PHYSICAL REVIEW B

VOLUME 49, NUMBER 21

1 JUNE 1994-1

Fracture of heterogeneous materials with continuous distributions of local breaking strengths

P. L. Leath
Deparment of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

P. M. Duxbury*
Hochstleistungsrechenzentrum and Institut fiir Festkorperforschung, Forschungszentrum Jiilich,
D-52425 Jiilich, Germany
(Received 6 December 1993)

We develop a recursion-relation approach for the failure probability of heterogeneous networks with
continuously distributed bond strengths and with local stress enhancements after bond failure. Current
computational methods to solve these models scale as 2" where n is sample size, while our method pro-
vides a rapidly converging sequence of approximations which scale algebraically with the sample size.
The method is applied to systems with uniform and Weibull distributions of local bond-failure thresh-
olds. We find that the characteristic feature which occurs when there is a continuous distribution of lo-
cal breaking strengths is that, as a function of sample size, the failure probability F,(o) shows a
minimum at n., which deepens and moves to higher n as the external stress o is reduced. At large n,
there is a stable “weak-link” scaling form for the failure probability, in agreement with work by Harlow
and Phoenix. For sufficiently large n >>n,, the failure probability is of double-exponential form, and the
size effect is logarithmic. For small n <n., however, the low-stress tail of the failure probability appears
to be of Weibull form with n-dependent parameters, and the size effect can be algebraic.

I. INTRODUCTION

Mechanical failure of a sufficiently large sample of a
heterogeneous material consists of a crack nucleation
process followed by the formation of an unstable crack
and finally catastrophic failure. Traditional fracture
mechanics bypasses the crack nucleation stage by postu-
lating the existence of a crack and analyzing its conse-
quences. Since fracture properties are determined by im-
purities, analysis of the nucleation of fracture is a prob-
lem in heterogeneous nucleation. As in most heterogene-
ous nucleation processes, significant sample-to-sample
and configuration-to-configuration variability occurs in
fracture strength and other fracture properties. For this
reason a statistical analysis is often necessary, and in frac-
ture this analysis is usually based on the Weibull and oth-
er extreme value distributions.'

Understanding of crack nucleation and failure of
heterogeneous materials has improved recently with the
development of simple algorithms to simulate these pro-
cesses in quasistatic loading.2” ¢ However it is difficult to
reliably determine the scaling properties from these simu-
lations, both because the algorithms are relatively slow,
and because the scaling behavior is quite weak, so that
many decades in sample size are required for a definitive
analysis. A further problem with these simulations is
that, in fracture, it is often the probability of failure that
is of more interest than average properties such as the
average fracture strength, and in particular, the “high-
reliability” tail of the failure distribution is of most physi-
cal and engineering importance. Naturally, it is difficult
to sample the high-reliability tail using conventional
Monte Carlo methods. It is thus very important to devel-
op a set of simple models which can be analyzed, either
analytically or numerically, with precision to guide in the
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analysis of the more complex models.

There is a long tradition in the use of simple models to
analyze failure in heterogeneous materials. The majority
of models are of mean-field type and ignore the stress
enhancement near locally failed regions. These “demo-
cratic” or ‘“equal-load-sharing” models are usually
analytically solvable.” Continuum versions of these
mean-field models, which are often used to analyze the
time to failure rather than the fracture strength, form an
important branch of nonlinear continuum elastic theory
called “continuum damage mechanics”.® Rigorous treat-
ment of the effect of local stress enhancements on crack
nucleation has proven more difficult, and with the excep-
tion of the seminal work by Smith,” Harlow and
Phoenix,'® 12 and more recent work in the statistical
physics community by us>!* and Curtin and Scher,*
there are few reliable results. Although the solvable
models are invariably one-dimensional, ‘“fiber-bundle”
models, they appear to contain many of the key scaling
properties of more complex higher-dimensional models.

A key fiber-bundle model is one in which the local
failure thresholds are drawn from continuous distribu-
tions, such as the Weibull and uniform distributions, and
in which local stress enhancements occur after local
failure. Harlow and Phoenix! studied this model using a
transition-matrix approach. In this paper we present a
new recursion relation for this class of model and give de-
tailed results for the average strength, the failure proba-
bility, and the distribution of stable crack sizes of fiber
bundles with local load sharing and uniform and Weibull
distributions of local failure thresholds.

The paper is arranged as follows. In Sec. II, we devel-
op the recursion relations for the failure probability. In
Sec. III, we present numerical results for the failure prob-
ability, average strength, and stable crack size distribu-
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tions in the cases of uniform and Weibull distributions of
local failure thresholds. Section IV contains a summary
of the main results of the paper.

