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Computer simulation of vapor-liquid phase separation
in two- and three-dimensional Auids: Growth law of domain size
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The late-time growth law of the vapor-liquid phase separation in two- and three-dimensional
one-component Buids has been investigated by molecular dynamics simulations in which instanta-
neous quenching of Quid composed of 50000 (2D) or 78732 (3D) Lennard-Jones particles into the
corresponding two phase (spinodal) region has been performed. The power law growth of the char-
acteristic length scale, i.e., l(t) t is observed in both the 2D and 3D systems in the late stage. All
molecular dynamics simulations which we have carried out, except for the cases in which the scaling
regime has not been reached in simulation time, con6rm that the asymptotic growth exponent is-
in both two and three dimensions. It is also found that thermal noise has no efFect on the growth
exponent but gives rise to a substantial delay of the transition time to the asymptotic regime. This
work provides temporal domain patterns associated with the phase separation processes suggesting
that the domain structures are sensitive to the temperature of the system.

I. INTRODUCTION

The dynamical aspects of phase separations are not
very well understood. Many experimental, theoreti-
cal, and numerical approaches have been applied to this
problem. In experimental studies, metal alloys and bi-
nary Quid mixtures in the vicinity of the critical point
have been extensively investigated by x-ray and neutron
small-angle scattering experiments; the time scales of the
phase separations are comparable to the experimental
time scales in such systems. These studies related to the
spinodal decomposition have been reviewed in Refs. 1
and 2.

Lifshitz and Slyozov have theoretically analyzed the
dynamics of aggregation of solutes from supersaturated
dilute solutions using a scaling concept. They found that
the late-time behavior of the growth law of the solute do-
main scales as l(t) ts, where l(t) is the characteristic
length of the domain size. This relation is known as the
Lifshitz —Slyozov rule and agrees well with x-ray scatter-
ing experiments on spinodal decomposition.

Numerical studies have also been done for phase sep-
aration problems by Monte Carlo (MC) simulations for
kinetic Ising models. Two types of kinetic Ising models
are studied. One is the Glauber model in which the order
parameter is not conserved, and the other is the Kawasaki
model in which the order parameter is conserved. The
former model is considered to be a good model for mag-
nets, and the latter is good for metal alloys. The MC
studies for these models are summarized in Refs. 1 and
4. It has been found that both the Glauber and the
Kawasaki models show power law growth of domain size
as l(t) t, and the growth exponent a is found to be

2 for the Glauber model and 3 for the Kawasaki model.

The growth law for the Kawasaki model agrees with the
Lifshitz-Slyozov rule.

A different type of numerical studies has been applied
to phase separation problems based on either of the fol-
lowing two phenomenological equations, i.e., the time-
dependent Ginzburg-Landau (TDGL) equation which is
the case for nonconserved order parameter,

Bg(r, t) bH[Q(r, t)]
Dt bg(r, t)

or the Cahn-Hilliard-Cook (CHC) equation which is the
case for conserved order parameter,

81t (r, t) 2 bH [Q(r, t)]
Bt bg(r, t)

(2)

where g(r, t) is the order parameter of the system at
point r and at time t, I is a phenomenological parameter,
and H[g(r, t)] is the coarse-grained &ee-energy functional
given by

H[Q(r, t)] = dr —(9'1t) ——Q + —@
2 2 4

with temperature-dependent phenomenological parame-
ters ~ and g which are positive. The late-time growth be-
havior of phase separations has been discussed by solving
these equations numerically. Oono and Puri have pro-
posed an eKcient computational method to solve TDGL
and CHC equations using discrete space and time. This
numerical method is called the cell dynamical system
(CDS). Using the CDS, it is found that the average do-
main size l(t) shows a power law growth as l(t) t
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in the late stage, and the exponent a is found to be 2

for the TDGL equation and 3 for the CHC equation, re-
spectively. These results coincide with the Monte Carlo
results for the Glauber and the Kawasaki models. Thus,
it is believable that the growth exponent is 2 for the case
of nonconserved order parameter and — for the case of
conserved order parameter.

Recent progress of computers makes it possible to
study phase separation phenomena by molecular dynam-
ics (MD) simulation. The advantage of MD simulation
is that both static and dynamic correlations and hydro-
dynamic effects are all taken into consideration. The hy-
drodynamic effects are known to be important in the late
stages of the phase separation dynamics of fluid systems
such as fluid binary mixtures and polymer melts. ~ Ve-
lasco and Toxvaerd have carried out MD simulations
for two-dimensional binary fluid mixtures and found that
the growth exponent is 2 in the early stage, and that a
crossover to a higher exponent takes place in the late
stage. Ma et al. have also performed MD simulations
for three-dimensional binary fluid mixtures and found
that the growth exponent is 0.55. Both MD results have
shown that the growth exponent is clearly larger than 3,
which is predicted by MC studies or the CHC equation,
which ignore the hydrodynamic effects.

