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Interorbital pairing for heavy fermions anti universal scaling of their basic characteristics
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We show that the properties of the heavy-electron superconducting state induced by the interorbital
kinetic exchange scale with the effective-mass renormalization m /mo 1/Tg ~ Explicitly, the pairing
potential J-J(mo/m )ln (mo/m },where J is the magnitude of the bare Kondo coupling; the coher-
ence length g- Ts/T„where T, is the transition temperature, whereas the penetration depth
A, -(m /tno)'iz so that A/g»1. We also determine the scaling of magnetic critical fields.

(2)

In this paper we predict a scaling of fundamenta1 pa-
rameters characterizing a heavy-fermion superconductor,
which extends the earlier analysis for the normal state. '

This goal is achieved by considering the Anderson lattice
model in which first order corrections in 1/U, where U is
the magnitude of the intra-atomic f-f interaction, have
been included so as to generate an interorbital (hybrid)
pairing. In this manner, both the Fermi-liquid state of al-
most localized electrons, as well as their superconducting
properties are obtained within a single framework. An
earlier treatment of superconductivity within the Ander-
son lattice model in the U=ao limit required higher-
order (1/N ) correction to the mean-field slave-boson pic-
ture of the heavy electrons. Here, a stable superconduct-
ing phase appears already in the mean-field approxima-
tion for the pairing part and provides a universal scaling
with the mass renormalization m'/mo, as discussed
below.

We start from the e8'ective Hamiltonian derived ear-
lier to the first nontrivial order in V/U, which was
rederived in the slave-boson representation of Zou and
Anderson and takes the form

%= g t „c„+c„+e/gf,+f, .

mno l CT

+ g (V, e;f;~c~~+H. .c. )
imo

—g(2V,' V;„/U)b;+b;„,
l77T

with the pairing operators
b+ —(f+c+ f+c+ )/Q2

and U=—U+e&.
The first three terms comprise the Anderson lattice

model in the U= ~ limit. ' This formulation involves

a single scalar boson e; that has been studied extensively
in the last decade, ' and has been just shown to represent
the spinon-holon formulations in the limit d,+d,. :—0. The
last term expresses the interorbital spin-singlet pairing in-
troduced before, ' here defined for pseudofermions I f,
and conduction electrons Ic; }. In contradistinction to
the one-band (t-I) model situation, ' where the pairing
part involves d-d or f fkine-tic exchange, the corre-
sponding term in Eq. (3) expresses for m =n, a Kondo-
type interaction between the spins. This interaction cor-
responds to the asymmetric Anderson model with

I VI - le lz I
«U—+ a& p, and—hence, is complementary

to the symmetric case [ Vi (( i@&
—pi = U+ eI —p con-

sidered by Zhang and Rice. The former situation
reflects the heavy-fermion and the fluctuating valence
limits. One should stress that the Kondo interaction is
regarded here as the source of spin-singlet superconduct-
ing pairing in the same way as the kinetic exchange is as-
sumed to provide d dpairing -in a strongly correlated me-
tallic system. ' The problem has been dealt with
rigorously for the case of the single pair by Byczuk
et al. In brief, the Kondo interaction is regarded as the
source of binding of pairs into singlets, whereas the resid-
ual hybridization [third term in Eq. (I)] introduces the
itineracy required for a coherent motion of the singlet
pairs.

We now discuss the physical implications of including
the last term in Eq. (1) and compare the present results
with those obtained earlier in the U= 00 limit' and with
the hybridization of intra-atomic character, specified by
V;„=V5;„. The partition function Z in the slave-boson
representation can be written in a standard way' as a
functional integral over coherent Fermi I c,.+,c;,f;+,f; I

and Bose le;, e;+ I fields:

Z = f Dc+Df+De g d )i,;exp —f d r 'g e,
+d,e, +g (c,+ t)g, +f;+ t),f; )+HsB

'

l CJ

(3)

~here p= (ktt T) is the inverse —temperature in units of
energy, and

~»=X 'i » ~~ i.+(&/ —lt) gfi+,.fi,.
kcr kyar

+ Vg(f;.e;c;.+c;.e;+f; ) (2V'/U) g b, +, b,—,
10'

++A, , (e,+e, + g f,+f, 1) . . —(4)

The last term in (4) contains a set of Lagrange multipliers
IA,;) refiecting the local constraint which is imposed at
every f site due to the introduction of an extra Bose field

Ie;J. Subsequently, we represent the Bose operator e;+

by its space homogeneous part e =(e,.+), implying the

existence of a stable metallic (Fermi-liquid) state and

reflecting the spatially extended nature of single-hole
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(empty) f states. We can also put I,, =A, , if the mean fer-
mion number is the same at each site. The above (mean-
field) approximation for the slave bosons leads to the
effective Hamiltonian of the form

~sB g [(ek p' }c~.ckn + (~f p )fkerf ka
kyar

+ Ve(f „+.c„.+c„+.f„.))
+AN( e 1) (2V /U) g bk k+qbk

kk'q

(5)

where Zf —=ef+A, , and bk k. =(fktck &
fz&c—k t )/~2.