II. THE MODEL AND RECURSION FORMULAS
FOR THE FAILURE PROBABILITY

The parallel-bar (fiber-bundle) model with a continuous
distribution of bond failure thresholds is illustrated in
Fig. 1. Prior to application of the applied stress [Fig.
1(a)] , no bonds are broken and each of the bonds has a
strength drawn from a distribution f(o’'). When a stress
o is applied, either some of the bonds fail until a stable
crack structure is reached [Fig. 1(b)], or bond failure con-
tinues until the bundle fails completely. In the local-
load-sharing model, the stress experienced by a surviving
bond is given by

k

o= 1+—2- o, (1)

where k is the number of failed bonds adjacent, on both
sides, to a surviving bond [see Fig. 1(b)]. Although this
load-sharing rule is idealized, it is similar to that occur-
ring in composites and random networks (further
justification can be found in Ref. 10).

We focus on calculating the probability F(n,0)=F,,
that a bundle, or quasi-one-dimensional sample, of size n
will fail when a stress ¢ is applied to the parallel-bar sys-
tem. Often it is more convenient to work with the sur-
vival probability S, =1—F,. We develop recursion rela-
tions which relate F, to the set {F;, with / <n}. We have
developed two distinct sets of recursion relations. The
first is exact, but requires a computational effort which
scales as 2"—1. While the second is approximate, it
scales algebraically with sample size and we show how it
may be systematically improved. The approximate recur-
sion relations are exact solutions to a set of simpler mod-
els, which in many cases contain the typical scaling
behavior of the problem.

A. Exact recursion relation

It is simple to write down all of the configurations
which survive in a sample of size n. In the following a 1
denotes a surviving fiber, while a 0 denotes a failed fiber.
Then for fibers up to size 4, the survival configurations
and their survival probabilities are listed in Table I (we
have used reflection symmetry to reduce the number of
distinct configurations). There are 2"—1 survival
configurations, and the one failure configuration 00 - - - 0
making a total of 2” configurations on a sample of size n.
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FIG. 1. (a) A parallel-bar system before fibers begin breaking;

(b) a parallel-bar system after some fibers have broken. The
lone fiber (LF) marked with an X, has load enhancement k =3.

Each of these survival configurations is independent, so
we can add their probabilities, s(configuration), to find the
probability that a sample of size n survives,

Sn: 2

configurations

s(configuration) . ()

It is also straightforward to write down the survival prob-
ability for any of the configurations in Table I and, for ex-
ample,

s(0101)=F, W,F, W, , (3)

where we define

(1+k/2)o

we=1—[ flodo', 4)

0
W, is the probability that a fiber survives when it has k
failed fibers adjacent it. Using this procedure, it is
straightforward to complete Table I, and to calculate the
failure probability of a sample of size n from { W, and F,
I <n}. Harlow and Phoenix'® have developed a different
method to calculate F,, and we have analytically shown
(to order n =4) that our method gives the same result as
theirs. Kuo and Phoenix'? have labeled the survival
configurations, in both the static failure (the case studied
here) and the time-dependent failure problem, in the
manner used here, but have not explicitly carried through
the calculations in the way that we do here and in the
next part of this section.

We have developed a computer algorithm to sum the
2"—1 survival configurations of a sample of size n, and
the results of these calculations will be presented in Sec.
III. However, the exponential increase in the number of
configurations occurring in the sum (2) restricts this algo-
rithm to n=20. To alleviate this problem, we have
developed a more efficient recursion relation for F,, and
this we now describe.

TABLE 1. Survival configurations and their survival probabilities.

Configurations (degeneracy)

Survival probabilities

1

11,10(2)

111,110(2),101,100(2),010
1111,1110(2),1101(2),1100(2),1010(2)
1001,0110,1000(2),0100(2)

Wo

W§,2W,\F,

W3 2W W, F\,W,F\W,,2W,F,,F,W,F,

WE2WEW F2W W\ F\W | 2WW,F,,2W F\W,F,
W,F,W,,F\W3iF ,2W1F;,2F, W,F,.
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B. Recursion relation using a generating-function technique

Our generating-function technique is based on the ob-
servation that any survival-configuration probability con-
sists of products of independent probabilities of simpler
subunits. The essential subunits and their generating
functions are first defined, and then the generating func-
tion for the sum of probabilities of all survival

J

{ 4}=101,1001,10001. . .,10101 , 100101 , 101001, ..
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configurations is constructed from them.

