure. We
shall come back to this phenomenon in Sec. VI.

The DOS of the period-doubling Hamiltonian to
second order can be evaluated by gathering the results of
this subsection. We thus obtain ten groups of energy lev-
els, namely

p'"(E)=
1 ~a~10,a%7

X~XXY
Y~XXYYY .

(5.8)

TABLE III. Same as Table I, for the period-doubling chain
[see Eq. (5.11}].

hH

The eigenvalue equation for %' ' reads

+)k Tk —1k+k —1+Tk, ,k+1@k+1+Uk+k E +k

(5.9)

where the integer k labels the successive X letters (A mol-
ecules} and Y letters (A A A molecules} along the chain.
The diagonal and nondiagonal matrix elements read

—V—{2+&2)t'/2V
—V —t'/V
—V —(2—+2)t2/2V
V—&2t+(2 —&2)t /8V
V—&2t+ t'/4V
V—v'2t+ {2+~2)t'/8V
V+E (band) f /V
V+ &2t +(2—&2)t~/8 V
V+ v'2t+ t'/4V
V+ ~2t+ (2+&2}t'/8 V

1/12
1/6
1/12
1/24
1/12
1/24
1/3
1/24
1/12
1/24
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1.0

Period —doubling
t/V=0. 5

82/24)~

7/8 i

&5//6

with the initial conditions Xo =(E—V)/t, X,
=(/2 —V2)/t

2. DOS

0.6—

0.4—

1/4,

0.2-
1/|2

I

0 1 1

—3

i/2
11/24/

2/sI

The analytical prediction (5.11) concerning the DOS of
the period-doubling Hamiltonian in the strong-
modulation regime is compared in Fig. 5 with numerical
data obtained by means of the trace-map approach, for
t/V=0. 5, and k =9, i.e., 2 =512 atoms per cell. The
agreement is again very satisfactory, in spite of the ap-
proximation made for the band of itinerant resonances
(see figure caption).

The gaps predicted by Eq. (5.11) have been indexed ac-
cording to the rigorous gap-labeling formula' ' '

FIG. 5. Same as Fig. 1, for the period-doubling chain [see
Eqs. (5.11) and (5.15)]. The DOS pb, „4 of the band of itinerant
resonances has been approximated by that of a homogeneous
harmonic chain [see Eq. (A5)], with M= 3, and F. = V+ t 8/V.

1 m
H(gap) =-

2)i

with m (odd) and n ) 1 being natural integers.

3. Binding energy

(5.15)

@1=V/3, (142=V +2t, P3=V /3,
@4=V +20V t /3+6t

(5.12)
With the conventions of Sec. III C 3, we obtain the fol-

lowing estimate for the total binding energy:

In order to check that the moments evaluated from the
prediction (5.11) coincide with the expressions (5.12), up
to terms of order t included, we have used the sum rule
for the first moment of the Hamiltonian %' ' of Eq. (5.9),
which reads

E„,= —
—,'( V+ t /V)+8(t /V ) . (5.16)

Figure 6 presents a comparison between this prediction
and numerical values obtained by means of the trace-map
approach. A very convincing agreement can again be ob-
served.

E p d E E = Uk = U&+U& 2=3 4.

C. Applications

(5.13)

Xk =(Xk 2
—2)Xk, —2 (k 2), (5.14)

—0.3

—0.4—

~ —0.5—

—0.6—

Period —doubling

—0.8
0

1

0.2
I

0.4
t/v

I

0.6
I

0.8 1.0

FIG. 6. Same as Fig. 2, for the period-doubling chain [see Eq.
(5.16)].

1. Trace map

We consider again the traces Xk of the transfer ma-
trices Ak associated with the words A„=opn(A).
Those quantities obey the polynomial trace map

VI. DISCUSSION

In this work we have studied the tight-binding Hamil-
tonian on aperiodic chains, in the strong-modulation re-
gime (t « V). Taking the hopping matrix as a perturba-
tion, we have introduced a systematic approach which
yields predictions for the spectrum, the DOS, and related
quantities, in the form of power series in the dimension-
less ratio t /V Along th. e scheme of degenerate perturba-
tion theory in quantum mechanics, we are led to diago-
nalize successive effective Hamiltonians &'1' (p=1,2, 3,
etc.).

Second-order effective Hamiltonians equivalent to &' '

have been derived by means of real-space
renormalization-group arguments, in the case of self-
similar chains, and more recently for 2D quasiperiodic
tilings, by means of the Schur formula. Furthermore,
the idea of taking kinetic energy as a perturbation has
also been put forward and explored in a more general
context.