The chemical potential }u, and A, , and e are calculated
from the free energy (F= ka T—lnZ) in the saddle point
approximation (5F/5e =5F/5X =0) In. the normal
state, i.e., when the pairing part is ignored, we recover
the principal results obtained before' in the Kondo-
lattice limit ~ef

—}u~/ppv &&1, where pp is the density of
bare states in the conduction band at the Fermi energy p.
Such a condition is fulfilled, e.g., for one electron per
(f-c} pair of orbitals and when the bare f level is posi-
tioned energetically below the conduction band.

One can easily diagonalize the single-part of (3) and ob-
tain the usual eigenenergies,

Ek~= —,'Iek+&f —2@+a[(ek—&f) +(2ve) ] ]

where a=+1. The renormalized f-level position Zf is
very close to the Fermi level, as can be seen from the con-
dition 5F/5e =0, which at T=0, yields

Zf —p-( IV/2)exp[ —(p —ef )/V pp],

where the bare band spans from —W/2 to W/2 and is
assumed as featureless. The above energy difference is
defined as k&Tz, where Tz is customarily called the
effective Kondo temperature. ' Additionally, from the
condition 5F/5A, =0, one determines the value of
e —= 1 nf—=ka T»/2V pp«1, and the density of quasi-
particle states at p as p(p)=1/2kaT». In effect, the
effective mass of quasiparticle near the Fermi surface is
given by m ' —1/T»', therefore, T»'determines the degree
of itineracy of the bare electrons (for T»=0, m'= oo,
and all f sites are singly occupied and the electrons
are localized). The overall width of the lower hy-
bridized band (a= —1) is D=2~ V~e=(2k' T»/pp)'
=(2k~ T» IV)' &&ka T».

We now extend the scaling of quantities with Tz to the
superconducting phase. For that purpose we consider
the case for which the number of particles is n &2 per
site so that only the lower hybridized band Ek —=Ek is
occupied in the temperature range much smaller than the
hybridization gap, ka T«

~
V

~
e. The effective Hamiltoni-

an (5) transformed to the hybridized basis then has the
form

V2 4Ve2 2
+ +

SB X k~ k k~ —X 2 2 2 ~/2 g 2 2 ]yp kt+ —k+ql+ —k'l+k'+qt
kcr U kk [(ek ef) +4V e ] [(ek. ef) +4V e ]— (8)

where %k is the creation operator of a hybridized a-c

state. The potential is separable into k- and k'-dependent
factors. Thus, the k dependence of the superconducting
gap 6k is determined by the k-dependent factor in the
denominator. More generally, 6k- Vk has nodes for k
points for which Vk=0. In our present model situation
with Vk = V, the gap is never zero; therefore, we approxi-
mate the pairing potential by its average over occupied
quasiparticle states. This leads to an effective k-
independent potential,

V k~Tsc 2 ka T~

Ve
/
V/e

V2p

4U
ksT»ln (ksT»pp) .

In the limit of f-electron localization J—+0 (note that the
pairing takes place when e+0, i.e., when the f holes exist
and propagate). The disappearance of the pairing in the
strict Kondo-lattice limit (e=0,nf =1) implies that our
approach, indeed, describes pairing, not the singlet
Kondo-type of state. For typical values ~V~=0. 5 eV,
e =0.06, p —sf =0.8 eV, 8'=2 eV, U=6 eV, we obtain
a mean-field superconducting transition temperature
T, —1 K, a quasiparticle bandwidth D =3 X 10 eV, and
J=SX10 " eV, so that J/D=10 . Thus, the mean-

L(r)= f d'x g%+[p, +E(p)]q.

—J%'t (x), %'~ (x) I'~(x)%t(x} ', (10}

where 4 =4 (x, r),pp =—B„and E(p) is the eigenenergy

field (BCS) approximation is applicable, since J is only a
minute fraction of the quasiparticle energy on the Fermi
surface. Furthermore, we take advantage of the fact that
J/D «1 and replace the pairing potential in (8) by the
average value J and then transform the resulting term
back to real space; such a procedure produces a single
band of heavy fermions with local pairing of the form—J%'t (r)q'I~ (r)%'&(r)%t(r) which reduces (8) to a nega-
tive U model. The intrasite pairing is allowed because it
involves hybridized quasiparticle states which are a mix-
ture of noninteracting pseudofermions f;+ and carriers
c,+ and leads to a real-space version of the BCS theory.

