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Anomalous properties of the Hubbard model in infinite dimensions
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Anomalies are found in the resistivity p and NMR rate 1/T; of the infinite-dimensional Hubbard
model using quantum Monte Carlo calculations and the noncrossing approximation. For temperatures
greater than the “Kondo scale” T,, we obtain 1/T,~a +bT and p~c +dT (a, b, c, d constants). For
temperatures 7 <<T, we infer from a saturation of the effective mass of the carriers that the ground

state of the system is a Fermi liquid.

Since the discovery of the high-T, oxide superconduc-
tors,' one of the most fascinating problems is a micro-
scopic explanation of their unconventional normal-state
properties:> A linear resistivity p~ 7 and NMR relaxa-
tion 1/T,~a+bT are the most prominent anomalous
features common to these compounds. In this paper we
demonstrate (see Figs. 3 and 4) that the infinite-
dimensional Hubbard model also displays these
anomalies while retaining a Fermi-liquid ground state.

A comparison of the different relevant electronic ener-
gy scales in the cuprates suggests that the motion of the
electrons is confined to the CuO planes and subject to
strong local Coulomb interactions; i.e., these materials
belong to the class of so-called strongly correlated elec-
tron systems.® Since such anomalous normal-state prop-
erties cannot be obtained from the usual Fermi-liquid pic-
ture, it was from the very beginning conjectured by
theorists that they are rather directly related to an inter-
play of this two-dimensional (2D) character and the
strong correlations.>* In particular, the possibility of the
occurrence of a non-Fermi-liquid ground state is inten-
sively discussed.

In order to describe the relevant planar electronic de-
grees of freedom microscopically, they may be mapped
on a model well known to solid-state theorists, namely,
the single-band Hubbard model.>® Using standard nota-
tion, the Hubbard Hamiltonian in D dimensions reads’
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where C; , (C,-Jfa ) destroys (creates) an electron of spin o
on site i of a hypercubic lattice of dimension D,
n,-,a=C,<TUC,»’0, and we choose our unit of energy so that
t*=1.

In view of the anomalous properties of the cuprates,
the expectations for the 2D Hubbard model are especially
controversial: Is it a “normal” Fermi liquid renormal-
ized by a coupling to strong spin fluctuations,” a Lut-
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tinger liquid® known from the extreme limit of 1D, or
rather something in between, a so-called “marginal” Fer-
mi liquid?* The discussion of these problems is further
complicated by the fact that despite the simplicity of the
model, no exact solutions exist except in one dimension,
where the knowledge is in fact rather complete.” The ex-
tent that this very special limit can serve as a reference
point for any model with D > 1 (Refs. 8 and 10) remains
however, controversial, and an examination of the model
from a different point of view is clearly needed.

Recently, an approach!' ~!? based on an expansion in
1/D about the point D= has been proposed to study
such strongly correlated lattice models. In this limit the
requirement of a finite total energy per site makes it
necessary to rescale nonlocal interactions by an appropri-
ate power of D ~!.112 While, e.g., spin exchange will
essentially reduce to the corresponding mean-field-theory
results,'? interactions such as the screened Coulomb
repulsion in the model (1) remain nontrivial even in this
limit. This especially means that the essential local dy-
namics remain unaltered.

The basic idea of our approach is to map the infinite-
dimensional Hubbard model onto a self-consistently em-
bedded Anderson impurity.'*!> Then either the quantum
Monte Carlo (QMC) algorithm of Hirsch and Fye'¢ or
the finite-U noncrossing approximation!’ (NCA) is used
to solve the impurity problem. Details of this algorithm
have been described previously. Results from the NCA
are compared to the (essentially exact) QMC results to
determine where the NCA is valid to within a few per-
cent or less.'® The NCA is used since it easily produces
single-particle dynamic results, whereas one must analyti-
cally continue the QMC data to obtain dynamics. Espe-
cially for nonlocal quantities such as transport, this ana-
lytic continuation is computationally expensive. Howev-
er, it is relatively easy to produce local dynamic quanti-
ties such as NMR or single-particle density of states
(DOS) by analytically continuing the QMC results. Thus
all static quantities (i.e., susceptibilities) as well as local
dynamic quantities (DOS, NMR) were produced with the
QMC method. Nonlocal dynamics such as transport
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were calculated with the NCA, with a limited set of cal-
culations performed with the QMC algorithm to deter-
mine the region of validity of the NCA results.

