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Cooper-pair tunneling into a quantum Hall fluid
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Transport through a tunnel junction connecting a superconductor to a spin-aligned quantum Hall
Buid at 6lling v is studied theoretically. The dominant transport channel at low temperatures is the
tunneling of Cooper pairs into edge states of the quantum Hall Huid. This process, which is greatly
suppressed at low energies due to both Coulomb and Pauli exclusion e6ects, leads to a tunneling
conductance which vanishes with temperature as T, for v an odd integer. For integer billings
with v ) 1 the "Pauli blockade" is circumvented and a nonvanishing conductance is predicted.

There are some striking parallels between the phenom-
ena of the &actional quantum Hall effect and supercon-
ductivity. In both cases, one has a system that exhibits
a dissipationless flow of electrical current. In each case,
the physics was elucidated initially by a many-body wave

function, involving a new charge carrier. More recently
a Ginzburg-Landau approach to the quantum Hall effect
has identified an underlying condensed boson, 2 responsi-
ble for the dissipationless flow, highlighting the analogy
between the two phenomena. Very recently, attention
has shifted to the study of weak links or point contacts
in the quantum Hall effect, the loose analog of a Joseph-
son junction.

Since 1992, several experimental groups have suc-
ceeded in making low resistance contacts between su-

perconducting leads and a two-dimensional electron gas
(2DEG) in a semiconductor heterostructure. Evidence
has been found for Andreev reflection, in which Cooper
pairs are converted into unpaired electrons and trans-
ported into the 2DEG. These experiments raise the excit-
ing possibility of making and studying a tunnel junction
between a superconductor and a dissipationless quantum
Hall fluid. Motivated by this, I consider in this paper
the simplest possible tunneling model for a such a tunnel
junction. I focus exclusively on low temperature dc elec-
trical transport through the junction, which is dominated
by pair tunneling.

An immediate obstacle arises when considering a tun-
nel junction between a superconductor and a Hall fluid.
The large magnetic Geld needed to put the 2DEG into the
quantum Hall fluid will tend to suppress the supercon-
ductivity. One is thus restricted to type-II superconduc-
tors, with upper critical fields H, 2 in the 5—10 T range or
above. In this case, magnetic vortices will penetrate the
superconductor, but provided they are strongly pinned
(i.e., in the vortex-glass phase ) they will not contribute
to the low temperature transport of interest.

In addition to penetrating the superconductor, the
large magnetic field will, of course, tend to spin polarize
the 2DEG. Here I consider only the case of a fully spin-
polarized electron gas. Then a spin singlet Cooper pair
passing out of the superconductor into the 2DEG must
not only break apart into two unpaired electrons, as in a
conventional Andreev process, but must undergo a spin-

flip process to align the spin of both electrons with the
magnetic field. The suppression of the tunnel current due
to this spin-flip process can be studied independently of
the quantum Hall effect by placing the external magnetic
field in the plane of the 2DEG. Of interest here, though,
is when the field is perpendicular, and the 2DEG is in a
dissipationless quantum Hall fluid. Then the transport
current in the 2DEG will be confined to edge states. '

Consequently, at low temperatures the dominant trans-
port process through the junction should be tunneling of
a Cooper pair into the edge state.

In this paper, I introduce and analyze a simple model
for Cooper pairs tunneling into a quantum Hall edge
state. I focus primarily on odd integer v, where the
edge state is believed to be a single-channel chiral Lut-
tinger liquid. As recently emphasized, the tunneling
of electrons into a Luttinger liquid is greatly suppressed
at low energies, and leads to a true Coulomb blockade
with vanishing tunneling conductance at T = 0. Here,
though, ttoo electrons (a Cooper pair) are trying to tunnel
simultaneously into the Luttinger liquid edge state. The
central point of this paper, established below, is that the
Pauli exclusion principle operating between the pair of
electrons leads to an additional suppression of the tunnel-

ing conductance, over and above the Coulomb blockade.
Together, the Coulomb blockade and this "Pauli block-
ade" effect lead to a conductance that is predicted to
vanish with a large power of temperature: G T4~

for v an odd integer. Strikingly, the predicted con-
ductance vanishes even for v = 1, when the edge state
is a Fermi liquid. ' In this case, the vanishing conduc-
tance is due entirely to a Pauli exclusion between the
pair of electrons. For integer filling with v ) 1, where
the edge consisits of more than one Fermi liquid channel,
the Pauli blockade is circumvented, and a nonvanishing
low temperature tunneling conductance is predicted.

