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Ab initio study of long-period superstructures
in close-packed AaB compounds
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We have performed ab initio calculations of the stability of one-dimensional long-period super-
structures in Cu3Pd, Cu3Al, and Ag3Mg by means of an interface Green's function technique based
on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations.
The energies of the superstructures relative to the Llz structure are found by an expansion based
on the calculated energy of a single (001) antiphase boundary and the calculated interaction en-

ergy between two and three antiphase boundaries of varying distance. The expansion agrees with
standard band-structure calculations of the structural energy differences for the two short-period
superstructures DO22 and DOq3. We find that at zero temperature the ground states of Cu3Pd,
Cu3Al, and Ag3Mg are one-dimensional superstructures with antiphase boundary separations of 2—5

unit cells of the underlying L12 structure.

I. INTRODUCTION
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In a number of ordered face-centered-cubic (fcc) AsB
compounds one observes experimentally so-called
one-dimensional long-period superstructures (1D-LPS's)
which are lattices based on the L12 structure and which
may be viewed as periodic arrangements of (001) an-
tiphase boundaries (APB s) of the kind shown in Fig. 1.
From a theoretical point of view such a periodic arrange-
ment may be stable at low temperature if the energy of
a single antiphase boundary is negative, and in that case
the period of the superstructure will be determined by a
competition between the energy gained in the formation
of densely spaced antiphase boundaries and the large re-
pulsion between neighboring antiphase boundaries which
are brought close together.

The formation of long-period superstructures may be

studied by means of standard one-electron methods em-

ploying a supercell approach. However, for structures
with an antiphase boundary separation M larger than 3
unit cells of the underlying L12 structure the supercells
become formidably large and to our knowledge there exist
ab initio calculations only for selected compounds in the
two simplest stuctures, DO22 and DO23. ' To circum-
vent this problem we start from the antiphase boundary
energies calculated by Rosengaard and Skriver and add
the repulsion between two and three antiphase bound-
aries obtained as a function of separation by means of
our interface Green's function technique. ' This ap-
proach has the advantage that the computational effort
scales linearly with the number of layers and hence we

are able to treat superstructures with M up to at least
19 L12 unit cells.

Here we present results for three ordered intermetallic
compounds Cu3Pd, Cu3Al, and Ag3Mg which we found
to have negative antiphase boundary energies in the L12
stucture and which experimentally are found to exhibit
long-period superstructures. In our approach the period
of a superstructure is found from the antiphase boundary
separation which minimizes the total energy and which
corresponds to the electronic ground state of the system
at low temperature. Thus we exclude the effect of en-

tropy. However, the results may be used as the basis
for model Hamiltonians and statistical mechanics simu-

lations.
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PIG. 1. Schematic representation of (001) antiphase
boundaries in (a) the L12 and (b) the DO&2 crystal struc-
tures. The filled (open) circles represent the majority (mi-
nority) atoms. Stacking in [001] direction alternates between
pure layers, consisting of only majority atoms, and mixed lay-
ers consisting of a centered square lattice plane of majority
and minority atoms.

A. Experimental

The Cu3Pd system is well studied experimentally both
by x-ray diffraction ' and more recently by high res-
olution electron microscopy (HREM). s 4 In the HREM
study of Broddin et al. the annealing temperatures were
between 200 C and 440 C, and at a Pd concentration
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of 24.5% these authors found a mean antiphase bound-
ary separation of M = 4.5, consistent with a separation
alternating between 4 and 5 unit cells of the underly-
ing L12 structure. Furthermore, the antiphase boundary
separation decreased with increasing Pd concentration
and at 30%%ua the 1D-LPS consisted of a sharp periodic an-
tiphase domain structure with a separation of M = 3.
In a similar study, Takeda et al. reported a long-period
superstructure with an antiphase boundary separation of
M = 4 at a Pd concentration of 25.2% and for annealing
temperatures between 350'C and 500'C. In addition,
antiphase boundary separations between 3 and 4 were
observed above 25% Pd. Neither Broddin et al.s nor
Takeda et al.4 observed any temperature dependence for
Pd concentrations larger than approximately 22% but,
at lower concentrations, the density of antiphase bound-
aries is observed to decrease at decreasing temperature.
Below Pd concentrations of 20'%%uo, the L12 structure is
observed.

Cu3A1 is observed in a 1D-LPS, which may be de-
scribed as an antiphase domain structure based on the
DO22 crystal structure. The HREM study of Kuwano
et al. shows the antiphase boundary structure of Cu3Al
to consist of sharp and well defined commensurate struc-
tures in the concentration range 22—24'%%uo Al. At 24'%%uo Al
the spacing between antiphase boundaries in the DO22
structure M' is found to be 5 unit cells of the un-

derlying L12 structure. In the concentration range 22.3—
24.2 '%%ua Broddin et al. find a number of stable structures
with spacings between 4 and 5.