In previous publications,!>?° we presented an exact nu-
merical solution of the Hubbard model in the infinite-
dimensional limit. We will first summarize those results:
At half filling §=1—{n)=0, for UZ3.5, the single-
particle DOS develops a pseudogap'® and the effective
mass diverges. The ground state of the half-filled model
is always an antiferromagnet. When the model is hole
doped (e€>0) away from half filling, the commensurate
antiferromagnetism is quickly suppressed, yielding to an
incommensurate state when 8 2 0.15. As doping contin-
ues beyond this point, transitions, if any, become difficult
to detect with the QMC method because of extremely low
transition temperatures. In the paramagnetic region, the
system becomes a heavy metal characterized by a narrow
peak of width =T in the single-particle density of state
near the Fermi surface.”’ The development of this peak
is associated with a screening of the local moments and
the enhancement of the effective electron mass.”’ Hence
we associate the peak with the Kondo effect and its width
T, with the Kondo scale.

In this paper we study the properties of the infinite-
dimensional Hubbard model away from half filling as a
function of doping. In particular, we show that for dop-
ings typical of the oxide superconductors, the model ex-
hibits an anomalous NMR (Fig. 3) and transport (Fig. 4)
as described before. At the same time, the ground state
of the model appears to be a (moderately heavy) Fermi
liquid (Fig. 2). Throughout the paper we concentrate on
a value for the Coulomb repulsion, U =4. This value ap-
pears to be most appropriate when comparing our results
to experiment; however, the qualitative features of our re-
sults do not depend on U as long as U % 3.5.

Scaling. For low temperatures (T < T,), we find that
many of the physical properties of the system—magnetic
susceptibilities (see inset to Fig. 1), NMR, transport,
specific heat—appear to show some scaling with T /T,
Since the D = « model may be mapped onto an (effective)
Anderson impurity, we can use a similar method to define
this scale T,: T, is fixed by the zero-temperature local
susceptibility y;(T =0)=1/T,. This is shown in Fig. 1
where 1/Tyx;(T) is plotted versus T/T,. The relative
values of T, were chosen to cause the data sets for
different doping to coincide, whereas the magnitude was
fixed by demanding that the y intercept (determined by a
quadratic extrapolation) be 1. T, increases in a weakly
superlinear fashion with 8. T along with several other
relevant parameters (to be discussed later) are presented
in Table I.

Fermi-liquid properties. To examine whether the zero-
temperature fixed point of the D = o Hubbard model is a
Fermi liquid or not, one may calculate the finite-
temperature quasiparticle renormalization factor as
defined by Serene and Hess,?! a "/ T)=1—Im3 (iwy) /.
In Fig. 2 the renormalization factor is plotted versus
T/T, when U=4 and 8=0.1878. Three different re-
gions may be identified in this data: In the Fermi-liquid
regime T <<T,, a ~'(T) appears to saturates to a finite
value as the temperature is reduced below T, indicating
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FIG. 1. Scaled local susceptibility of the Anderson impurity
vs T /T, for several different dopings when U =4. The relative
values of T, for the different dopings were determined by caus-
ing the different curves to coincide, whereas the absolute magni-
tude was fixed by setting 1/(Tox;(0))=1. In the inset, the bulk
susceptibility appears to scale with T/T, up to an additive con-
stant.

the formation of a Fermi liquid.?? The zero-temperature
limit of @ ~!(T) may be estimated by extrapolation, and it
gives the effective mass for the quasiparticles of this Fer-
mi liquid, m*/m =a ~1(0). The mass enhancement plot-
ted as a function of 8 is shown in the inset to Fig. 2. For
fixed U, the effective mass appears to diverge continuous-
ly as half filling is approached. In the high-temperature
regime T>>T,, the Kondo peak disappears®® and
a " Y(T)—1 as in the free metal. The physical properties
no longer show scaling. In the crossover regime T =T,
a ~!(T) increases in a roughly logarithmic linear fashion.
This behavior a “Y(T)~In(T) has been identified*! as a
signal of marginal Fermi-liquid behavior.* Let us stress,
though, that this special behavior appears only as a cross-
over feature from a high- to a low-temperature regime
and does not appear to persist as an anomalous ground
state.
NMR. The local NMR rate

1/T\=T lirr}))("(w)/w (2)

is calculated by direct analytic continuation of the local
dynamic susceptibility y''(w). At temperatures T X 2T,
the NMR displays anomalous behavior such that
1/T,~aT /Ty+b. In Fig. 3, the solid lines are the result
of a linear fit of 1/7T,=at/T,+b to the anomalous data
(the resulting values of @ and b are tabulated in Table I).
The anomalous region extends roughly from
TySTS10T, and thus is much more pronounced for

TABLE 1. Values of T, a, and b for different dopings when
U=4.

