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Electronic states on a fractal: Inverse-iteration method
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The quantum dynamics of electrons on the Koch fractal is investigated within the framework of a
tight-binding approximation. The invariant sets of an exact real-space renormalization procedure play a
crucial role for the mainly analytical methods employed. Inverse iteration of the critical fixed points is
the key to the construction of dense spectral subsets. This approach is confirmed by numerical deter-
mination of periodic orbits of the decimation map. As a corollary, a classification scheme for the quan-
tum states of the system is proposed. This scheme is directly related to the 4-adic representation of the

rotation number of the wave function.

I. INTRODUCTION

Fractal geometry®? has provided us with many new
well-defined structures, which can be either used to mim-
ic real objects like trees, or to investigate the properties of
familiar dynamics, like the one described by
Schrédinger’s equation, within a novel setting. The latter
effort is certainly rewarding as it sheds new light on the
intrinsic character of processes, which seem well under-
stood when standard conditions like translational symme-
try prevail.

Quantum-mechanical next-neighbor hopping on the
Koch curve is a nice example for rich behavior induced
by the fractality of the substrate: Various types of spec-
tral scaling behavior are present; localized, critical, and
extended wave functions alternate in a complicated way;
an infinity of quantum levels condense to form a superlo-
calized phase under certain circumstances. The model
was introduced some years ago® by mounting an adequate
Hamiltonian on the fractal substrate proposed by Gefen
et al.* in a different context. A first analysis was carried
out by means of a transfer matrix method, while the re-
sults were recently corroborated and extended using an
exact renormalization group technique for the evaluation
of the pertinent Green’s functions.’

The purpose of this paper is to present a concise
classification scheme for the quantum states of the sys-
tem. These states are most conveniently labeled by their
quantum rotation number x, which is directly related to
the integrated density of states.®” For further details re-
garding this specific point and a general description of
the model considered, we refer to the above-mentioned
article.’

As the Koch curve is a nonbranching fractal, our mod-
el can be mapped onto a linear chain with a limit-periodic
distribution of hopping strengths. Therefore, the system
investigated here is sort of intermediate between 1D al-
most periodic Schrddinger operators® and finitely
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ramified fractals.” As shown in Ref. 3, the recurrence re-
lations obtained by the transfer matrix approach permit
the analytical determination of the main invariant sets
[the fixed points (lines) of the corresponding map] in the
three-dimensional parameter space governing the system.
The inspection of these sets directly leads to an explana-
tion of many properties of spectrum and wave functions.
Other invariant sets (like the preimages of fixed points
and periodic cycles), which cannot be expressed in closed
form, may be computed by numerical methods.

As a matter of fact, all relevant physical information is
contained in the following two-dimensional map:*

§N+1=%(w+w_l)[(§§v—2)2—2]
+Hw—w N nyén(Ex—2),
(1)
T/N+1=%(w +w_1)71N§N(§%V—2)+%(w—w—l)(§,2v1ﬁv +2).

Here £y is the trace of the transfer matrix A, for the

wave amplitude vector in the Nth-order periodic approxi-

mation of the limit-periodic system. ny=(4y),

—(Ap)y, and w=1+AE is a combination of crucial pa-

rameters, namely cross-hopping strength A and energy E.
The initial conditions for the map (1) are

E(EN=—(0+o D+w(E*—2),
MEAN=(w—0 -0 (E?-2)?,
defining the “launching surface”

o(E+n)+2=0 3)

()

in £ —7—w space.

For any Nth-order approximation the spectrum o is a
finite collection of subbands. As proved in Ref. 3, each of
these subbands splits into four new intervals if we go
from a given generation to the next (see Fig. 1).