Ag3Mg has been investigated by x-ray electron
diKraction as well as by HREM and shows sharp
commensurate structures. Near the stoichiometric com-
position Ag3Mg is observed to form a 1D-LPS based on
the DO23 structure that in itself may be regarded as a
1D-LPS with an antiphase boundary separation M = 2.
The simplest 1D-LPS's observed in Ag3Mg consist of a
number of antiphase domains of length M = 2 termi-
nated by a domain of length M = 1. In the notation
of Fisher and Selke commonly used in the descrip-
tion of 1D-LPS's, the D02s structure is described as (2),
whereas the 1D-LPS's in AgsMg are described by (2~1),
j integer. At higher temperatures longer and more com-
plicated structures described by (2'12~ 1) where i and j
are integers occur.

B. Theoretical

calculated for Cu~, Pd in the random state. In their
description, it is this minimum which causes the stability
of the 1D-LPS. From the KKR-CPA effective pair inter-
actions and Bragg-Williams mean Geld theory, Ceder et
al.2 determine the phase diagram of Cuq Pd . In
particular, they Gnd the existence of 1D-LPS's for Pd
concentrations exceeding 18%. Furthermore, in the range
of Pd concentrations from 24% to 34% the period of the
calculated 1D-LPS is in complete agreement with those
observed in the HREM experiments above 200'C. In
the KKR-CPA mean field phase diagram the 1D-LPS's
observed at room temperature persist to 0 K and the
experimentally observed temperature dependence of the
mean antiphase boundary separation for samples of 22
at. % Pd is not found.

Recently, Jordan et al. calculated the relative stabil-
ities of the I12, DO22, and DO23 structures in AgsMg.
They found that among these three structures the DO23
was the most stable and suggested that the stability was
due to a particular fIat section of the Fermi surface in the
L12 structure. They proceeded to identify the concentra-
tion dependence of the dimension of this section of Fermi
surface with the series of long-period superstructures ob-
served experimentally and thereby provided strong evi-
dence for the picture that the formation of superstruc-
tures is driven by the topology of the Fermi surface.

From the statistical mechanics point of view, the
phase diagram of the axial next-nearest-neighbor Ising
(ANNNI) model is known from the low temperature ex-
pansion of Fisher and Selke to contain long-period su-
perstructures. It was therefore suggested to describe
the phase diagram of intermetallics displaying 1D-LPS's
by the ANNNI model or by a generalization including
more distant neighbor interactions. However, because of
the shortage of electronic-structure calculations for these
alloy systems the parameters of the model Hamiltonian
had to be estimated &om other sources. Thus, Kulik
et al. estimated the interaction parameters of a gen-
eralized ANNNI model for Ag3Mg &om x-ray scatter-
ing experiments on the disordered alloy, while Ceder
et al. ' 5 extracted the ground state of the Cu~, Pd,
system &om the phase diagram calculated in the mean
Geld approximation. On the other hand, at the stoichio-
metric composition the ground state is directly accessible
to electronic-structure calculations, and it is the aim of
the present work to provide ab initio calculations of the
ground state of the three most studied alloy systems ex-
hibiting long-period superstructures.

The first explanation of the formation of long-period
superstructures in terms of the electronic structure was
provided by Sato and Toth, who related the formation
of LPS's to sheets of the Fermi surface at the Brillouin
zone boundaries of the LPS. Recent theoretical work
based on the Korninga-Kohn-Rostoker coherent potential
approximation (KKR-CPA) also focuses on Fermi surface
efFects. GyorfIy et al. find the efI'ective pair interactions
for Cuq Pd using the method proposed by GyorÃy and
Stocks. The Fourier transform of the efI'ective pair in-
teraction displays a minimum along the XR' segment,
a feature caused by the parallel sheets of Fermi surface

II. COMPUTATIONAL METHOD

We have used our interface Green's function
technique ' based on the linear-mufFin-tin-orbitals
(LMTO) method within the atomic-sphere approxima-
tion (ASA) developed by Andersen and co-workers
to calculate the energy of (001) antiphase boundaries in
the L12, DO22, and DO23 crystal structures. In the
original implementation the Green s function of an in-
terface was found &om the ground state of the perfect
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crystal by a one-dimensional k-space integration. This
technique proved to be rather time consuming for large
systems, and to facilitate the present study, which in-
cludes self-consistent calculations for systems of more
than 100 atoms, we have now adopted the principal-layer
technique implemented within the LMTO-ASA frame-
work by Kudrnovsky et at. in connection with the co-
herent potential approximation for surfaces of disordered
alloys. This technique is particularly eKcient for inter-
faces with a large number of atomic layers, because the
computational e8'ort scales linearly with the number of
so-called principal layers, as opposed to the cubic scaling
of conventional approaches. A precise description of the
implementation is given by Rosengaard and Skriver in
connection with the calculation of antiphase boundary
energies.