It is perhaps surprising that for the fractional Hall
state at filling v = 1/3 the tunneling conductance is pre-
dicted to vanish with such an enormous power of temper-
ature, G T . Despite the fact that both the supercon-
ductor and quantum Hall fluid have zero resisitance, the
junction between the two is predicted to be an extremely
good insulator. Ultimately, this is because very different
bosons are condensing in the two systems, a Cooper pair
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x=n SC

ble that nearby magnetic impurities mediate the spin-flip
process. )

It is apparent from HpERT in Eq. (I) that at second or-
der in t~ a term will be generated that destroys a Cooper
pair in the superconductor and creates two up-spin elec-
trons in the 2DEG. Retaining only this composite pro-
cess, we let HpERT M HTUNN with

HTUNN = t(z, z )[g&(z)Q&(z )c(z = 0) + H.c.], (2)
x,x'

FIG. 1. Schematic of a tunnel junction from superconduc-
tors (SC) to a quantum Hall Quid. Cooper pairs tunnel into
the edge at x = 0.

in one and a vortex-electron composite in the other.
Consider then a tunnel junction, or point contact, be-

tween a singlet superconductor and an incompressible
quantum Hall fluid at filling v, as depicted schematically
in Fig. 1. The total Hamiltonian is expressed as a sum
of three pieces: H = HqHE+ Hsc+ HpERT, ~h~~~ HqHE
is the Hamiltonian for the spin-polarized quantum Hall
fluid, Hsg is the Hamiltonian for the superconductor and
HpERT a perturbation that couples them together. Being
interested only in temperatures well below the supercon-
ducting gap, it is adequate to model the superconductor
in terms of a bosonic pair Geld c, which exhibits long-
ranged (vortex-glasss) order and has a nonzero conden-
sate, (c) = A. Moreover, for temperature scales well
below the gap in the quantum Hall fluid, HqHE can be
taken as an edge Hamiltonian (see below). For the per-
turbation term at the tunnel junction we take initially

IIpERT = ti(z, x')[g&(z)Q&(z')c(z = 0) + H.c.]
x,z'

+ t x &~ &x +H.c. ,

where x is a 1d spatial coordinate that runs along the
edge of the quantum Hall fluid. The Grst term hops a
Cooper pair from the superconductor through the point
contact (at x = 0) into the edge of the Hall fiuid. Since
the Cooper pair is a singlet, the two electrons deposited
are of opposite spin. The pair "wave function, " ti(x, x'),
is symmetric under the interchange of x with x'. It is
assumed to fall off exponentially for x and x' large com-
pared to the pair size—essentially the superconducting
coherence length (. Since the 2DEG is completely spin
polarized by the magnetic field (spin up), the edge state
only transports spin-up electrons. It is thus necessary
to consider spin-flip processes. We model these phe-
nomenologically by the second term in (j.), which fiips the
electron spin with amplitude t2 at position x along the
edge. Physically, t2 will probably be dominated by spin-
orbit-mediated scattering in the 2DEG. (It is also possi-

where t(z, z') = ti(z, z')[t2(z) —t2(z')]. Since ti(z, z')
vanishes rapidly for x, x' larger than the coherence length

f, the integrals above will be dominated by small z and
x . For simplicity, we replace these integrals by a single
term,

IITUNN = t[Q&t(z = ()@&t(z = 0)c(z = 0) + H.c.),

where the spatial arguments are separated by the coher-
ence length, (. The qualitative results obtained below
do not depend on this simplification. The remaining pa-
rameter t characterizes the strength of the pair tunneling.
In the following, we will drop the spin subscript on the
up-spin electrons.

