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We have studied scattering from locally periodic optical potentials. The band-structure characteris-
tics of periodic potentials along with resonances are observed. These features are solely due to the in-
terference from absorptive potentials. Contrary to assertions in the literature, we show that the absorp-
tion along with the enhanced reflection induces coherence in quantum systems. We also discuss some

conceptual aspects of absorptive potentials.

There are several physical situations where one en-
counters the absorption of elementary particles or excita-
tions due to impurities in the media, one recent example
being light (photon) propagation in a lossy dielectric
medium.! The absorption (or dissipation) corresponds to
the actual removal of the particle (or energy in the case of
electromagnetic wave propagation) by a recombination
process. To allow the possibility of inelastic decay on
otherwise coherent tunneling through potential barriers,
several studies invoke absorption.>® Inelastic scattering
arises due to thermal phonons, and introduces decoher-
ence in tunneling systems. Here one would like to under-
stand the crossover from coherent to sequential tunnel-
ing. In these studies the absorption depletes the spectral
weight from the elastic channel, and the total absorption
is identified as the spectral weight lost in the inelastic
channel. As an example, in the case of one-dimensional
double-barrier structures the absorbed or attenuated part
is assumed to tunnel through both the left- and the right-
hand sides of the barriers in proportion to the transmis-
sion coefficient of each barrier,’ and this is added to the
coherent transmission coefficient to get the overall
transmission coefficient. Till now all treatments have
been phenomenological, and to describe the absorption
(or the effect of inelastic scattering) one introduced opti-
cal potentials or imaginary potentials. In that case the
Hamiltonian becomes non-Hermitian and leads to the ab-
sorption of the probability current. These treatments are
also quite well known in nuclear physics.

It has been widely thought that the effect of absorption
on classical waves is analogous to thnt of inelastic scatter-
ing of electrons. In fact, recently Weaver* has shown
that absorption does not provide a cutoff length scale
(similar to an inelastic scattering length) for the renor-
malization of wave transport in a random media. In oth-
er words, the absorption does not reestablish the diffusive
behavior of the wave propagation by destroying the local-
ization of eigenfunctions. The wave energy transport
seems to remain nondiffusive even in the presence of the
absorption. Very recently, in a related development, Ru-
bio and Kumar® have emphasized the dual role of the
imaginary potentials (or optical potential), as an absorber
and a reflector. For double-barrier structures they have
shown that the mismatch caused by an optical potential
leads to a nonmonotonic dependence of the absorption on
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the strength of the potential. It also causes enhanced
reflection due to the potential dispersion, and absorption
without reflection is not possible. In view of these recent
developments we have explored some additional features
arising due to absorption along with enhanced reflection.
We have studied a simple periodic system comprising a
series of &-function scatterers with pure imaginary
weights. This is our analog to the classic Kronig-Penny
model, well studied in solid-state physics for optical po-
tentials. We do not invoke any periodicity in the real
part of the potential. This is to make sure that the results
are associated solely with the optical potentials. We
show explicitly that absorption along with enhanced
reflection can induce coherence in quantum systems.
This is in contradiction to the earlier view that absorp-
tion causes decoherence. This reinforces some results ar-
rived at by Weaver. In addition, we show that the ab-
sorption is a highly nonmonotonic function of the poten-
tial strength, and certain features are observed which we
believe have been not noticed so far.

For the simple case of a single purely absorptive &-
function potential V(x)= —iV,8(x), the corresponding
reflection coefficient R, transmission 7, and absorption o
coefficients are given by’

£
R(E)=—F————, (1a)
2 2
E)=—\k/m)__ (1b)
(#2k /m +V,)
2#kVy/m
Ey=—— 2, (1c)

(#k /m+V,)?

where k is the wave vector, m the mass, and V| the
strength of the absorption potential. One can readily ver-
ify from Eq. (1c) that o(E) is a nonmonotonic function of
Vo, i.e., it initially rises as a function of ¥, and then, after
exhibiting a maxima, decreases toward zero. We now
consider series of purely imaginary & functions
V(x)=—iV,8(x), placed at a distance L apart. We have
considered periodic systems because of their simplicity,
and in these systems one can readily observe interference
effects. As an example, in a real-valued periodic potential
multiple scatterings lead to Brillouin zones and forbidden
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energy gaps due to Bragg reflection. In our system,
throughout the real part the potential is taken to be ideu-
tically zero, and we have periodicity only in the imagi-
nary part of the potential, taking values of zero and ¥V,
periodically.

It is an elementary exercise to calculate the complex
amplitude of reflection and transmission for a single &-
function scatterer. After doing that, we have used M-
matrix formalism to compute the transmission probabili-
ty containing a series of n equispaced 8-function scatter-
ers with purely imaginary weights. If the potential con-
sists of (n + 1) isolated parts, then the M matrix of the to-
tal system decomposes into a product of the M matrices
of individual system. We follow exactly the same pro-
cedure as given in Ref. 6. Following this, one can readily
compute the transmission, reflection, and absorption
coefficients for n scatterers analytically. However, in our
present analysis, for the sake of clarity, we explore results
graphically. In Figs. 1-3 we have plotted the transmis-
sion, reflection, and absorption coefficients, respectively,
as a function of kL, for a fixed value of dimensionless ab-
sorption potential strength mV,L /#*=1, and for six
scatterers in series. In Figs. 4—6 we have repeated simi-
lar graphs with 11 scatterers. Let us analyze graphs for
the transmission coefficient. One can readily observe the
emergence of a band structure characteristic of a real-
valued periodic potential in our case even for a small
number (~6) of scatterers. The energy bands are
identified with region of large transmission separated by
distinct valleys. Each band for n scatterers contain
(n —1) ripples or resonances. These resonances are of
course elementary consequences of quantum-mechanical
interference due to coherent multiple scattering; howev-
er, in the present case it arises due to purely absorptive
potential. At these resonance energies the incident parti-
cle spends a relatively long time inside the scattering re-
gion before reemerging. Consequently the absorption
shows peaks at these resonance energies. Overall, the
transmission coefficient within the band increases as we
go from lower to higher bands. For a band lying at
higher energy, the energy being large, the particle
traverses the region quickly (or at a smaller capture time)
and accounts for the broader peak of the resonance as
well as the lesser absorption. The transmission coefficient