Details of the calculations

At the outset of an antiphase boundary calculation,
one needs starting potentials as well as total energies cor-
responding to the perfect, infinite crystal of the ordered
alloy in which the antiphase boundary is to be embed-
ded. To obtain this input, we perform self-consistent bulk
calculations by means of the second order I MTO Hamil-
tonian, and calculate the one-electron contribution to the
kinetic energy by integrating the bulk Green's function
on a complex energy contour. The contour is chosen as
a semicircle and the integration performed by a Gauss-
ian technique on a mesh of 16 points distributed expo-
nentially so as to increase the sampling density near the
Fermi level. Furthermore, although it is more time con-
suming, we use in the bulk calculations a Brillouin zone
based on the 2D zone of the antiphase boundary struc-
ture, and in the direction perpendicular to the plane of
the 2D zone we use 400, 200, and 100 k~ points for the
L12 ) D022 ) and D023 structures, respectively. These
large numbers are necessary because the Green's function
for the antiphase boundary is calculated by the principal-
layer technique, and hence is completely converged in
terms of k~.

In the case of an ordered compound, one should ide-
ally choose the radii of the atomic spheres so as to min-
imize the errors of the ASA. The ASA introduces two
kinds of errors. The first kind is related to the shape
approximation inherent in the use of atomic spheres. For
fcc based compounds this kind of error may be mini-
mized by choosing spheres of equal radii in which case
the neglected interstitial regions of space and the size
of the overlap between neighboring spheres are reduced
to a minimum. The second kind of error is caused by
describing the one-electron potential only within over-
lapping atomic spheres. The choice of equal sphere radii
in a compound causes a discontinuity between the one-
electron potentials at the surfaces of neighboring atomic
spheres. This discontinuity may be large, especially if the
signer-Seitz radii of the elemental metals deviate appre-
ciably. In the present bulk and interface calculations we
have minimized the discontinuity by choosing the relative
radii as close as possible to the ratio of the radii of the
elemental meta1s without increasing the overlap region

too much. This is in the spirit of the guidelines given by
Andersen s which aims at the best possible (spherically
symmetric) description of the potential inside overlap-

ping spheres.
Based on convergence tests the interface region which

contains a single antiphase boundary and which is treated
self-consistently consists of 31 atomic layers each hold-

ing two atoms. Thus, there are eight mixed and seven
pure layers between the left-hand semi-in6nite bulk crys-
tal and the antiphase boundary, and eight mixed and
seven pure layers between the antiphase boundary and
right-hand semi-in6nite bulk crystal. The geometry used
to calculate the interaction between antiphase boundaries
is obtained by introducing two or three antiphase bound-
aries separated by the appropriate number of layers at
the position of the single antiphase boundary. These cal-
culations are performed for separations of up to 19 L12
lattice parameters in the L12 structure and 12 L12 lattice
parameters in the DO22 structure, totaling 148 and 112
atoms in the two structures, respectively.

The k~~ integration is performed by means of 36 special
points in the irreducible part of the two-dimensional
square Brillouin zone. Furthermore, to maintain charge
neutrality the small excess charge (( 10 electrons) of
the antiphase boundary region is placed at two sheets just
outside the fault structure, and the corresponding contri-
bution to the one-electron potential and the total energy
included. In this manner, we take approximate account
of the charge connected with the Friedel oscillations and
ensure fast convergence of the antiphase boundary ener-

gies in terms of the region size. Finally, for exchange and
correlation we use the local density functional of Ceperley
and Alder as parametrized by Perdew and Zunger.

III. GEOMETRY OF THE ONE-DIMENSIONAL
SUPERSTRUCTURES

Viewed along the cube axis, the series of structures
L12, DO22, DO23, and subsequent one-dimensional long-
period superstructures may all be described as an al-
ternate stacking of pure layers containing only majority
atoms and mixed layers containing an equal number of
minority and majority atoms. The mixed layers form
a centered square lattice, in which the minority atoms
occupy the center and the majority atoms the corners
or vice versa. As a result the minority atoms are never
nearest neighbors, and it is only their relative positions in
subsequent mixed layers which distinguish the structures.
It follows that the long-period superstructures are de-
generate in energy if only nearest-neighbor efFective pair
potentials are used to describe their structural stability.
To underline this feature of the L12, DO2g, DO23, and
long-period superstructures, they are often referred to as
polytypes in fcc based A3B' compounds.