Due to the nature of the load-sharing rule (1), it is use-
ful to define a lone fiber (LF) to be a surviving fiber which
is surrounded by failed fibers [e.g., the fiber marked with
an x in Fig. 1(b)]. We then define { 4 }, to be the set of all
survival configurations which contain only failed fibers
and lone fibers, and are bracketed at both ends by lone
fibers. The small » members of this set are

., 1010101,10010101. .. . (5)

A closely related set of configurations, { B}, we define to be the same set as { 4 }, with the exception that one (specified)
end of the configuration must be failed. The small » members of this set (for the case where the left end is failed) are

{B}=01,001,0001..., 0101,00101,01001, . ..,010101,001010. . . . (6)

There is a complimentary set to { B} which has the same
probability but which has the failed ending on the right.
The generating functions for {B} and its compliment are
the same, so we do not distinguish between them. We
also treat as special the set of configurations { C} which is
the same as { A} except that both ends have failed. The
small n members of this set are

{C}=010,0100,0010,01010,001010. . . . (7

Finally, we also define {p} the set of configurations which
have no failed bonds

(p}=(),1,11,111,1111, . .. , (8)

where (.) is the empty set. Associated with these classes of
survival configurations, we define the generating func-
tions

AD=S 4,2",

n=3

B(z)= ian" )

n=2

and 9)

C(z)= 3 C,z",
n=3
where 4,, B,, and C, are the sums, respectively, of the
survival probabilities of the sets { 4}, {B}, and {C} of
fixed sample size n. The generating function for the set
{p] may be evaluated immediately and we find
- 1
p(z)= 3 (Wy)zh=—"7-——". (10)
,20 0 1—Wyz
J

r

Some study shows that the probabilities of all survival
configurations are uniquely counted in the key generating
function, S(z)

[1+B(z)]p(2)[1+B(z)]

S(z)=C(z)+ 1—p(2)4(2) . (11)
where
S(@)= 3 5,2" . (12)
n=0

To see how this arises, it is necessary to replace the gen-
erating functions in Eq. (11) with the survival
configuration to which each term refers, and then show
that expression (11) reproduces all possible survival
configurations. An example (for n=3) is given in the
Appendix. Since we have the identity

F,=1-8, , (13)

we also have the generating-function identity

F2)= S Fz"=———5(2). (14)

n=0 1—z
We note also that F;=0 and S,=1. Combining (10),
(11), and (14), we get the identity
(1—z)(1+B)?
—(1—Wyz— A)[1—(1—z)F+C)]=0. (15)

We then expand this identity using definitions (9) and
(14), and setting the coefficient of the z” term in this ex-
pression to zero yields the recursion relation

F,+C,=(14+Wy)F,_;+C,_)—Wy(F,_,+C,_,)—2B,+2B,_,— A,+F,A,_,—B,B, _,

n—4
+ 2 {Bm+1(Bn—m—2_Bn—m—l)+Am+2[(F —m—2+c —m—-Z)_(Fn—m—3+C —m—3)]} . (16)
m=1

To implement this recursion relation, we need expressions for the survival probabilities 4,,, B,, and C,. We are able to
write down expressions for 4,, B,, and C, as a series in the number of lone fibers (excluding end fibers) occurring in a
survival configuration. These series with terms up to two lone fibers explicitly listed are as follows [typical survival
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configurations considered are contained in Egs. (5)-(7)]:
n—4
Ay =Wi o Fy ot S W W, sW, | 3FI Foy s
=1

n—gn "l —5

P. L. LEATH AND P. M. DUXBURY 49

+ 2 2 WiWi Waoy —aWay —1,—aF | FL Fy oy gt an

=1 I,=1

. n—3
Bn=Wn—l n—1+ 2 Wn—Zanll—ZFlan~1172
1

=1

n—sh—1,—4
+ 2 X Wi Wat—sWaoy —1,—3F1 F Fy gy 5+, (18)
=1 I,=1
and
n—2 n—an—1 =3
G=23 Wn—lFlan—ll—1+ > 2 Wll+12Wn—zl—zFIIFIZFn—II—Irz‘*‘ . (19)

1,=1 L=1 I,=1

Equations (16)-(19) are the complete set of recursion re-
lations for the failure probability. It is computationally
very expensive to take Egs. (17)-(19) to arbitrary order in
the number of lone fibers, although it is faster to solve the
problem exactly this way than using the configuration-
counting method descried earlier in this section.