In the case of a one-component fluid, the characteristic
time scale relevant to the vapor-liquid phase separation is
too short to observe experimentally. Koch et at. have
studied the dynamics of vapor-liquid phase separation
in a two-dimensional one-component fluid by MD simu-
lations using a 5041-particle system. They have found
that the characteristic length scale of the system grows
in proportion to t~ for the isothermal simulation and

1
in proportion to t3 for the adiabatic simulation. They
have analyzed their simulation results by a similar way
to Lifshitz and Slyozov and concluded that the growth
exponent of 2 obtained by their isothermal simulations
is independent of the system dimensionality.

In this study, we investigate more accurately the dy-

namics of vapor-liquid phase separation in two- and
three-dimensional fluids via MD simulations with a
50000-particle system for two dimensions and with a
78732-particle system for three dimensions. The main

purpose of the present work is to examine the analy-
sis of Koch et al. on the isothermal phase separation,
which stated that the growth exponent is 2 and inde-

pendent of the system dimensionality. First, we check
their isothermal simulation results on a two-dimensional
fluid by adopting a much larger system size. Then we

study the growth law dynamics in a three-dimensional
fluid both by MD simulation. If we can show that the
growth exponents are 2 in two and three dimensions, it
strongly suggests that their analysis is correct. In the
adiabatic condition (the exponent is s in Koch's simu-

lation), the separation dynamics is supposed to be more
complicated than the isothermal case. Since the system
temperature increases with time because of the latent
heat, the &ee-energy functional has a time dependency;
it corresponds to the case in Eq. (3) that the parameters
v and g are not constant during the separation process.
In this paper, we treat only the isothermal case.

II. SIMULATION METHODOLOGY

In order to investigate the late-time growth behavior
of phase separations by computer simulations, we have
to use a quite large system because the characteristic
length scale, i.e., the average size of the domains, easily
becomes comparable to the system size as the separa-
tion grows. In this work, we use a 50000-particle system
for a two-dimensional fluid and a 78 732-particle system
for a three-dimensional fluid. Because of the finite sys-
tem size, simulations are stopped when the characteristic
length scale l(t) breaks the condition of l(t) ( —' for the
two-dimensional system and of l(t) ( ~z for the three-
dimensional system, where L, is the length of the simulawe

tion cell. For both two- and three-dimensional systems,
each particle interacts through the Lennard-Jones (L-J)
potential within the cutoff radius r,„t——2.7o,

(4)

TABLE I. Critical and triple point constants for two- and
three- dimensional Lennard- Jones Huids.

Dimension T.
0.56
0.533

Pc
0.325
0.335

Tt
0.41
0.415
0.40

1.36 0.36 0.68
1.35 0.35
1.313 0.310 0.69

Source
Ref. 17(a)
Ref. 17(a)
Ref. 17(b)
Ref. 18(a)
Ref. 18(b)
Ref. 18(c)

Method
Theory

MC
MC
MC
MD

MD, MC

Perturbation theory and cell theory.

The periodic boundary condition is used as usual. We
have used the leap&og algorithm to integrate Newton's
equations of motion with a time step of 0.01m, where

(= g s ) is the unit time of the L-J itutd, which

is equal to 1.067 ps for an argonlike fluid. The cell in-
dex method is employed together with the list vector to
save the computation time on a vector processor (Gray
Y-MP2E). Since the numerical method for molecular dy-
namics simulation is available in the literature, we do
not repeat it.

The phase diagrams of the two- and three-dimensional
L-3 fluids are presented in Refs. 17 and 18. Table I sum-
marizes the critical point and the triple point constants
for these model fluids. Our MD simulations are carried
out by the instantaneous quenching of homogeneous sys-
tems, which are initially equilibrated at the supercriti-
cal (one phase) region, into an unstable (two phase) re-
gion. We have performed four experiments (A—D) for the
two-dimensional (2D) fluid and four experiments (E—H)
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for the three-dimensional fluid under the following condi-
tions, so that we can investigate the effects of the system
dimensionality and the thermal noise on the phase sepa-
ration dynamics.