In the stacking sequences of pure and mixed lattice
planes which describe the long-period superstructures
two relative positions between subsequent mixed layers
are possible. Either the translation [001] connects mi-

nority atoms in subsequent mixed layers or it connects
minority atoms to majority atoms. The former case is the
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stacking of the L12 structure while the latter is the stack-
ing of the DO22 structure. The (001) antiphase bound-
ary in the L12 structure shown in Fig. 1(a) is the plane
boundary between crystallographic domains ordered ac-
cording to the I 12 structure but connected by stacking
according to the DO22 structure across the plane of the
antiphase boundary. In the same way the (001) antiphase
boundary in the DO22 structure shown in Fig. 1(b) may
be described as the plane boundary between two regions
of stacking according to DO22 connected by stacking ac-
cording to L12.

A long-period superstructure in fcc based A3B com-
pounds may be viewed as a periodic arrangement of an-
tiphase boundaries, and its period is commonly given by
the separation M of the antiphase boundaries measured
in terms of the (001) lattice parameter of the underly-
ing L12 structure. In fact both the D022 and the DO23
structures may be described in this way by M = 1 and
2, respectively. However, in some cases such as the long-
period superstructures based on the DO22 structure it is
more convenient to give the period of the superstructure
in terms of the size M' of the DO22 antiphase domain
still measured in units of the underlying L12 structure.

M'The connection between the two is M = M,

IV. STABILITY OF THE ONE-DIMENSIONAL
SUPERSTRUCTURES

The energy EApn of a single (001) antiphase boundary
embedded in an infinite crystal of the L12 structure is a
measure of the stability of this structure relative to the
formation of a one-dimensional long-period superstruc-
ture. If EApB is negative the L12 structure is unstable
and the period of the superstructure is determined by a
competition between the formation of densely spaced an-
tiphase boundaries and the large repulsion between an-
tiphase boundaries which are brought closely together.
In a study of the (001) antiphase boundary in a series of
intermetallics» the three compounds Cu3Pd, Cu3A1, and
Ag3Mg were found to have negative antiphase boundary
energies in the L12 structure. Thus, the values repro-
duced in Table I represent the gain in energy per an-
tiphase boundary in the three compounds which must be
OKset by repulsive terms to form a stable superstructure.
These repulsive terms may in turn be found by interface

Green's function calculations of the energy of interfaces
containing two or three antiphase boundaries of varying
separations whereby one finally may etablish the period
of the superstructures in Cu3Pd, Cu3A1, and Ag3Mg.

The two-body interaction I„between neighboring an-
tiphase boundaries is calculated as the energy of an infi-
nite system containing two antiphase boundaries at a sep-
aration n from which one subtracts the energy of forma-
tion 2EgpB of two antiphase boundaries at infinite sepa-
ration. An example of such a structure with n = M = 2
is shown in Fig. 2. In a similar fashion, the three-body
interaction K„may be calculated as the energy of a
system containing three antiphase boundaries of separa-
tion n and m &om which one subtracts 3EApg as well as
the pairwise interaction energy I„+I between nearest-
neighbor antiphase boundaries.

The definition of the three-body interaction adopted
above corresponds to an expansion in terms of the range
of interaction between antiphase boundaries. As an ex-
ample, consider calculating the structural energy of the
one-dimensional long-range superstructure defined by an
antiphase boundary separation M = 3. In this case, the
first contribution to the interaction energy is given by
the two-body term I3 which carries all information cor-
responding to an interaction range of 3. The next con-
tribution is the three-body term K33 which carries all
information corresponding to an interaction range of 6
including the next-nearest two-body term I6. One may
continue to consider the four-body term corresponding
to an interaction range of 9 but this and the following
terms will be small an6 may be neglected. As it turns
out in the calculations to be presented below, already
the three-body term K„ is small at the separations
corresponding to the ground state superstructures and
the expansion may therefore safely be terminated at the
three-body term. As a result one arrives at a local pic-
ture where the interaction between successive antiphase
boundaries is dominated by the pair interaction between
nearest-neighbor antiphase boundaries.

A. APB Hamiltonian

In the present description the energy of a given an-
tiphase domain structure consists of the energy gained
by forming the antiphase boundaries and the repulsion

TABLE I. Atomic Wigner-Seitz radii Sws and calculated (001) antiphase boundary energy per
surface cell EApB for Cu3Pd, Cu3Al, and Ag3Mg in the L12 structure. Also listed is the antiphase
boundary energy for Cu3A1 in the DO&z structure as well as the energy of a single antiphase domain
of length M = 1 for Ag3Mg in the DOq3 structure.

