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Landauer resistance of Thue-Morse and Fibonacci lattices and some related issues
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We have reported a comparative study of the Landauer resistance of Thue-Morse (TM) and Fibonacci
lattices. Our main objective is to examine the degree of aperiodicity of TM lattices vis-a-vis that of
(quasiperiodic) Fibonacci lattices, with the use of relevant Landauer resistances. Our study reveals that
TM lattices are more periodic than Fibonacci lattices.

I. INTRODUCTION

For many years, the study of the electronic properties
of aperiodic Thue-Morse (TM) lattices has been drawing
the attention of a large number of researchers. ' The
degree of aperiodicity of TM lattices is quite different
from that of Fibonacci lattices. The Fibonacci lattices,
which are a class of quasiperiodic (QP) systems, have
been studied theoretically quite extensively' ' and have
also been realized experimentally' in the form of systems
like GaAs-A1As. The primary motivation behind the
study of TM lattices was to explore the possibility' of
one-dimensional quasiperiodic systems beyond the realm
of Fibonacci lattices.

The Fourier amplitude spectrum of the TM lattices is
singular continuous —a fact which indicates that the de-
gree of aperiodicity of such lattices is intermediate be-
tween quasiperiodic and disordered systems. ' On the
other hand, the electronic spectra of TM lattices indicate
that their degree of aperiodicity is intermediate between
periodic and QP systems. ' It is thus apparent that a sa-
tisfactory understanding of the degree of aperiodicity of
TM lattices requires us to study as many of their proper-
ties as is possible, vis-a-vis the corresponding ones of
periodic and QP systems. Being guided by this idea, we
report in this paper a comparative study of the Landauer
resistance (LR) of TM lattices, periodic systems, and QP
systems, considering Fibonacci lattices as representatives
of the QP system. As we shall see later, our study eluci-
dates meaningfully several facets of the issue regarding
the degree of aperiodicity of TM lattices; in particular,
we find that TM lattices are likely to be more periodic
than Fibonacci lattices as far as the LR is concerned.

The essential features of TM and Fibonacci lattices are
incorporated in Sec. II. The derivation of the Landauer
resistance for our models requires certain features of
transfer matrices for the Kronig-Penney (KP) model on
aperiodic lattices, and these features are elucidated in
Sec. III. The derivations of the Landauer resistance of
TM lattices, Fibonacci lattices, and periodic systems are
presented respectively in Secs. IV, V, and VI. Numerical
analyses pertinent to our treatment will appear in Sec.
VII while, finally, a critical discussion of our results and
relevant conclusions are inserted in Sec. VIII.

II. ESSENTIAL FEATURES OF TM
AND FIBONACCI LATTICES

TM and Fibonacci lattices are two kinds of aperiodic
systems. For our treatment, we realize these systems by
placing N rectangular potential barriers along one-
dimensional two-tile aperiodic lattices. The separation
between centers of two consecutive barriers takes one of
the two values c and d of the tiles, which are arranged ei-
ther in TM sequence or in Fibonacci sequence. The
essential features of these two sequences are as described
below; it may be noted that the procedure we have fol-
lowed in constituting both TM and Fibonacci lattices
amounts to realizing the KP model on these sequences.
In regard to all three cases, namely, periodic systems, TM
lattices, and Fibonacci lattices, we have treated the LR
for electrons having energy less than that of the height of
barriers.

A. TM lattices

6„+) =26„.
Equation (2) leads to the following result:

G„=2X2" .

(2)

B. Fibonacci lattices

The arrangement of tiles c and d for Fibonacci lattices
follows the Fibonacci sequence J„which is given' by

For the aperiodic lattice corresponding to the TM se-
quence, the two tiles c and d, which represent the dis-
tance between two consecutive points characterizing the
centers of two consecutive barriers, are arranged in the
TM sequence S„given by

S„,=(S„,S„J, n ~0; S =[c,dI .

S„ is the complement of S„obtained by interchanging c
and d. Sequence (1) explicitly appears as

S, = tc, d, d, cI, S2= Ic,d, d, c,d, c,c,d I,

Denoting the total number of tiles in S +, and S„by
6„+&

and 6„,respectively, we get
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J.+1=[J.J. 1-] n ~1 ~0=[c]
Explicitly, sequence (4) appears as

(4)
[M(n)]„=[M(n)]22= coshPb+ (O' —P )sinhPb

J2= jd, c], J3= jd, c,d],

Using sequence (4), we obtain

F„+1=F„+F„

Xexp[ik (bx„—b)],

(5)
[M(n)],2= [M(n)]2, = — (k +P )sinhPb12 21 2kp

(12)

1o. =—+1,
0

(6)

where F„ is the total number of tiles in the sequence J„.
Equation (5) leads to the following result:

Xexp[ i—k(b, x„—b)],
2m ( V11 E—)

b,x„=(x„—x„,), P=, E & V11,

(13)

where

F„
cr= lim~-- Fn-1

detM(n) =1,
M1v =M(N)M(N —1) M(1),

(7)
(M1v )„—(M )

(14)

(15)

Equation (6) yields two solutions o~ of o., namely,
0 + =

—,
'

[ 1+&5]. The root a+ is the so-called golden

mean associated with Fibonacci lattices.