For the integer quantum Hall state, with v = n, the
edge states, which carry away the spin-polarized elec-
trons, are noninteracting Fermi liquids. The appropriate
efFective (Euclidian) action in this case is simply

Svivv =) f dvdvdJ(B —iv, d )d,
j=1

where v is imaginary time. Here Q~ denotes the (spin-
up) electron in edge branch j and v~ is the corresponding
edge velocity. For fractional states at odd integer ir

the edge state is expected to be a single-channel chiral
Luttinger liquid. The appropriate Euclidian action in
terms of a chiral boson field P isio

1
SIDHE = dz dw B~g[i8~$ + vB~Q],4' v

with v an odd integer. The electron operator is given
by Q ~ ei//v

Consider now the effect of the tunneling term Eq.
(3) in transferring charge across the junction. Our ap-
proach is perturbative in the tunneling amplitude t. Be-
fore calculating the tunneling conductance, it is instruc-
tive to consider a simple renormalization group (RG)
transformation which tells us how the tunneling am-
plitude t varies with the energy (or temperature) scale.
Since HTUNN in Eq. (3) involves fields near x = 0, it is
useful to integrate out the degrees of freedom for x g 0
in both the edge action above, and in the superconduc-
tor. Since the superconductor has a nonzero condensate,
it is legitimate to simply replace the operator c in Eq.
(3) by the c number b. The remaining field is the spin-
up electron near x = 0, which depends on imaginary
time v. Consider a RG transformation which integrates
out a shell of Matsubara frequencies between A/b and A,
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where A is a high frequency cutoff. The resulting RG
flow equation for the tunneling amplitude t is given to
leading order by (I = e ):

using the free fermion edge action Eq. (4). Once again
the superconducting pair Geld operator c can be replaced
by A. We thereby obtain a perturbative expression for
the junction conductance when v = 1

Ot/OI = (1 —b)t, (6)

where b is the scaling dimension of the tunneling oper-
ator, 0 = i/it(z = ()gt(z = 0). This dimension can be
evaluated from the large (imaginary) time decay of the
correlation function

G = (4e /harv)(tA) P [1+cosh(PE)] p(E). (11)

Here we have defined a "pair-tunneling" density of states,
p(E) = [1 —cos(2(E/hv)]/(hv). Evaluating this expres-
sion in the low-temperature limit, k&T (( hv/(, gives

using the edge action in Eq. (4) or (5).
Specializing to odd integer v, the tunneling opera-

tor can be expressed in terms of the boson field P, as
0 e '@~*= ~/", where the "2" is because two electrons
are tunneling. Performing the average in (7) using the
quadratic edge action (5) gives b = 2/v. Thus, for all
odd integer v, the tunneling amplitude t flows to zero
at low energies. For v = 1 this result is perhaps surpris-
ing, since one might have expected a constant (energy-
independent) tunneling amplitude for a Fermi liquid edge
state.

At nonzero temperatures the RG flows are cut off by
T, and one obtains an effective temperature-dependent
tunneling amplitude, tEFF(T) tT2~ i. One expects
the tunneling conductance through the junction to vary
as tEFF, which gives the result

G(T) t2T4/v —2 v = odd integer. (8)

This result can be verified directly by calculating the con-
ductance via a Kubo-type formula (see below). One
can also calculate the nonlinear current-voltage (I —V)
curve throught the point contact, and at T = 0 one
obtains I V /' for small V.

Equation (8) indicates that the conductance of a junc-
tion separating a dissipationless superconductor from a
dissipationless quantum Hall fluid vanishes as T m 0.
The point contact is insulating. For the v = 1/3 state,
the conductance vanishes with an enormous power, G
T . For the integer state v = 1 the power is smaller,
with G(T) T, but even a vanishing conductance is

surprising since the edge state is a Fermi liquid in this
case.