However an important feature of Eqs. (17)-(19) is that
they allow us to systematically include successively
higher-order lone-fiber configurations. The i-lone-fiber
(NLF=1) approximation is done by neglecting all the
terms in 4,, B,, and C, [as given by Egs. (17)-(19)]
which have more than (i +1) products of F’s in them.
This sequence of approximations, in which we take in-
creasing numbers of lone fibers into calculations, provide
a uniformly converging sequence of upper bounds to the
exact failure probability, since we are systematically in-
creasing the number of survival configurations. In fact,
in the simpler problem of diluted networks or fiber bun-
dles, Harlow and Phoenix!! found that taking the terms
up to order NLF=2 lone fibers provided asymptotically
exact results for the bundle failure probability. In the
next section we study the recursion relation (16) up to or-
der NLF=2 and compare the results with the exact
method described earlier. Before proceeding to these cal-
culations, it is useful to illustrate the survival
configurations which are included at each order in our
NLF approximations to 4,, B,, and C,. We illustrate
using {A}, and consider for illustration the three
configurations

X1=10011011011101,
X2=10010011000101 , (20)
X3=10010001011101 .

When no lone fibers (NLF=0) are considered in the cal-
culations, all surviving fibers (other than those on the
ends of the string) must have at least one adjacent surviv-
ing fiber, thus X1 is included, but not X2 or X3. When
one lone fiber is allowed (NLF=1) in the calculations, X1
and X2 are included but not X3. Finally, when NLF=2

[

all three configurations in (20) are included in the calcula-
tions, while a configuration such as 101010101 is not (it
has a string of three sequential lone fibers). Even the
leading-order model (NLF=0) is very interesting, and is
analogous to the single-cluster load-sharing model solved
for the case of random dilution.>'3 In that case this sim-
ple model contains much of the essential scaling proper-
ties of the model, and we will see that low-order lone-fiber
models seem numerically to contain the essential physics
of the systems studied here.

III. NUMERICAL RESULTS

We calculate the failure probability F, recursively
from Egs. (16)-(19), using the load-sharing rule (1), and
Eq. (4) for W,. The local bond-failure probabilities we
use are the uniform distribution with differential proba-
bility,

fu(a)=LW if0<o=W

and 2D
[, =0 otherwise .

The only parameter in the uniform distribution is the
width W. In order to compare with prior work such as
that by Harlow and Phoenix,!° we also use the local
Weibull distribution with cumulative probability

cw(a)=foafw(o’)da’

m

=1—exp (22)

o
US

This distribution has two parameters, o the scale
strength, which sets the size of the typical strength in the
distribution, and m the Weibull modulus, which deter-
mines the scatter in the distribution of bond strengths. In
both of these cases it very simple to evaluate W, from
Eq. (4). From Table I it is straightforward to write down



and

F,=1—-W3}—2W,F, . (23)

Then we either use the configuration-counting method of
the first part of Sec. II or the recursion relations Egs.
(16)—(19) of Sec. II to find higher order F,. When using
the recursion relation method, we are able to include suc-
cessively higher-order terms in Eqgs. (17)-(19). When no
lone-fiber configurations are included (NLF=0), we in-
clude the first term in Egs. (17) and (18). When a single
lone-fiber string is allowed (NLF=1), we include the first
two terms in (17) and (18) and the first term in (19). Fi-
nally, when a string of two lone fibers is allowed,
NLF=2, we include the first three terms in (17) and (18)
and the first two terms in (19). As stated at the end of
Sec. II, this gives us the first three terms in a converging
sequence of upper bounds on F,. Using the exact method
we are able to calculate F, to order n =20 in about a
minute CPU on a Sun Workstation. Using the recursion
method, we are able to calculate F, to order n =150 for
NLF=2, and order n=1500 for NLF=1 in about a
minute CPU on a Sun Workstation. Storage require-
ments are minimal, and improvements by factors of 2 or
so could be easily achieved in optimized programs.
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A. Uniform distribution

Results for F,(o) for the uniform distribution with
n =20 are presented in Fig. 2(a). Here we have calculat-
ed the failure probability exactly, and compare it with the
approximations NLF=0,1,2. The results for NLF=2
are coincident with the exact result to the resolution of
this graph, although in the lower tail, there are significant
deviations (see below). In Fig. 2(b), we present results for
NLF=1, for n=15, 150, 1500 to illustrate the variation
in the failure probability with sample size. It is seen that
the mean of the probability distribution moves toward
o /W =0, and becomes sharper (less fluctuations) with in-
creasing n. Harlow and Phoenix'® have shown that at
large sample size, F, should approach the weak-link scal-
ing form

1—F,~[1—f(a)]". (24)

This is called weak-link statistics, as the survival of a se-
quence of n links each of which is independent and has
survival probability s(o) is S,=[s(c)]". Conversion
from survival probability to failure probability gives ex-
actly Eq. (24). It is surprising and nontrivial that the
weak-link form (24) should apply in problems with corre-
lated bond-breaking schemes. One way to test for con-
vergence of data such as Fig. 2(b) to Eq. (24) is to plot the

Failure probability

o
N
=]

0.00 '

FIG. 2. (a) The failure probability F, of an
n =20 system with a uniform distribution of

0.20 0.30

stress/W

fiber thresholds: the exact result (---), the
NLF=0 approximation ( ), and the
NLF=1 approximation (——). The NLF=2
approximation is coincident with the exact re-

0.50

1.00 —T

0.80

o o
B [+
o o

Failure probability

1

0.00

L

sult to the resolution of this figure. (b) The
failure probability within the NLF=1 approx-
imation for n =15 ( ), n=150 (---), and
n=1500(——).