Compound
Cu3Pd
Cu3Al
Ag3Mg

Sws (Bohr)
Theory EXp.
2.726b 2.713
2.68T 2.710
3.023 3.036

L12
-3.46
-4.13
-6.94

-3.44

E~pa (mRy)
DOg2.

EM=i (mRy)
DOg3

1.69

See Ref. 44.
'L1,.
DO22.
DO23
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FIG. 2. Interface in the L12 crystal structure containing
two antiphase boundaries at a distance M = 2. The pair in-
teraction between nearest-neighbor APB's is calculated from
the energy of this kind of structure as explained in the text.
Notation as in Fig. 1.

between nearest-neighbor antiphase boundaries. This de-
scription may be mapped onto a one-dimensional effec-
tive Ising-like Hamiltonian in a field. To do so, we repre-
sent the presence of an antiphase boundary by t, (S = 2)
while the absence is represented by $, (S = —2), and the
field is given by the energy EgpB. The interactions be-
tween neighboring antiphase boundaries are given by I„
and K„ for two- and three-body interactions, respec-
tively. As a result, the ground state energy for a given
polytype may be found as

E = ) [(S'+ 2)EApB+) 'I& (S'+ 2)('Sq+ 2)
j&i

) 'K; „,. ;(s, +-')(s,. +-)(sq+-')j, (1)

where the primes indicate that the sums are confined to
nearest-neighbor g spins. The Hamiltonian which is ob-
tained by excluding the three-body terms and including
all pair interactions was used by Bak and Bruinsma to
study the complete devil's staircase.

B. ANNNI Hamiltonian

One may arrive at a different expansion of the energy
of a given antiphase domain structure if one applies a
generalized ANNNI model to the problem of structural
stability of the various 1D-LPS's. In the ground state
of this model the atoms in each mixed layer are com-
pletely ordered. One need therefore only consider a one-
dimensional Hamiltonian and may assign a single spin

(~ S
~

= 1) to each layer, the sign of which depends on
which of the two inequivalent crystallographic positions
is occupied by a minority atom. With these simplifica-
tions the ANNNI Hamiltonian becomes

where the interaction parameters J„which enter may be
written

J„=——x
1 I2 —2' —2E~pB, n = 1

4 I„+g —2I„+I„g, n) 2

in terms of the energy of formation E~pg of a single
antiphase boundary and the interaction I„between two
isolated antiphase boundaries as calculated by the in-
terface Green's function technique. It is seen that the
J„parameters are proportional to the curvature of the
calculated interaction I„viewed as a function of the an-
tiphase boundary separation n One . should note that (3)
is written specifically for an expansion based on antiphase
boundaries in the L12 structure and that the right-hand
side should be multiplied by (—1) if the interactions
I„are calculated from antiphase boundaries within the
DO2q structure.

V. BAND CALCULATIONS OF STRUCTURAL
STABILITY

The DO22 and DO23 structures are one-dimensional
superstructures the sizes of which are sufFciently small
to allow calculations of their stability by means of stan-
dard band-structure methods. In Table II we compare
the present results with available ab initio calculations
and we note that although the absolute values differ con-
siderably the relative stabilities agree. For Cu3Pd in the
DO22 structure at least part of the 40% deviation may
be attributed to the fact that Lu et al. used the lin-
ear augmented plane wave (LAPW) method and Wigner
exchange correlation. On the other hand, it is difFicult
to reconcile the two sets of LMTO-ASA band-structure
calulations for Ag3Mg, especially in view of the conver-
gence tests performed both by Jordan et al. and by us.
The only difference appears to be the use of a third order
Hamiltonian by Jordan et al. in contrast to the second
order approximation used by us. In this connection we
would like to point out that our band-structure results
agree quite well with those obtained by the entirely dif-
ferent interface approach to be presented in the following
sections. This is true in particular for the DO23 struc-
ture where the expansions (1,2) are expected to be most
accurate.

TABLE II. Calculated structural energy differences in mRy/AsB of the DO22 and DO23 struc-
tures relative to L12 obtained in the present work by I MTO-ASA band-structure calculations
compared to those obtained by the linear augmented plane wave (LAPW) method using Wigner
exchange correlation (Ref. 16) and the LMTO calculations by Jordan et al. (Ref. 17).