In order to understand the above result for v = 1, it is
helpful to calculate explicitly the junction conductance
using the noninteracting electron action in Eq. (4). The
junction conductance is defined as

G(T) = (4e /h)(4m/3)(tA(/hv ) (k~T) . (12)

Notice that the T dependence can be traced directly
to the supression of the pair-tunneling density of states
p(E), which vanishes as E for E (( hv/(. This can also
be seen in the expression for the tunnel current at finite
voltage, which at low temperatures is found to take the
form

I dEp E E —2eV — E+2eV V,

with f(E) a Fermi function. Physically, the suppression
of the pair-tunneling density of states can be attributed
to the Pauli exclusion between the pair of electrons. Af-

ter tunneling one spin-up electron into the edge state,
tunneling of the second electron is suppressed by the
Pauli exclusion principle up to a time (/v, at which point
the first electron has been carried away a distance ( by
the edge current. This leads in turn to a suppression
in the pair-tunneling density of states, p(E), below the
energy scale hv/(.

It is amusing that this "Pauli blockade" of pair-
tunneling, effective when v = 1, can be circumvented
when tunneling into a v = 2 state, which has two edge
channels. Specifically, the pair of electrons can simulta-
neously tunnel into the two different edge channels. This
can be quantified as follows. Let p denote the probabil-
ity that an electron in the pair will tunnel into the Grst

(j = 1) edge mode, and 1 —p the probability to tunnel
into the second (j = 2). The electron operators enter-

ing into the tunneling Hamiltonian Eq. (3), can then be

expressed as @ = ~pQi + g(1 —p)$2, where i/iz is the
electron operator in the jth edge state. To evaluate the
junction conductance one needs the edge Green's func-

tions, which follow from the action in (4) and are given

by

P
G = lim ~0 d~e' "

0
v&7 + iz (14)

where the junction current operator is

I = 2eit[i/~t(z = ()gt(z = 0)c(z = 0) —H. c.].

To leading (second) order in the tunneling amplitude it is
sufficient to evaluate the correlation function in Eq. (9)

Notice that we have included a phase factor into the
above Green's functions, with k~ playing the role of an
edge (Fermi) momentum. In general, this edge momen-
tum is gauge dependent, but the difference, kq2 ——kq —k2,
is gauge invariant and determined by the magnetic flux
which penetrates between the two edge branches. With l

denoting the spatial separation between the two branches
one has ki2 ——eBI/h, with B the magnetic field.

Using the above Green's functions, it is straightfor-
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ward to evaluate the junction conductance for the case
v = 2, to leading order in the tunneling amplitude, t. A
straightforward calculation using Eq. (9) gives the con-
ductance at zero temperature

G(T = 0) = (16e /vrh)(tb, /v) p(1 —p) [1 —cos(kiz()j,

v = 2. (15)

Note that, in contrast to the v = 1 case, the tunnel-
ing conductance for v = 2 does not vanish at T = 0.
Pauli exclusion is less eR'ective here, with the two elec-
trons tunneling into different edge states. The conduc-
tance is proportional to p(1 —p), and so vanishes when
the tunneling is completely into one or the other of the
two edge modes. Note, moreover, that the edge momen-
tum diH'erence ki2 plays a crucial role here. Indeed, in
the limit ki2 ~ 0, in which the edge states sit atop one
another, the tunnel conductance vanishes. In this limt
one recovers the "Pauli blockade. "

In summary, I have introduced and analyzed a sim-

pie model for a tunnel junction between a superconduc-
tor and a quantum Hall fluid. The low temperature
transport, dominated by pair tunneling, is suppressed
due to both Coulomb blockade efI'ects and the Pauli ex-
clusion principle. The tunneling conductance has been
found to vanish as a power law in temperature, which
should be verifiable in experiments on superconductor-
2DEG samples. Numerous interesting issues have not
been addressed here, such as ac transport, resonant tun-
neling, and nonequilibrium noise at the superconductor—
quantum-Hall junction. It would also be very interesting
to study pair tunneling into a spinful 1D Luttinger liq-
uid, appropriate for a superconducting contact to a 1D
quantum wire in zero magnetic field.
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