.
o | L. 1
1 015 020 025 030

stress/W

0.00

0.35

0.40

0.45
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quantity X =In[ —In(1—F,)/n ] against some function of
o. Although this is not the simplest function to test Eq.
(24), it has the advantage of also testing predictions for
the form of f;(o) appearing in Eq. (24). In Figs. 3(a) and
3(b), we present plots of X versus two functions of o /W.
From Fig. 3(a) it is seen that for n sufficiently large, the
data fall on a common line, and hence that Eq. (24) is val-
id in this limit. It is also seen from this figure that for
n =15, the uniform distribution is far from achieving the
weak-link form, but that for n =150 the weak-link form
is accurate. It is evident that although there are
significant quantitative differences between the NLF=1
and 2 cases, the general trends are very similar for these
two approximations. Figure 3(a) also provides a test of
the Weibull form for the stable limiting distribution. If
the Weibull form were correct, then the low-stress tail of
Fig. 3(a) should be a straight line. For n =15, the line
does appear to be straight for In(o /W) < 2.3, indicating a
region in which the Weibull form is useful. In fact, for
each value of n, it seems that the Weibull plot becomes
straight for sufficiently low stress, but that region moves
to lower and lower values of stress as n increases, and the
asymptotic straight line (Weibull fit) has parameters
which are highly sample size dependent.

A test of the double-exponential form for the same
data for F,(o), suggested from previous work on the
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models with random dilution [f;(0)~exp(—a /o), see
Refs. 5 and 13] is presented in Fig. 3(b). The data are
nearly a straight line for n =150, with slight curvature.
The slight curvature suggests that a preexponential factor
may be required, such as f;(0)~oc%xp(—a /o), which
has been found previously for a=—1, in models with
random dilution.”> The n =15 data are straight for high
stress, but curves away sharply at low stress as the
Weibull-like behavior takes over.

More information about the behavior of F, as a func-
tion of n is presented in Fig. 4. Figure 4(a) shows the
behavior of F, as a function of n at o /W =0.1, which is
in the low-stress tail of Fig. 3. Here it is seen that there
is a striking nonmonotonic behavior of the failure proba-
bility as a function of sample size. The failure probability
at the minimum of Fig. 4(a) is 4 orders of magnitude
lower than that of a single bond. Qualitatively the origin
of this effect is that for a specified disorder, there is a ten-
dency toward crack blocking by strong bonds, and a ten-
dency toward crack propagation when a large cluster of
defects arises. At small external stresses, the critical de-
fect size for unstable crack propagation is large, and
hence crack blocking is very significant. For samples of a
given size n, the external stress o can be sufficiently small
that it is unlikely that a crack of the critical size, i.e., an
unstoppable crack, exists in the sample. If bond breaking

0.00
-5.00
"= -10.00
=
=
1 -15.00
—
N’
= -20.00
p—
N . f,
S50 - - 7 -
,rf"r'/ FIG. 3. A test of the weak-link hypothesis
000 = A ] [Eq. (24) of the text] for the uniform distribu-
f”f | | i | tion. (a) A test of the Weibull stable limiting
35005 30 570 2% 1.9 150 form, for n=15 with NLF=1 ( ) and
In(stress/W NLF=2 (—-—-); n=150 with NLF=1
( ) (——) and NLF=2 (--—---); and n=1500
0.00 with NLF=1 (---). (b) the n=15, NLF = 2
data ( ) and the n=150, NLF=2 data
-5.00 - (---) from (a), to test for the double-
exponential distribution.
—~-10.00 |
=
~
~X-15.00 _
=
— -20.00 _
N’
=
' -25.00 -
N
=
— -30.00 |- -
-35.00 |
-40.00 1 | | . | L

0.00 5.00 10.00 15.00 20.00 25.00

W/stress

30.00
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is completely random, the probability that a sample of
size n will fail at stress o /W is F, ~(o /W)". This proba-
bility is a strongly decreasing function of system size,
which explains why, at small applied stress, the graphs of
Fig. 4 are initially strongly decreasing functions of sam-
ple size n. In this region, failure occurs by the percola-
tion of cracks. It is in this region that Weibull-type
behavior is seen with n-independent parameters. Howev-
er, in a large system, an especially weak or highly stressed