The first-order step, namely diagonalizing &' ", is
equivalent to the molecular approximation, for which
general formulas can be written down explicitly. The sit-
uation gets more involved at the next orders, starting
with the second-order Hamiltonian &' '. Ind ed, a com-
plex pattern of resonances show up, which strongly de-
pends on the structure under study. In the case of local
resonances (only finitely many molecular states are cou-
pled), the DOS remains discrete at this order of approxi-
mation, whereas for itinerant resonances (infinitely many
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molecular states are coupled), a (usually continuous} band
appears in the spectrum, again to this order in t /V.

The predictions of the strong-modulation perturbative
analysis correctly reproduce the main gap structure of
the spectra, as dictated by the rigorous gap-labeling
theorems. As far as quantitative aspects are concerned,
this approach also provides accurate estimates for the
DOS, and for various quantities of physical interest, such
as the total binding energy, or the electronic specific heat.
This efficiency has been demonstrated by extensive com-
parisons with numerical data. Three examples of self-
similar chains have been investigated in detail. Apart
from being among the very most classical examples, these
cases illustrate the variety of possible kinds of behavior.
The Fibonacci sequence is the prototype of the generic
case, whereas the other two examples exhibit their own
peculiarities. There is no splitting at second-order for the
Thue-Morse sequence. The period-doubling chain has a
very prominent band of itinerant resonances (—,

' of the to-
tal IDOS), ending up at the special energy E= V, where
the chain has extended eigenstates.

The resonances which occur at any order in this per-
turbative approach have been termed with the unusual
words "local" and "itinerant, " in order to emphasize that
the pattern of resonances which show up in the strong-
modulation analysis is not simply related a priori to the
nature (extended, localized, or critical) of the eigenstates
on the chain. For self-similar chains generated by substi-
tutions, the eigenstates are believed to be generically
chaotic and critical, for any t/VAO. There can, howev-

er, exist extended states at special values of the energy E.
This question has been the purpose of several recent
works (see Ref. 46, and the references therein}. The un-

derlying mechanism seems to have been first described on
the example of the random dimer model. Consider a
chain made of two types of words, X and Y, e.g., X= A A

and Y=AB. Let Tx and Tz be the corresponding
transfer matrices. If Tx=+I and ~trT„~ &2, or vice-
versa, then one type of segments is transparent to the
propagation, whereas E is in a band of the periodic struc-
ture made of the other type of segments. The eigenstates
are truly extended in this situation, which can only occur
for a discrete set of special values of the energy, depen-
dent on t and V. If this phenomenon persists up to arbi-
trarily high values of the modulation strength V, then it
has to show up in our approach, at some order in pertur-
bation theory. This has been demonstrated in detail for
the special energy E= V of the period-doubling chain.
To close up, we mention a recent work on the scaling
behavior of the localization length of the random dimer
problem, with results similar to those of our Appendix.
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APPENDIX

In this appendix we investigate a special class of tridi-
agonal Hamiltonians defined on binary chains made of X
and Y atoms, namely

(~+)k k —1,k+k —1+ k k+1+k+1+ k+k @+k

(Al}

The five parameters are assumed to be all positive, and to
obey the identities

Ux —2Tx,x —U~ —2T~ ~ —0, X, F Y, F

~X X ~XX

(A2}

These properties hold for the second-order Hamiltonian
&' 'of Eq. (5.9}.

Let us set %k = ( —1)"4k [respectively,
= ( —1 }"Z@k] if the kth letter is a Y (respectively, an X).
In terms of the transformed wave function 4k, the eigen-
value equation (A 1) assumes the form

2@k @k—1 @k+1 ™k@k (A3)

where we recognize the dynamical equation for harmonic
vibrations (phonons} on an aperiodic chain. 8 stands for
the reduced squared frequency, and the Mk for the atom-
ic masses. The latter are distributed according to
Mk =1/Txx (respectively, Mk = I /T„„) if the kth letter
is an X (respectively, a Y).

On a uniform chain, where all the masses Mk are equal
to a constant M, the phonons are extended Bloch waves.
Their wave vector q is related to the frequency by the
dispersion relation

8M=2(1 —cosq), (A4)

so that the DOS reads

p(@)=—1 d9 1 M
n 18 m C(4—8M)

1/2

(A5)

q=(8(M))'~ (8~0) . (A6)

As a consequence, the DOS exhibits the universal power-
law van Hove singularity

p(@)= ((M)/@)' ' (@ 0) .
21T

(A7)

Moreover, the vibrational eigenmodes become asymptoti-
cally extended near the band edge, again irrespective of
the nature of the sequence. It is indeed clear that Eq.
(A3) admits the two extended solutions 4k = 1 and
4k=k at 8=0 exactly. In the case of a random se-

quence of masses, the law of divergence of the localiza-
tion length g reads

8 (M)
@ (M') —(M)' (A8)

The case of random chains has been studied at length.
Of special interest is the low-frequency limit (8~0). In
this regime, irrespective of the nature of the sequence, the
excitations approximately follow the dispersion relation
(A4) of a uniform chain with the mean atomic mass
(M ), namely
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