6§=1—(n) T, a b
0.0680 0.0177 —0.41 15.0
0.0928 0.0273 —0.20 10.1
0.1358 0.0478 —0.02 6.1
0.1878 0.0730 0.16 3.8
0.2455 0.1074 0.22 2.5
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FIG. 2. Quasiparticle renormalization a ~(T) vs T /T, when
8=0.1878+0.001 and U =4. In the inset the mass enhance-
ment m*/m =a~'(0), roughly estimated by extrapolation, is
plotted vs 8 when U =4.

larger doping with correspondingly larger values of T,.
The behavior in the anomalous region is only partially
universal. Both a and b change with doping, with a being
negative when the doping approaches zero, becoming
positive and less sensitive to doping as the system is
doped away from half filling. Thus, for low doping, when
a is negative 1/T, displays a maximum at roughly
T=T, The parameter a does not show any obvious
scaling with T,. The parameter and b, on the other
hand, is positive definite and to a very good approxima-
tion b « 1/T,.

Such anomalies of 1/T; have been observed for Cu
NMR in the normal state of the cuprate superconduc-
tors. For example, in YBa,Cu;0, the Cu 1/T| may be fit
to a linear form from about 125 to 410 K.2 For lower T,
it falls sublinearly, and finally the data are cut off by the
superconducting transition. By fitting our results to the
experimental data, we estimate that T,=150 K in
YBa,Cu;0,. Similar behavior is seen in the 60 K
YBa,Cu;0;_,; however, b is considerably larger here,
consistent with what would be expected as the doping is
reduced. Recently, Imai et al.?* studied the behavior of
1/T, as a function of x in La,_,Sr, CuO,. They find that
their curves of 1/T versus T show negative slope for low
dopings x =0,0.04,0.075, with one curve (x=0.075)
showing a modest maximum (the two other data sets
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FIG. 3. 1/T, vs T/T, when U =4. The solid lines are linear
fits 1/T,=aT/Ty+b to the data in the crossover region.
Values of a and b obtained from the fit are tabulated in Table I.

were not reported down to low temperatures). At larger
x, the slope of 1/T, versus T is positive.

Resistivity. As discussed in the beginning, the resistivi-
ty was calculated with the NCA, with the QMC results
(solid symbols in Fig. 4) used only as a check to deter-
mine the range of validity of the NCA. The resistivity
may be constructed from the simplest bubble diagram
composed of two single-particle propagators since there
are no vertex corrections in the infinite-dimensional lim-
it.”> A systematic test of the NCA’s ability to produce
single-particle and thermodynamic results was presented
elsewhere.'® There we found that the NCA was quite ac-
curate for temperatures T >2T,. Here we restrict our re-
sult to these temperatures.

In Fig. 4 the resistivity is plotted versus T for several
different dopings when U =4. Note that the region
where the resistivity is linear in T increases with doping,
i.e., with T, Recently, Takagi et al.?® performed a sys-
tematic study of the resistivity as a function of x in
La,_,Sr,CuO,. They found strikingly similar behavior
in the planar resistivity: The region of linearity increases
with doping while the slope decreases. As shown in the
inset to Fig. 4, the slope of the linear region varies with
87!, an observation which is also consistent with
La,_,Sr,CuO, experimental data.’’ We also find (not
shown) that the resistivity scales with (T/T,)* at low
temperatures, as expected of a Fermi liquid.

Conclusion. We have explored the NMR and resistivi-
ty of the infinite-dimensional Hubbard model away from
particle-hole symmetry. We find that both the NMR rate
1/T, and the resistivity p(T) have regions of linearity
when plotted versus temperature. These regions of
linearity increase in duration as the doping increases and
are very pronounced for values of §=1—{(n)20.15,
consistent with the experimental observations. We would
like to emphasize that our approach is nonperturbative;
i.e., the anomalies found are indeed intrinsic to the model
are not related to possibly lacking contributions to a per-
turbation theory. It thus seems clear that at least in or-
der to explain the anomalous normal-state properties of
the high-T, superconductors above T, it is not necessary
to resort to exotic ground states of correlated models in
2D. Results for quantities such as the Hall effect and op-
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FIG. 4. Resistivity vs temperature T for various 8. The open
(solid) points are calculated with the NCA (QMC algorithm).
The inset shows the variation of the slope of the linear region
with doping 6.
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tical conductivity not presented here further support this
picture. Work on these quantities is in progress and is
planned to be presented in a forthcoming publication.
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