10°

14911

part of the system becomes unstable, develops a super-
critical crack which is unstoppable and catastrophic
failure occurs. The minimum of graphs such as Fig. 4(a)
then defines a critical sample size n.. For samples larger
than the critical size, the probability of failure increases,
as the likelihood of nucleating a critical defect becomes
large. As shown in Fig. 4(b), the critical sample size gets
larger as the applied stress level is made smaller, and at
the same time, the minimum in the F, versus n curve

107 —(CI)

Failure probability

Failure probability

FIG. 4. The failure probability F, for the
case of the uniform distribution, as a function
of system size n. (a) o/W=0.1 the exact re-
sult ( ), NLF=1 (---), and NLF=2
(——); ®) o/W=0.05 for NLF=0 (---),
NFL=1 (——), NLF=2 ( ), and (c) re-
sults for NLF=1 and o/W=0.2 (——),
o/W=0.1(---),and o /W=0.05(——).

Failure probability
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grows deeper. At o /W =0.05 the minimum is close to
n =32, and the minimum in F, is nearly 9 orders of mag-
nitude lower than the single-bond failure probability. It
is seen from Figs. 4(a) and 4(b) that the NLF=1 and 2
approximations do not precisely determine the value of
F, in this regime, although the critical sample size n, is
in nearly the correct position even for NLF=0. As seen
in Fig. 4(c), the depth of the minimum in F, grows weak-
er as o /W increases, and we find that F, becomes mono-
tonically increasing in n when o /W exceeds a critical
value of about 0.5. In this case, the critical-crack size is
zero and the sample is in the brittle regime in the
language of Khang et al.? It would be interesting to fol-
low the behavior of n, with o /W —0, although the fact
that the minimum in F, becomes extremely deep makes
this a difficult numerical task. However, there is a simple
way in which to estimate the behavior of the critical sam-
ple size, as illustrated by the discussion below.

It is possible to calculate the (non-normalized) number
of cracks of size / which are stable from the expression

N, ~WIF, . 25)

This is the probability that a region of size / has failed,
multiplied by the probability that the two bonds at the
ends of the crack survive. It does not separately count
clusters with lone fibers in their interior. Double-
logarithmic plots of N, against / are presented in Fig. 5.
It is clear that this stable crack-size distribution is not
algebraic in this range, and a log-linear plot also shows it
is not exponential. There is clearly a crack size above
which no stable cracks can occur, and for the uniform
distribution this critical crack size is certainly less than
or equal to the point at which W, goes to zero. This
crack size leads to a cutoff in the curves of Fig. 5 and is
responsible for the sharp downward curvature in the tail
of the plots in Fig. 5. An estimate of the critical sample
size for the uniform distribution is then

Number of stable cracks

1

FIG. 5. The number of stable cracks (non-normalized), N,
for o/W=0.05 ( ), o/W=0.1 (---), and o/W=0.2
(——).
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. (n,+2)o —o 26)
2w
This gives
n,=2%_». @7)
o

Note that although n,#n_ as found from the minimum
in F, of Fig. 4, it is close to and a rather good upper
bound on those minima.

The average strength, @, of the fiber bundles is easily
calculated from F,(o). Here we do two calculations, the
first for a single-fiber bundle, and the second for a chain
of n fiber bundles. When n fiber bundles are arranged in
series or in a chain, so that each of the bundles is in-

5.00x10" - —

average fracture stress

5.00x10” L— e ol
10 10 10
n
1600 ———r— SR
(b)

14.00 e

S IS
=) )
(=) S
T T
| |

1.0/average fracture stress
g
T
|

6.00 |- |
400 - —
2.00 T : L

10 10 10

FIG. 6. The average fracture stress & as a function of sample
size for the uniform distribution. (a) for NLF=1 and a single-
fiber bundle ( ), for NLF=2 and a single-fiber bundle
(——); for NLF=1 and a series combination of n fiber bundles
(---), for NLF=2 and a series combination of n fiber bundles
(=-=). (b) A test of a logarithmic size effect in average strength,
data for NLF=1 and a single-fiber bundle ( ), and for
NLF=1 and series combination of » fiber bundles ( ---).
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dependent, the weak-line rule is exact, so we have