Structure

Compound

Cu3Pd
AggMg

Present
LMTO-ASA

4,81
-2.91

DO22

LMTO-ASA

-0.6

LAPWb

2 ~ 79

Present
LMTO-ASA

0.45
-4.62

DO23

LMTO-AS A

-3.1

See Ref. 17.
Unrelaxed values from Ref. 16.
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VI. INTERFACE CALCULATIONS OF
STRUCTURAL STABILITY

12

CU P(j
A. CusPd

In Fig. 3 we present the calculated separation-
dependent two- and three-body interactions for Cu3Pd in
the L12 structure. It is seen that the two-body interac-
tion, i.e., the interaction between neighboring antiphase
boundaries, is highly repulsive at small separations and
that it exhibits a slow decay at separations M larger
than three L12 unit cells. At a separation M = 19 not
included in the 6gure the two-body interaction has fallen
to —0.13 mRy, and hence, it is not only long ranged but
also weakly oscillating. Similar oscillations but of shorter
periods are found in Cu3AI and Ag3Mg. It is furthermore
seen that the leading three-body interaction K„,where

(n, m) = (M, M —1), does not extend beyond M = 3.
The total energy per formula unit of one-dimensional

long-period superstructures may be obtained by means of
the calculated interactions and the expansion (1). The
result for Cu3Pd is shown in Fig. 4 as a function of
the mean separation M between antiphase boundaries.
The total energies for M = 1 and 2 correspond to the
structural energies of the DO22 and DO23 structures, re-
spectively, relative to the L12 structure, and it is there-
fore possible to assess the accuracy of the interface ap-
proach by direct band-structure calculations. In Table

10
C U Formation
h----6 Pair
A--Three body

Total

-2

-4
0

I I

5 6
M

I

9 10

FIG. 4. Total energy of 1D-LPS's of the type (i —1 i) in
Cu3Pd calculated from contributions of APB formation en-

ergy, pair, and three-body interactions. All energies are per
CuqPd.

12

10—

6
E

U)Ic 4
UJ

BPd

C 0 Two-body
0 0 Three-body

III we compare structural energies obtained by LMTO-
ASA band-structure calculations using a second order
Hamiltonian with those of the APB Hamiltonian and
the ANNNI model. It is seen that in general the agree-
ment between the three sets of calculations is better than
34'%% for the DO22 structure and 18% for the DO23

struct-

uree, which may be considered satisfactory in view of the
fact that the expansions are expected to be less accurate
for small separations where higher order terms may be
needed.

In Fig. 4 we have included long-range superstructures
of the form (ti) and (t i —1) since it is only among these
structures that the ground state of the expansion (1) is

to be found. This is so because the two-body interaction
as a function of M is highly nonlinear with a positive
second derivative which discriminates against structures
of the form (ij) where i » j. The figure includes also the

-2
0

I

5
M

I I

6 7
I

9 10

FIG. 3. Interaction energies of successive (001) APB's for
CuqPd in the L12 structure. Circles denote the energy of
interaction for an isolated pair of (001) APB's separated by
the distance M, I(M). Squares show the three-body inter-
action term K(M, M —1) for three successive APB's at dis-
tances M —1 and M. See text for details. Energies are in
mRy/(surface cell) and distance in units of the L12 lattice
spacing.

Structure
Compound

Cu3Pd
Cu3Al
Ag3Mg

Band
4.81

-2.54
-2.91

DO2~
APB ANNNI
5.53 3.96
-1.66 -2.09
-1.98 -3.39

Band
0.45

-1.75
-4.62

DO2,3
APB ANNNI
0.48 -0.17
-1.44 -1.89
-4.23 -4.66

TABLE III. Calculated structural energy differences in

mRy/AsB of the DO22 and DO2s structures relative to Llz
obtained in the present-work by LMTO-ASA band-structure
calculations (Band) as well as by the interface expansions
(APB) and (ANNNI) described in the text.
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B. CusAl

It follows &om Table III that if the formation of an-

tiphase boundaries is neglected Cu3A1 might form in the
DO22 structure. Since the antiphase boundary energy

EApB listed in Table I is negative also in the DO22 struc-
ture one would expect Cu3Al to form long-period super-
structures based on this structure. In Fig. 5 we therefore
present the calculated two- and three-body interactions
for Cu3A1 in the DO22 structure. It is seen that the
two-body interaction, i.e., the interaction between neigh-

boring antiphase boundaries, is highly repulsive at small
separations and that it exhibits an oscillatory decay with
a period of oscillation of approximately 10 L12 lattice
spacings at separations M' larger than 3. It is further-
more seen that the leading three-body interaction K„
where (n, m) = (M', M' —1), does not extend beyond
M'=5.

The total energy per formula unit of one-dimensional
long-period superstructures obtained by means of the cal-
culated interactions and the expansion (1) is shown in

TABLE IV. Calculated structural energy differences in

mRy/AsB of one-dimensional long-period superstructures in

Cu3Pd relative to L12.