1
S(k = (k(, t) = — ) cosk. r;N ( ')

f N

+ ) sink r;

A. 2D fluid (T; 0.5B)

Exp. A. The system is initially equilibrated at the
density p' = 0.325 and the temperature T' = 0.8, cor-
responding to the one phase region in the phase dia-
gram of the two-dimensional L-J fluid. Then, the system
is quenched into T' = 0.41 (the triple point tempera-
ture) by the instantaneous velocity scaling of all particles,
while the density remains unchanged.

Exp. B. The same as Exp. A, but the system is
quenched into T' = 0.45.

Exp. C. The same as Exp. A, but the system is
quenched into T' = 0.48.

Exp. D. The same as Exp. A, but the system is
quenched into T' = 0.50.

where N is the total number of particles, r, is the position
vector of the ith particle, and k is a wave vector:
(2D)

L,—'k = (1,0), (0, 1), (1, 1), (1,-1),(0, 2), ... ,

(SD)

L,—'k = (1,0, 0), (0, 1,0), (0, 0, 1), (1,1,0), ... .
2x

The first moment of the wave number kq(t) was evaluated

by

j '"' kS(k, t)dk
kg(t) =

f, '"' S(k, t)dk

B. 3D fluid (T; 1.35)

Exp. E. The system is initially equilibriated at the
density p' = 0.35 and the temperature T' = 1.8, corre-
sponding to the one phase region in the phase diagram
of the three-dimensional L-J fluid. Then, the system is
quenched into T' = 0.7 (just above the triple point tem-
perature), while the density remains unchanged.

Exp. F. The same as Exp. E, but the system is
quenched into T' = 1.0.

Exp. G. The same as Exp. E, but the system is
quenched into T' = 1.05.

Exp. H. The same as Exp. E, but the system is
quenched into T' = l.l.

In all the above simulations, the temperature is kept
constant during each simulation run by the constraint
isotherm method, ' which generates a trajectory on
the constant-NVT (canonical) ensemble. In Ref. 14 one
can find a discussion on a comparison of some isotherm
methods for the phase separation dynamics of binary
liquid mixture. It seems that the growth dynamics is
not sensitive to the choice of the isotherm method. The
phase separation begins immediately after the quench-
ing by the mechanism of spinodal decomposition. Since
we are interested only in the late-time growth behavior
of the vapor-liquid phase separation. , we did not analyze
the data in the early stage of the separation process. The
time-dependent (temporal) structure factor of the system
is calculated throughout the simulation runs by

which measures a characteristic wave number of the sys-
tem. Here k,„tis an appropriate cutofF wave number, and
k,„t——7r is adopted in this work. S(k, t) is the "macro-
scopic" structure factor defined by

S(k, t) = S(k, t) —S"(k),

where S'~(k) denotes the equilibrium structure factor
for a fully segregated macroscopic two phase system.
The equilibrium structure factor S'q(k) was obtained by
quenching to the point across the coexistence curve and
waiting for the system to reach an equilibrium. The first
moment of the wave number kq (t) is regarded as a length
proportional to the inverse of the characteristic length
scale, i.e., l(t) =

& ~,l.

III. RESULTS AND DISCUSSION

A. Thoro-dimensional fluid

Temporal sequences of atomic configurations after the
quench for the experiments A, 8, C, and D are shown
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t=50 100 300

FIG. 1. Snapshots of the
simulation experiment A
(T' = 0.41). The labels refer
to simulation time in units of

t =50 100 300

FIG. 2. Snapshots of the
simulation experiment B
(T' = 0.45). The labels refer
to simulation time in units of
7.

t=30 200 600

FIG. 3. Snapshots of the
simulation experiment C
(T' = 0.48). The labels refer
to simulation time in units of

t =30 200 500

FIG. 4. Snapshots of the
simulation experiment D
(T' = 0.50). The labels refer
to simulation time in units of
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Exp.
A
B
C
D

N
50000
50000
50000
50000

Density

P
0.325
0.325
0.325
0.325

Temperature
/p Q

0.41
0.45
0.48
0.50

Time
7

300
300
600
500

Exponent
0.499 +0.008
0.467 +0.030

b

TABLE II. Summary of simulation runs for the phase sep-
aration experiments for a two-dimensional Buid.

-1/2

I

Exp.A: T*=0.41
B:T =0.45
C: T*=0.48
0: T*=0.5Q

Evaluated by least square fitting using data for k& ( 0.28.
6 on the listed exponent values shows the accuracy of the
data fitting. It does not mean the accuracy of present the
simulations.