Therefore the number of subbands is 4" in the Nth-
order approximation, i.e., each subband embraces 1/4¥
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N=1
E FIG. 1. Family of energy spectra as pro-
duced by variation of A. Periodic approxima-
tion.
-5
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of all the (extended) states associated with the spectrum Zyoy |22
oy The perpetual splitting process produces a spectrum  §y == |2£ [4— ,
o(E) of Cantor-set type in the limit N — co. N1 ©)
Neither the energy nor the ordinary wave number ww ! | Zy+y
k=(2Em)"?/# are good quantum numbers for the Ev+1t 5 Y —2
identification of definite electronic states through succes-  ,, — N+l
sive approximations. To keep track of a specific quantum N w—w! N+1 21 Zy iy e
level we use instead the quantum rotation number 2% |4——— 4- Yo
k=k(E), which is a strictly increasing function on the N+l N1

spectrum, defined as®’
E -
K(E)~ [~ p(E)dE . @

Note that, in general, Ey , (k)7#Ey(k), i.e., the energy
associated with a particular value of « will slightly oscil-
late with the order of the approximation. Nevertheless,
in the limit N — oo the relationship between « and E is
well defined, and our classification scheme assigns to «
the corresponding quantum state and energy eigenvalue
in a clear-cut way.

II. INVARIANT SETS AND THE SPECTRUM

The invariant sets of the dynamical system (1) are
directly related to several characteristic traits of spec-
trum and quantum states. The most relevant sets here
are the fixed points, their preimages, and periodic cycles
of higher order.

In the general case, ie., 07w~
points are given by’

1 the critical fixed

(o+o 1)2+16]V2
(5

These points define two fixed lines in the enlarged
£—mn—w space, which intersect the surface of initial con-
ditions (3). The associated w-values directly yield two
different parameter couples (E*,A*). The invariance of
all these entities under the mapping (1) implies that E* is
a spectral value for the cross-hopping strength A* and the
corresponding quantum state is critical (power-law distri-
buted).

One of the results presented in this paper is the fact
that an infinity of additional spectral values with critical
wave functions can be generated from the fixed points
(€%,m*) in a straightforward way: The highly nonlinear
dynamical system (1) has the remarkable property of be-
ing invertible in closed form, i.e.,

This formula defines four different preimages of a given
point (x4 1,My +1) as a consequence of the twofold sign
option on the right-hand side of the first line. Note that
the second choice simultaneously determines the sign on
the right-hand side of the second line. Zy ., and Yy,
are given by

Zy =4— 2o~ Ny —ote™), -
o—o !

woto !
Py - 2_771v+1 .

Yy =2+ 5 vt

Using Eqgs. (6) and (7) we can determine the preimages
with respect to (1) of any given point in parameter space.
The backward iteration is particularly useful when ap-
plied to the fixed lines defined by (£%,7*). Due to the
multiple choice of sign in Eq. (6), each of the two fixed
lines has four different preimages which cross the mani-
fold of initial conditions (3) at different locations. In this
way we obtain a set of critical points that will be mapped
onto a fixed point in £—7—w space under one forward
iteration.

By further backward iteration of the fixed lines and

5 _
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FIG. 2. Family of energy spectra. Subset derived from in-
verse iteration of the critical fixed points (lines).
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FIG. 3. Family of energy spectra. Subset calculated from
periodic orbits of the renormalization map.

determination of the intersections with the launching sur-
face, we can produce an exponentially growing number of
spectral values E valid for the associated system parame-
ter A. As the stability properties of the fixed lines with
respect to (1) do not depend on w, all the corresponding
quantum states will have the same critical character.
Figure 2 displays the locations of the (£,X)-couples ob-
tained by backward iteration up to the seventh order.

P-periodic cycles of the map (1) are defined by the
equation

(En+psMy+p)=(Ey,my) for all NEN . (8)

In this context, the fixed points appear as cycles of period
1. For finding such P-cycles and their intersections with
the initial manifold in £—7—w® space there is no direct
analytic procedure. We have determined these sets using
a combination of computer algebra standard and root-
finding methods. Figure 3 shows the results, namely all
the pairs (E,X) corresponding to cycles up to period 8.
The periodicity property guarantees that E is a spectral
value for the cross-hopping strength A.