1D-LPS
APB

ANNNI

(») (3)
-0.43 -0.85
-0.72 -1.04

(34)
-0.80
-0.93

(4)
-0.75
-0.85

(45)
-0.66
-0.74

(5)
-0.60
-0.66

individual contributions to the total energy and we may
thereby arrived at the following picture of the stability
of the long-period superstructures. The energy of for-
mation of antiphase boundaries is proportional to their
density and hence inversely proportional to the mean sep-
aration M. This term will therefore favor superstructures
with short periods. On the other hand, the interaction
between nearest-neighbor antiphase boundaries is highly
repulsive at small separations, and since the three-body
interaction is only a minor correction, it is the compe-
tition between formation energy and the repulsive in-
teraction between nearest-neighbor antiphase boundaries
which causes a particular one-dimensional long-period
superstructure to form.

Based on the results in Fig. 4 the ground state of
Cu3Pd will be a one-dimensional superstructure with
M = 3, i.e. , of the form (3). However, the superstruc-
tures (34) and (4) are rather close in energy to this
ground state as may be seen in Table IV, and hence
they may be stable at elevated temperatures. One may
note that the APB Hamiltonian and the ANNNI model
give the same ground state, although it appears that the
ANNNI model is less accurate for small antiphase bound-
ary separations. The predicted ground state and also
the shallowness of the minimum in the total energy are
in agreement with the experimental situation where, as
described in Sec. IA, depending on concentration and
temperature one Bnds superstructures in Cu3Pd of the
forms (3), (4), and (45).

10

body
-body

4
E

CDI
2

LU

-2

-4 I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10 11 12 13
M

FIG. 5. Interaction energies of successive (001) APB's for
Cu3Al in the L1& structure. See Fig. 3 for notation. Energies
are in mRy/(surface cell) and distance is in units of the L12
lattice spacing.

Fig. 6. Based on these results the ground state of Cu3Al
is expected to be a one-dimensional superstructure with
M' = 5, i.e. , of the form (5). However, the superstruc-
tures (4), (45), and (56) are rather close in energy to the
ground state as may be seen in Table V, and hence they
may be stable at elevated temperatures. The predicted
ground state and also the shallowness of the minimum in
the total energy are in agreement with the experimental
situation where, as described in Sec. I A, depending on
concentration and temperature one 6nds superstructures
in CusA1 of the forms (4), (45), and (5).

C. A.gsMg

The calculated two- and three-body interactions for

Ag3Mg in the L12 structure are presented in Fig. 7. In
this case the two-body interaction is repulsive for small
separations only at M = 1 and exhibits an oscillatory de-

cay with a period of approximately 4 L12 lattice spacings.
Hence, both the formation term and the two-body term
drive Ag3Mg into the DO23 structure as may be inferred
from Fig. 8 where we show the total energy obtained by
means of the calculated interactions and the expansion
(1). Based on these results the ground state of AgsMg is

seen to be the one-dimensional superstructure with M =
2, i.e. , the DO23 structure. This is in agreement with the
calculations of Jordan et al. and also with experiments
in that the simplest of the observed superstructures is

the DO23 structure.
Jordan et al. related the formation of superstructures

of the form (2~ 1) at different concentrations to the change
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FIG. 7. Interaction energies of successive (001) APB's for

Ag3Mg in the Llq structure. See Fig. 3 for notation. Energies
are in mRy/(surface cell) and distance is in units of the L12
lattice spacing.

of a Fermi surface dimension calculated within the rigid
band model. Thereby, one may understand the varia-
tion of j observed experimentally over the concentration
range 22—26%. Here, we complement this picture by
direct calculation of the total energy of the superstruc-
tures. We 6nd that the minimum in the total energy
shown in Fig. 8 and Table VI is now quite deep and
will not favor superstructures of the form (M —1, M)
and (M, M + 1) which were close to the ground state
in Cu3Pd and Cu3A1. Instead, superstructures with a
large component of the DO23 structure, i.e., of the form
(2~1) where j is an integer, may be close in energy to the
ground state as illustrated in the insert in Fig. 8.

The energy of structures of the form (2~1) may be ob-
tained as a function of j or M directly &om the APB
Hamiltonian. One 6nds

EM 1(DO23)—
(2&1) (2) +

2
~ + 1j+ (4)

where

FIG. 6. Total energy of 1D-LPS's of the type (i —1i) in

Cu3Al calculated from contributions of APB formation en-

ergy, pair, and three-body interactions. All energies are per
Cu3Al.