0.60
0.50

040

Transmission

.00
0.0 20 40 60 80 10.0

KL

FIG. 1. The transmission vs kL for a fixed value
mV,L /#*=1 and with six scatterers.
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FIG. 2. The reflection vs kL for a fixed value mV,L /#*=
and with six scatterers.

© 9
o ®
O o
LE T

Reflection
(o]
b
o
T

1.00
0.80f V\/\\/\\/

o-oo . A A '
00 20 40 60 80 10.0

KL

FIG. 3. The absorption vs kL for a fixed value mV,L /#=
and with six scatterers.
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FIG. 4. The transmission vs kL for a fixed mV, L /#*=

with 11 scatterers.
0.00 r\g

00 20 40 60 80 10.0
KL

Absorption
© o©
b o
o ©

[]
N
(@]

0.40

0.30¢r

0.20}

Transmission

0.10 |

1 and

100

0.80}

o
e
o
T

Reflection
o
[~y
o

0.201

FIG. 5. The reflection vs kL for a fixed mV,L /#*=1 and
with 11 scatterers.
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FIG. 6. The absorption vs kL for a fixed mV,L /#*=1 and
with 11 scatterers.

for a fixed value of the wave vector k and the potential
V, is a monotonically decreasing function of the number
of scatterers. The reflection coefficient is maximum
within the band-gap region, similar to the behavior ex-
pected for the real periodic potential. The absorption
and reflection coefficients exhibit phenomena characteris-
tic of quantum coherence. The above observations ex-
plicitly indicate that the absorption induces coherence in
quantum systems, contrary to the assumptions of
decoherence in earlier literature.

In Figs. 7 and 8 we have plotted the absorption and
reflection coefficients, respectively, as functions of the di-
mensionless potential strength mV,L /#* for a fixed value
of kL =1 and for 21 scatterers in series. The absorption
is a nonmonotonic function of ¥, and exhibits several
peaks. The absorption becomes identically zero when
mV,L /#* exceeds the value around 10.5. At this value
and onwards the state with kL =1 falls in the lowest
band gap, and correspondingly the reflection attains a
maximum value. As we change the strength of the poten-
tial, the resonance energies are shifted. A fixed incident
energy coincides with different resonant states for
different values of the absorption strength, and we ob-
serve a peak in the absorption at these values of the po-
tential strength. As the number of scatterers is large,
there is hardly any transmission at resonances, and one
can obtain complete absorption without the reflection. In
our case with 21 scatterers, the transmission coefficient is
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FIG. 7. The plot of the absorption against mV,L /#* for a
fixed value kL =1 and with 21 scatterers.
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FIG. 8. The plot of the reflection against mV,L /#* for a
fixed value kL =1 and with 21 scatterers.

quite small and decays monotonically (or exponentially)
as a function of V.

In our analysis we have shown that absorption within
the phenomenological treatment via optical potentials ex-
plicitly induces coherence. We have taken a simple case
of periodic scatterers with a purely imaginary potential.
We expect a much more complex structure to emerge in
this case, where one has periodicities (which may be
different) in both real and imaginary parts of the poten-
tial. Classically one would have expected the absorption
to increase monotonically as a function of the potential
strength. However, the observed behavior in quantum
systems is highly nonmonotonic and, moreover, the ab-
sorption tends to zero as ¥V,— o. The absorber in this
limit acts as a perfect reflector. In the same classical lim-
it we would have expected the absorber to be a perfect
one, in the sense that the particle impinging on the ab-
sorber for the first time is absorbed with unit probability.
It is not clear at present whether the quantum problem of
a perfect absorber is well defined. To our knowledge
there is only one quantum treatment’ which directly ad-
dresses the concept of first passage times in the presence
of a perfect absorber, but this has met with only partial
success. In particular the positivity of the first passage
time has not been established. From the viewpoint of the
quantum theory of measurement, to have a perfect ab-
sorber we have to watch the system continuously at the
absorbing site. This is because one has to deplete (or take
away) the particle as soon as it arrives at the absorbing
site. One knows that such a measurement process blocks
the evolution of the state by a repeated collapse of the
wave function.” In such a situation it may be possible
that the quantum particle never reaches the absorber, and
hence it may act as a reflector.

In our present phenomenological treatment the coun-
terintuitive behavior of the absorption can be understood
as follows. In the vicinity of the absorber the particle ex-
periences mismatch in the potential, and tries to avoid
this region by enhanced back reflection. Along with the
reflection and reduced transmission, the particle picks up
an additional scattering phase shift, which along with
multiple interference leads to resonances. In the limit
Vy,—> «, the complex probability amplitude at the ab-
sorbing site tends to zero (similar to the hard wall bound-
ary condition), and hence there is total reflection. A sim-
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ple physically motivated example to explain the dual role
of the imaginary potential as an absorber and reflector is
given in Ref. 5. It may happen that in real physical situa-
tions the absorption will induce decoherence analogous to
the inelastic scattering of electrons by phonons. If so,
then one has to doubt phenomenological treatments
based on optical potentials. We hope that experiments
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(optical wave propagation) in periodic structures, where
one may observe interference effects, can clarify this
point.
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