1=G,, =[1—F, "~ [1—f)(e)]"" . 28)
Using G,,, we calculate the average strength of n Xn lat-
tices. The results are presented in Fig. 6, in which we
plot the data on a log-log graph to test for the behavior
G~1/L*, as claimed in Ref. 3, where it is suggested that
x ~0.25. It is seen that this algebraic form does not fit
the data well. In Fig. 6(b), we plot 1/ to test the predic-
tion that, up to log(log) corrections, @~1/(1+k InL) as
argued by Duxbury and Kim.!> Earlier work by Smith®
suggested & ~ 1 /InL (similar arguments were also used by
Khang et al.?). Figure 6(b) shows that the logarithmic
form provides a better representation of the data than
does the algebraic one except for very small values of n.
The size effect is very weak, and it is not surprising that
an algebraic fit with x ~ 1 provides a reasonable fit to the
data over a couple of decades in sample size. It is clear
that attempts to find the scaling laws of fracture from
simulations on small lattices (even lattices of up to
100X 100) may not give the correct asymptotic trends,
and that analytic results are essential to guide in the
analysis of simulations.
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B. Weibull distribution

Since the Weibull distribution has been so broadly ap-
plied and since it has no strict upper cutoff, it is of in-
terest to see how our method performs in this case. We
first present results to test whether the hypothesis of a
stable, limiting weak-link distribution (24) is valid for this
type of disorder. The results for a typical practical case
m =35 are presented in Fig. 7. It is seen from this figure
that except in the very high-reliability tail, the stable lim-
iting distribution is achieved for NLF=1 and n <100.
We also present this figure in order to check consistency
with the transition-matrix method of Harlow and
Phoenix (see Fig. 3 of Ref. 10). Their method with k ~ 10
provides a similar convergence to the stable limiting dis-
tribution as that seen in Fig. 7(a), and provides a useful
check on our method. It is seen from Fig. 7(a) that the
limiting distribution is again not of Weibull form. In Fig.
7(b), we present a test of the double-exponential form,
which is seen to be almost linear in the high-reliability
tail. Again, we suggest that the double-exponential form
with an algebraic prefactor is a very good way to analyze
data such as Fig. 7, although in many practical situa-
tions, the experimental data are not good enough to
resolve these subtleties.

-40.00 N [ N U R B
200 -1.80 -160 -140 -120 -1.00 -080 -0.60 -040 -0.20 FIG. 7. A test of convergence to the weak-
In(stress/scale stress) link scaling form (24) for the Weibull distribu-
tion with m =5.0. (a) Data for NLF=1 and
n=100 ( ) and n=1000 (---), and for
0.00 T T T T NLF=2 and n =100 (— —) on a Weibull plot.
(b) (b) Data for NLF=2 and n=100 to test for
-5.00 — . .
| double-exponential scaling ( ).
~-10.00 |- -
& |
2X-15.00 |- -
o 1
— 2000 |- i
N
= ]
5 -25.00 [~ —
= 1
— -30.00 —
-35.00 |- _
-40.00 L ‘ ! ; ' '
-7.00 -6.00 -5.00 -4.00 -3.00 -2.00 -1.00

-scale stress/stress
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As in the uniform distribution case F, for the local
Weibull distribution is not monotonic in # and shows a
striking minimum at a critical value of n. In Fig. 8(a), we
show for m =2 and 0 /o =0.2 that NLF=2 provides an
even better approximation to the depth and location of
the probability minimum than it did in the uniform dis-
tribution case. As in the uniform distribution case, the
minimum grows deeper as the stress is reduced [see Fig.
8(b)]. The small NLF approximations become more ac-
curate as m increases [see Fig. 8(c)], and even at m =5,
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the NLF=1 approximation is sufficiently accurate for
most purposes. We observe that the sharper the distribu-
tion of local bond-failure thresholds, the more accurate
are the NLF=1 and 2 approximations. In general, we
expect that the failure probability of models with a well-
defined peak in the distribution of bond-breaking
strengths will be accurately estimated by using low-order
NLF approximations. In fact, the uniform distribution is
one of the most challenging cases for these approxima-
tions.
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= FIG. 8. The failure probability of the
) Weibull distribution as a function of sample
E size showing the deep minimum at a critical
8 value of n. (a) Data for m =2, 0 /0,=0.2, and
o NLF=1 ( ), NLF=2 (---), and the exact
o result (——). (b) Data for m=2 and
= 0/0,=0.15 for NLF=1 (——), NLF=2
[f (---), and the exact result (——). (c) Data

for m=5.0 0/0,=0.25 for NLF=1 ( )
and the exact result (---).
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Finally, we have calculated the average strength of
Weibull systems with m =5, and the results are present in
Fig. 9. In the Weibull case, the larger m models are ex-
pected to show a logarithmic size effect,” although the
amplitude of the effect is weaker for larger m. Since
there is a downward curvature in the plot of Fig. 9(b) the
size effect is slightly weaker than logarithmic, but it is
certainly inconsistent with an algebraic size effect at large
n.