Asymptotic regime has not yet been reached.

0.28—
- 1/3

0.1

10
I

100 1000

in Figs. 1, 2, 3, and 4, respectively. One can see that
the phase separation begins immediately after the quench
and the domain size increase with simulation time in all
the experiments. However, there is a notable difference
between domain structures. We observe that the rough-
ness of the vapor-liquid interface increases with increas-
ing annealing temperature of the system. This is at-
tributed to the following effects: the surface tension de-
creases, and the thermal noise increases with increasing
temperature.

The time evolution of the structure factor for the ex-
periment A is shown in Fig. 5 as a typical example. One
can observe that the peak position shifts to a smaller k
value and its height increases with simulation time. This
shift of the peak position indicates the growth of the do-
main size according to l(t) &(,). In Fig. 6, we have

plotted the first moment of the wave number kq(t) for

FIG. 6. First moment of the wave number kI (t) vs simu-
lation time for the experiments A—D. The growth exponents
converge to —— at late stages (k1 ( 0.28) in experiments A
and B. The solid lines show the least square fitting results
using data for ki ( 0.28. The dashed lines show the slopes of
—— and ——for comparison.1 1

2 3

each experiment against the simulation time in log-log
scale. The growth exponent is given by the negative of
the slope. We confirm that power law growth clearly ex-
ists in the late-time region (kq ( 0.28 in Fig. 6), and the
asymptotic growth exponent is found to converge to 2 for
both the experiments A (T* = 0.41) and B (T* = 0.45).
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FIG. 5. Time evolution of the structure factor for the ex-
periment A.

FIG. 7. Plots of the scaled structure factor for the experi-
ment A.
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FIG. 8. Plots of the scaled structure factor for the experi-
ment B.

FIG. 10. Plots of the scaled structure factor for the exper-
iment D.
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For the experiments C (T' = 0.48) and D (T' = 0.50),
the asymptotic growth regime has not yet been reached.
As we show later, this is also confirmed by our scaling
analysis. Table II summarizes the simulation results on
the growth exponents for the two-dimensional Quid.

We have tested the scaling hypothesis for S(k, t) The.
scaling hypothesis has been established by experiments
on metal alloys and by simulations for the Ising model in

an asymptotic growth regime as follows:

where d is the dimensionality of the system and F(z)
is a time-independent universal structure function. The
scaled structure factor (ki) S(&,t) obtained &om the
experiments A, B, C, and D at different times is shown
in Figs. 7, 8, 9, and 10, respectively. For the experiments
A and 8, the data points can be seen to lie on a smooth
master curve. Thus, we conclude that an asymptotic
growth (scaling) regime has been reached for these two
experiments A and B. However, for the experiments C
and D, we see that no asymptotic growth regime has yet
been obtained within our simulation time.

2.5

2 TABLE III. Summary of simulation runs for the phase sep-
aration experiments for a three-dimensional auid.

1.5 2 2.5 3

Exp.
E
F
G
H

N
78732
78732
78732
78732

Density

P
0.35
0.35
0.35
0.35

Temperature
T+

0.70
1.00
1.05
1.10

TlHle
T

50
70

100
100

Exponent
0.529 +0.002
0.502 +0.008
0.404 +0.025

k/ki

FIG. S. Plots of the scaled structure factor for the experi-
ment C.

Evaluated by least square Stting using data for k~ & 0.45.
+ on the listed exponent values shows the accuracy of the
data Stting. It does not mean the accuracy of the present
simulations.
"Asymptotic regime has not yet been reached.
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-'CIO

FIC. 11. Snapshots of the
simulation experiment E
(T' = 0.70). The labels refer
to simulation time in units of

B. Three-dimensional Huid

Temporal sequences of atomic configurations after the
quench for the experiments E and G are shown in
Figs. 11 and 12, respectively. As in the case of the
two-dimensional fluid, phase separation begins immedi-
ately after the start of the quench. The domain size in-
creases with simulation time in all the experiments, and
the roughness of the vapor-liquid interface seems to in-
crease with increasing annealing temperature.

The time evolution of the structure factor for the ex-
periment E is shown in Fig. 13 as an example. In Fig. 14,
we have plotted the first moment of the wave number
kq (t) for each experiment against the simulation time
in log-log scale. As in the two-dimensional fluid, power
law growth exists in the late-time region (kq ( 0.45 in
Fig. 14), and the asymptotic growth exponent is found
to converge to ~ for the experiments E (T' = 0.70), F
(T* = 1.00), and G (T* = 1.05). For the experiment
H (T* = 1.10), the asymptotic growth regime has not
yet been reached. Table III summarizes the simulation
results on the growth exponent for the three-dimensional
fluid.