(M1v» —
(M1v )21

detM~=1 .

(16)

(17)

III. TRANSFER MATRICES FOR THE KP MODEL ON
APERIODIC LATTICES

g2 d2 N

+ g V(x —x„).
2m dx

(8)

V(x —x„) takes the constant value Vo for
(x„b/2) &x—& (x„+b/2!, and it is zero elsewhere. The
Hamiltonian H given by {8) is a continuous Hamiltonian.
This kind of Hamiltonian seems to be capable of taking
care of realistic features better than the so-called discrete
Hamiltonian based on the tight-binding approximation. '

Now the Schrodinger equation for Hamiltonian H
yields the following wave fi-~ction for the zero-potential
region between the nth an (n + 1)th barriers:

g„=A„exp[ik (x —x„—b/2) ]

For our treatment of the Landauer resistance of both
TM and Fibonacci lattices, we require some features of
transfer matrices relevant to the KP model on these se-
quences. In this section, we discuss the transfer matrices
generally in the context of aperiodic lattices, and take up
the cases of TM and Fibonacci lattices in two subsequent
sections.

The Hamiltonian H for a system of N barriers with
their centers at x„ is given by

If c and d are interchanged in the two-tile aperiodic se-
quence, the axis of symmetry of potential barriers is shift-
ed to new positions x„; consequently, the matrices M(n)
and M1v change, respectively, to M(n) and M1v as given
below,

M(n)=M(n) with hx„=Ax„, bx„=x„—X„

MN=M(N)M(N —1) M(1) .

(18)

(19)

IV. LANDAUER RESISTANCE OF TM LATTICES

Q. +1=Q. Q.

Qn + 1
—

Qn Qn

We can write (Q„)» and (Q„)» as follows:

(20)

(21)

For the purpose of deriving the Landauer resistance of
TM lattices, we require the analogs of various aspects of
the transfer matrices discussed in Sec. III, in regard to
TM lattices. We first discuss these analogs.

For TM lattices, the centers of potential barriers are
distributed according to the TM sequence given by (1).
The total number N of barriers then becomes a TM num-
ber G„. We now introduce the symbols Q„and Q„,
which are the forms taken for TM lattices by M& and

M1v, respectively. With the help of (1), we can obtain

+B„exp[ ik (x —x„bl2—)], —

(x„+b/2) &x &(x„+, b/2), (9)—
(Q„)„=R„+iI„,
( Q„)„=R„+iI„.

(22)

(23)

where k =2mE/A, and E is the energy eigenvalue of
the electron. Introducing two (2X2) transfer matrices
M(n) and M~ we can obtain

R„and R„are half the trace of Q„and Q„, respectively.
Application of the trace commutative law to Q„and Q„
yields

=M(n)
n n —1

(10) R„=R„. (24)

With the help of (20), (21), and (24), we can obtain the
well-known trace map

B =M~
0 Rn+1=4Rn —1Rn Rn —1

+ 1, n & 1 (25)
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p'+i = I«.+i»2I' . (27)

p„+, is the LR for the TM sequence S„+,. Using (20)
and (22) —(26) and the fact that detQ„+, =1, Eq. (27) can
be reduced to

p„+)=4R„,(P„+C„), n ~ 1, (2g)

Using (20)—(24), we can derive the following equation for
~n +1'

I„+)=4R„R„)I„,2—R„)(I„) I„—)), n &1 .