Comparing Figs. 2 and 3 with Fig. 1 we find that both
the spectral subset generated from backward iteration of
the fixed points and the one produced by determining
periodic orbits tend to be dense in the full spectrum.
This means, in particular, that all the quantum levels of
our fractal hopping Hamiltonian can be constructed, in
principle, from exact backward iteration and closure.
(The only possible exceptions, namely the singular spec-
tral levels associated with superlocalized states, can be
determined directly anyway.)

II1. THE CLASSIFICATION SCHEME

As explained above, the quantum states of our model
can be labeled in an unambiguous way by the quantum
rotation number «(E), which represents the extension of
the familiar Bloch wave vector to almost-periodic sys-
tems. «(E) is proportional to the integrated density of
states. Therefore its Nth-order approximation «(E) can
be easily determined by counting the number of full sub-
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bands to the right of the specific E-value considered and
by adding an adequate remainder.

Due to the fourfold band splitting in the process of
periodic approximations of our limit-periodic system, the
4-adic representation of « is the most natural one. The
corresponding infinite string of figures from the set
{0,1,2,3} encodes precisely the location of the quantum
level in question within the subband hierarchy of the
spectrum.

Using this approach, we have analyzed the quantum
rotation numbers of the states, which can be generated
precisely from the critical fixed lines and their preimages.
Let Nz EN denote the backward iteration depth. Then
we can summarize our findings as follows: (i) The 4-adic
representation of « has a finite head, whose number of di-
gits equals Ny +1; (ii) this head is followed by a periodic
tail formed by infinite repetition of the string {03} or the
string {12}; (iii) « can be expressed as a rational number
p/q, where g —10X4". A similar analysis of the «-
values produced by periodic cycles leads to the following
results. (a) The 4-adic representation of x has a periodic
tail composed of strings of length 2X P, where P is the
peroid of the cycle; (b) in the rational representation, all k
values derived from cycles with the same period have a
characteristic common denominator.

By construction, the states discussed so far have to be
critical. This can be confirmed by the independent
method of the band-gap ratio.!° On the basis of this fact
and the spectral properties detected in the previous sec-
tions we conjecture that all the states with «-values be-
longing to one of the classes described above are critical
(exotic). Our numerical analysis of randomly chosen
wave functions indicates that this hypothesis is correct.

IV. CONCLUSIONS

Quantum hopping on the Koch fractal belongs to the
small class of almost periodic problems, which can be
successfully treated by analytical methods. In this paper
we have presented additional results regarding the com-
position of the spectrum and the nature of the associated,
at least algebraically bounded states. Our approach was
mainly based on the following properties of the model:
(1) There exists an exact real-space renormalization
scheme for the quantum dynamics; (2) this scheme can be
inverted for backward iteration in parameter space; (3)
the invariant sets of the renormalization scheme are gen-
eric with respect to variation of the cross-hopping
strength.

As a direct consequence, a dense subset of the spec-
trum can be constructed precisely from the renormaliza-
tion fixed points. Our approach resembles the way Julia
sets of rational complex maps may be generated by the
inverse iteration method.!! The system investigated here
thus belongs to the rather small class of aperiodic tight-
binding models amenable to rigorous analysis.!? Regard-
ing the methods employed, there is, in particular, much
conceptual overlap with Schwalms’ interesting work.

By combining backward iteration with subband book-
keeping we are also able to determine the exact rotation
numbers for all the quantum states associated with the
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spectral subset. This leads to the proposition of a general
classification scheme for the wave functions of the sys-
tem.

We feel that the most pertinent features of the quan-
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tum Koch fractal are now fairly understood. What
remains to be done, however, is the construction of vi-
gorous mathematical proofs for a number of intricate de-
tails.
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