The test of the scaling hypothesis for S(k, t) of the
three-dimensional fluid has also been made. The scaled
structure factors (kq) 8(&",t) obtained from the exper-
iments E, F, G, and H are shown in Figs. 15, 16, 17,
and 18, respectively. The data points seem to deviate
kom each other for the experiments G and H, but al-
most lie on a smooth master curve for the experiments
E and F. Thus, we can conclude that the scaling regime
has been reached at least for these two experiments E
and F, and the asymptotic growth exponent is 2 for the
three-dimensional fluid as well.

The results of present MD simulations for two- and
three-dimensional fluids strongly suggest that the asymp-
totic growth exponent for the vapor-liquid phase separa-
tion is 2 in both two and three dimensions. This coin-
cides with the simulation result of Koch et al. on a two-
dimensional fluid ' and also supports their analysis,
which stated that the growth exponent is 2 and indepen-
dent of system dimensionality. It is also confirmed that
thermal noise has no efFect on the asymptotic exponent,
but gives rise to a substantial delay of the transition time
till the asymptotic regime is reached. A similar result has
been obtained from numerical simulation with the CHC
equation including thermal noise. These results seem to
be consistent with the phenomenon called critical slowing
down. We suppose that the failure of some simulations at
high temperatures to converge to the

&
exponent within

the simulation time is afFected by this efFect. The analy-
sis of the domain structures is particularly of interest. It
will be discussed elsewhere.

IV. CONCLUDING REMARKS

We have studied the asymptotic growth law of the
vapor-liquid phase separation for the two- and three-
dimensional one-component Lennard- Jones fluids by MD
simulations, using a 50 000-particle system for two-
dimensional fluids and a 78 732-particle system for three-
dimensional fluids. MD simulations have been carried

fj-

FIG. 12. Snapshots of the
simulation experiment G
(T' = 1.05). The labels refer
to simulation time in units of
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FIG. 13. Time evolution of the structure factor for the ex-
periment E.

FIG. 15. Plots of the scaled structure factor for the exper-
iment E.

out by instantaneous quenching of a homogeneous sys-
tem, which has been equilibriated at supercritical tem-
perature, into the two phase region. The phase sepa-
ration begins immediately after the quench of the ho-
mogeneous system, and the time-dependent (temporal)
structure factors S(k, t) has been calculated throughout
the simulation runs. The characteristic length scale has
been found to grow as l(t) t in the late-time (scal-
ing) regime, which correspond to kq ( 0.28 for the two-
dimensional Huid and kq & 0.45 for the three-dimensional

Quid in this work, and the asymptotic growth exponent
was found to be 2 in both two and three dimensions.
This strongly suggests that Koch et al. 's analysis is cor-
rect. Thermal noise was found to have no effect on the
asymptotic exponent, but to give rise to a substantial
delay of the transition time to the asymptotic regime.

We have observed that the roughness of the vapor-
liquid interface increases with increasing annealing tem-
perature in both two- and three-dimensional Buids. This
is attributed to the following two effects: the surface ten-
sion decreases, and thermal noise increases with increas-
ing system temperature. The atomic configurations ob-

a45-
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0

ExP E T*-0.70 0
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H: T*=1.10 x
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+
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0+
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X
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+X

FIG. 14. First moment of the wave number kq(t) vs simu-
lation time for the experiments E—H. The growth exponents
converge to ——at late stages (kI ( 0.45) in experiments E,
F, and G. The solid lines show the least square fitting results
using data for k~ ( 0.45. The dashed lines shows the slopes
of ——and ——for comparison.2 3

0
0 0.5 1.5 2 2.5 3 3.5 4

k/kg

FIG. 16. Plots of the scaled structure factor for the exper-
iment F.
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FIG. 17. Plots of the scaled structure factor for the exper-
iment G.

FIG. 18. Plots of the scaled structure factor for the exper-
iment H.

tained by the MD simulations indicate that the domain
structure is notably sensitive to the system temperature.
In fact, the domain structures of the two-dimensional L-
J Quid have been reported to suggest a &actal nature
at T' = 0.45 (Langevin dynamics simulation) ~ or at
T* = 0.5 (constant-AVE MD simulation). zz Analysis of
the domain structures for the present simulations will be
reported in a forthcoming paper.
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