0—

Ag, Mg
D Formation

6----4 Two-body
6 ——6Three-body

Total

A=~-~
k8

2
E

Q)
Q)c 4

UJ

-6

is the energy of formation of an isolated antiphase do-
main of length 1 in the DO23 structure given in terms
of the two- and three-body interactions. For AgsMg the
expansion (5) gives 2.1 mRy which compares favorably
with the value of 1.7 mRy found by direct calculation
(see Table I). In the inset in Fig. 8 we have plotted the
energy of the structures (2~1), j = 1, 2, ..., 9, calculated
by (4) together with the results from the analogous ex-

EM g(DOgs) = 2[EhpB(L12) —I2 —3K2 2

+2' + 4K' 2]

-8

45
1.0 1.5 2.0 2.5 3.0

1D-LPS
APB

ANNNI

(34)
-0.11 -0.45
-0.49 -0.64

(4)
-0.69
-0.76

(45)
-0.74
-0.78

(5)
-0.75
-0.79

(56)
-0.69
-0.74

TABLE V. Calculated structural energy differences in
mRy/AsB of one-dimensional long-period superstructures in
Cu3Al relative to L12.

-10 I I I

6 7 8

FIG. 8. Total energy of 1D-LPS's of the type (i —1i) in
Ag3Mg calculated from contributions of APB formation en-
ergy, pair, and three-body interactions. All energies are per
AgaMg. The insert shows the energy of structures of the form
(2~1), and (2~3), j = 1, 2, ..., 9.
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1D-LPS
APB

ANNNI

DO22
-1.98
-3.39

(12)
-3.53
-3.23

DO23
-4.23
-4.66

(23)
-3.16
-3.49

(3)
-2.39
-2.58

TABLE VI. Calculated structural energy differences in
mRy/AsB of one-dimensional long-period superstructures in

Ag3Mg relative to L12.
n

CugPd
Cu3Al
Ag3Mg

2.55
-1.53
-1.49

-1.06 -0.61
-0.35 0.33
-1.29 -0.22

4 5
-0.10 0.04
-0.20 0.14
0.42 0.06

-0.02
-0.07
-0.19

7
0.00
0.01
0.05

TABLE VII. Interaction parameters 1 of the generalized
ANNNI model, Eq. (2). Energies are in mRy/AsB

pression for the structures (2~3), j = 1, 2, ... , 9. It may be
realized that the structures (2~1) are considerably lower
in energy than the structures (2~3) for the same j. As
a result one may expect these superstructures to be sta-
ble at elevated temperatures and at concentrations oK
stoichiometry. This is in complete agreement with the
experimental situation as described in Sec. IA where
one finds superstructures of the form (2~1) with j taking
on values in the range from 2 to 19.

VII. MODEL HAMILTONIANS

perfect agreement with the ab initio results while the cor-
rection —I6 to the ANNNI model is dictated by the form
of the Hamiltonian and therefore may be less accurate.
As a result, the expansions tend to agree for longer sepa-
rations where the three-body term may be neglected but
disagree for shorter periods. Inspection of Figs. 3—8 and
Tables IV—VI shows that this is indeed what happens
and on account of the close 6t to the ab initio calcu-
lations one may therefore prefer the APB Hamiltonian
over the ANNNI model in expansions of the total energy
of long-period superstructures.

The total energies presented in Figs. 4, 6, and 8 have
been obtained by means of the calculated interactions
and the APB Hamiltonian discussed in Sec. IVB. To
complement these calculations we have also derived the
parameters for the ANNNI Hamiltonian (2,3) and calcu-
lated the total energies within this model. The parame-
ters are listed in Table VII and the results are presesented
in Tables IV, V, and VI. It is seen in the tables that
although the ANNNI model in general results in lower
energies than the APB Hamiltonian both models lead to
the same ground state. However, the ANNNI model fails
in predicting a negative relative stability of the DO23
structure in CusPd (Table III), and perhaps also in pre-
dicting an incorrect asymmetry of the minimum in the
total energy in AgsMg (Table VI).

Since the APB and ANNNI Hamiltonians represent
two apparently similar expansions of the interactions
present in 1D long-period superstructures one may illus-
trate the connection between the two by calculating the
energy of a 1D superstructure with a period of M = 3.
We find

VIII. CONCLUSION

We have determined the total energy of one-
dimensional long-period superstructures in Cu3Pd,
Cu3Al, and Ag3Mg based on an APB Hamiltonian
and the calculated energy of formation of a single an-
tiphase boundary and the two- and three-body inter-
actions viewed as functions of the antiphase boundary
separation. Thereby, we arrive at a picture in which
the long-period superstructures are formed as the result
of the competition between the energy gained by form-
ing antiphase boundaries and the repulsive interaction of
nearest-neighbor antiphase boundaries. The calculated
ground states are in agreement with experiments and also
with the previous calculation by Jordan et al. of the for-
mation of superstructures in Ag3Mg. Finally, we provide
the parameters for the ANNNI Hamiltonian which may
also be used to study the structural phase transitions in
the three compounds considered here.

and

——
s (E~pa + Is + K» + ) (6)
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