(26)

The equation for I„+,can be obtained from (26) by inter-

changing I„1and I„
Now, as is well known, the Landauer resistance for a

chain of barriers is defined' ' as the ratio of reQection
coeScient to transmission coemcient. This definition
leads to the LR being equal to the square of the modulus
of (Q„+&

) &2 for a chain of barriers. ' ' Using this fact,
we have

VI. LANDAUER RESISTANCE
FOR PERIODIC LATTICES

p =lq(12)l [U„(cos8)], lgl &2,
p'=

I q (12)I'[h, (0}]', Igl ~ 2,
i(—k +P )

q (12)= sinhPb,

sin(r + 1)8
U„(cos8)= . , r =N —1,

sin8

sinh(r + 1)0
sinh 0

(37)

(3&)

(41)

The Landauer resistance for a periodic system can be
derived by suitably manipulating the transfer matrices
MN of Sec. III. Many authors' ' ' have reported earlier
the formulas for Landauer resistance of a finite periodic
system consisting of rectangular barrier-type potentials
with barrier width b and we quote them below. The for-
mulas for the LR p for such systems appear as

where

P„=2(R„—1)[2R„ i (R„—1)+1]+(I„ i I„ i )—
cos8= —,'g, Igl &2,
cosh0= —,'g, lgl 2,

(42}

(43)

C„=4R„I„([I„)+I„)(R„—1)] .

(29)

(30)

g =2 coska coshPb+ sinka sinhPb . (44)

V. LANDAUER RESISTANCE OF FIBONACCI LATTICES

It is now easy to establish the following relations:

~n+1 ~n ~n —1 ~n —2 ~

Z„+1=2Y„Z„1+Z„

where

(32)

(33)

To derive the Landauer resistance of Fibonacci lattices,
we need the analogs of various aspects of the transfer ma-
trices discussed in Sec. III, in regard to such lattices. For
Fibonacci lattices, the centers of potential barriers are
distributed according to the Fibonacci sequence given by
(4); the total number of barriers N now becomes a Fi-
bonacci number F„. We introduce the symbol W„ to
denote MN for the Fibonacci lattice. Using (4), we obtain

(31)

VII. NUMERICAL ANALYSIS

We have computed the Landauer resistance of TM lat-
tices, Fibonacci lattices, and periodic lattices, as a func-
tion of energy. The number of barriers for TM lattices
corresponds to a set of TM numbers, while the number of
barriers for Fibonacci lattices corresponds to a set of Fi-
bonacci numbers. In regard to TM lattices, we have used
(28}. For Fibonacci lattices, we have taken recourse to
(36), while for periodic systems, we have used (37} and
(38). We have constructed the periodic system with a
finite number of barriers. The number of barriers in these
systems is either a Fibonacci number or a TM number,
and their periodicities correspond to the ratio of total
length of the relevant Fibonacci or TM lattices to the to-
tal number of barriers. The way we have chosen our
periodic systems makes quite meaningful the comparison
between results related to them and those related to Fi-
bonacci and TM lattices associated with them. Our nu-
merical results are presented in Figs. 1 —3.

( W„)»= Y„+iZ„. (34) VIII. RESULTS, DISCUSSION, AND CONCLUSIONS

In analogy with (27), the Landauer resistance p„+, of Fi-
bonacci lattices appears as

(35}

p„+,=4Y„(Y„,+z„,)+(Y„2+z„z)

—4Y„(Y„&Y„2—z„,z„z)—1 . (36)

Using (31)—(33), we can reduce (35}to the following form:

As mentioned in the Introduction, the objective behind
our paper is to compare the degree of aperiodicity of Fi-
bonacci lattices with that of TM lattices as far as the LR
is concerned. In regard to our objective, we have evalu-
ated the LR of Fibonacci and TM lattices, their respec-
tive values of X being chosen in such a way that they are
as close to each other as is possible; these LR's are shown
in Figs. 1 and 2. Further, we have evaluated the LR p of
certain periodic lattices, which we call equivalent period-
ic lattices (EPL's). The width and height of the potential
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qualitative features of their oscillations differ in many
respects.

(ii) It appears that p„+& shows one kind of maxima
which are larger than another kind of maxima; we call
the former class of maxima principal maxima and the
latter class of maxima secondary maxima; the secondary
maxima occur in the vicinity of principal maxima. The
maxima of p„+, do not afford any clear division into
principal maxima and secondary maxima.

(iii) It is seen that successive principal maxima of p„+,
decrease with energy (Fig. 2); the maxima of p~+, do not
show systematic decrease with energy (Fig. 1).

(iv) The width (b,E' )r of the energy range between the
(j + 1)th and jth minima of p„+, (graph I of Fig. 3} in-

creases with energy, while the corresponding behavior of
the Fibonacci lattice (graph II of Fig. 3} is of a different
nature.

Considering the features (iii) and (iv) of p„+, and p„+,
in the context of features (2) of p, we can say that, as far
as LR is concerned, the degree of aperiodicity of the TM
lattice is less than that of Fibonacci lattices; this finding
of ours corroborates the observation reported by Rik-
lund, Severin, and Liu' on the basis of electronic spectra.
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