IV. SUMMARY

We have presented a new method to analyze the failure
probability, crack-size distribution, and average strength
of simple models of fracture with local load sharing.
Simple transcription of variables (e.g., stress — current,
in the random-fuse case) makes these models also
relevant to the behavior of the random fuse, supercon-
ducting, and dielectric models. The recursion-relation
method is particularly powerful as it provides a converg-
ing sequence of upper bounds on the failure probability,
and a converging sequence of lower bounds on the aver-
age strength. In many cases, these bounds are numerical-
ly essentially exact even for low-order approximations in
the number of lone-fiber configurations (NLF’s) included.
The recursion algorithm is algebraic in sample size, in

4.00x10"
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contrast to a full solution which scales exponentially as
2", In addition, the fact that the failure probability is cal-
culated directly allows this method to be used in the very
important, high-reliability tail of the failure distribution,
a regime which is inaccessible to direct numerical simula-
tions.

We have applied our new algorithm to single-fiber bun-
dles and to chains of fiber bundles or networks, with
local-load sharing and we have used both the uniform
and Weibull distributions of local-failure thresholds. The
qualitative behavior is the same for both classes of disor-
der thresholds, although the approximations are better
when the distribution is sharper, and our main results are
as follows.

(1) There is a stable limiting weak-link [see Eq. (24)]
distribution in the failure probability [see Figs. 3(a) and
7(a)], as first demonstrated by Harlow and Phoenix.'® A
double-exponential distribution provides a better parame-
trization of the data than a simple Weibull (see Figs. 3
and 7), for large samples, although an n-dependent
Weibull distribution works well for small samples and in
the low stress tail.

(2) There is a deep minimum in the failure probability
as a function of sample size (see Figs. 4 and 8), implying
that there is an optimal size in the design of materials
and structures with disordered microstructures if that is

average fracture stress

1.00x10" SR el

- FIG. 9. The size effect in average strength

10 for the Weibull distribution with m =5.0. (a)
A log-log plot to test for algebraic scaling with

NLF=1 and for a single-fiber bundle ( ),

—— and for a series combination of n fiber bundles

8.00 T + =

- e
5.00

4.00

300 |

1.0/average fracture stress

(---). (b) Same data as for (a), but plotted to
e test a logarithmic size effect.
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possible. The optimal system size becomes larger when
the applied stress is smaller, and when the distribution of
initial disorder is broader.

(3) For large sample sizes n, the size effect in fracture
strength is slightly weaker than simple logarithmic but
appears to be inconsistent with the algebraic scaling
found in Ref. 3, but in agreement with arguments made
by Smith® and Duxbury and Kim."> One must, however,
be aware that the models studied here do not allow crack
deflection, a process which certainly does occur in many
higher-dimensional models, and the local load-sharing
rule does not consider long-range strain fields. It is im-

J

((+1+11+111)

S§}=010+(. +01+001
(5] ( ).—(.+1+11+111)(101)

Here a (.) refers to the absence of any contribution to the
configuration from that bracket. On expanding the
denominator in a series expansion, it is seen that the
right-hand side of (29) reproduces all survival
configurations to order » =3. In order that the probabili-
ties of survival can be decomposed in the same way as the
configurations themselves, we must not break any vacant
clusters, or at any places at which a vacant cluster meets
a fiber (i.e., we cannot break a 00 segment at its center,
and we cannot break a 01 segment). We can however
break a segment 11, as the survival probabilities in this
case are simple products. For example,

5(001001100010)=5(001001)s (100010) . (A2)

This sort of decomposition has been discussed before by
Kuo and Phoenix.!? It is seen that this result also relies
on the fact that the load-sharing rule Eq. (1) only applies
to the bonds at the ends of vacant clusters. If the load
sharing is to farther neighbors, the decomposition (30) is
not valid in its present form, although generalizations to

(.+10+100) .
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portant to assess these effects before one can definitively
claim to understand the analogous d =2 and 3 electrical
and spring networks. Nevertheless, there is growing evi-
dence that the models here provide an accurate picture of
the dominant form of scaling at large sample size for a
broad range of models and for a broad range of initial
heterogeneity.

APPENDIX

Survival configurations to order n» =3 may be generat-
ed from [see Eq. (11)] of text,

(A1)

[

include limited-range load sharing are possible. Despite
this, the recursion method described in Sec. II of the text
is still very general, as it applies to any load-sharing rule
[i.e., one can replace (1), by exponential, or more general
algebraic laws], and to any distribution of local-failure
thresholds.
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