The local nature of pairing in conjunction with the
single-band nature of the problem allows us to derive ex-
plicitly the Ginzburg-Landau functional within the La-
grangian formalism for the Grassmann variables qi+(r)
and 4 (r). Namely, the above analysis reduces the La-
grangian for the hybridized states with pairing to a form
which in the continuous limit reads
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Ez with k replaced by ( —iV) . Expression (10) differs
from the corresponding expression in the standard BCS
theory by the complicated form of E(p), and contains
the bare energy e~, taken as ( —A V /2mo). We also

I

po+E(p)
Z= f D%D%+Dhexp ' —f d~ f d x

introduce the two-component Nambu notation
'Il+ =—( 4 t+, 'P

&
) in (10) and apply the Hubbard-

Stratonowich transformation to the quartic term. Such a
procedure reduces the partition function to the form

p —E(p) J
with b, =Jb, . Integrating over Grassmann variables and neglecting the part which does not depend explicitly on 5 we
obtain

Z= Dhexp 'Trln 1—

1

~o+E(p)
1

po
—E(p)

P—f a'xlal'/J (12)

2 mp
1 — +g V

T
Tc

where the part [ I is called the effective action S,e.
Expanding exp( —S,tr) into a Taylor series, carrying out a
Fourier expansion, and evaluating corresponding sums,
one arrives at the Ginzburg-Landau functional EGI in
the form

mechanism-dependent factor from the universal features.
Close to the f-electron localization, Tx~0 and then
v »1.

Expression (13) can be used to determine the thermo-
dynamic critical magnetic field Bc via the relation
8, /2= FoL/Vo—, where Vo is the volume of the system.
Explicitly,

x la I'—

(13)
el3

Siq

with kz being the Fermi wave vector and g(x) the
Riemann zeta function.

To determine the London penetration depth we start
with the substitution V~V (2ieo/c ) A, w—here A is the
vector potential and ep is the electron charge. This pro-
duces the term (1/2)m z A in S,tr, where

2 5
k, T,

Ve
2 2

m =—eA 3 0
C

T1—
T.

with T, = 1.13D exp[ —1/J p(p ) ]—Tx/ exp( ke Tx /J ). —
The coherence length at T=O is

'4
2 7 g(3) ka Tx kF

Co= 4g, , D, -(Tsc/Tc)'

OJ
C3

CQ

O

O

l.5—

Ce
0.5—

I

5.5 4 4.5 5 5.5 6 6.5
l o g LTc&(O)z]

Xp(p) —ke Tx(1—T/T, )m acs,
is the photon mass in the superconducting phase, and
macs=2eo(UF/c) po/3 is the mass if there were no
enhancement due to the presence of the f level. The
London penetration depth at T=O is A,o=(A/m„)
—Tx '~. The last quantity enters the ratio ~=A, /g,
which takes the form

C3 4
C3

3.4 3.6 3.8 4.0 4.2 4.4
(og [T,~'")

K—[+2/3$oeoUF(Zf /l Vl e )+po] Tx T,

Note that we have used the relation g:—g( T)=g'o/

(1—T/T, )' . Also, we have separated the T, factor
from the mass enhancement to separate the pairing-

FIG. 1. Predicted linear scaling of second (a) and first (b)

critical-field derivatives at T= T, for various heavy-fermion su-

perconductors (solid line), which represents the results coming
from the Ginzburg-Landau-Gorkov theory in the clean limit.

For further explanation, see main text.
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7g(3) P I

1/2

(T, T—)-(T, T—)T

and therefore, the Srst and second critical magnetic Selds
are

8C&=(@o/2nA, )1 n(A/g)-T xl n(T+ T,a),
where a is a constant, and

(16)

' 1/2

8cz=~2a8c =2 3

7g(3)
1 Ve

toe"F

-(Tc/Tg)(Tc T) .— (17)

The numerical estimates of the quantities calculated
above are for the values of parameters specified as fol-
lows: go-10 A, Ao=(D/k&Tx)Ao ~10o~, where the
label BCS means the value for the BCS theory with the
same coupling constant and the same Fermi wave vector
kz, but with no mass enhancement. These results reffect
the trends observed experimentally. A detailed compar-
ison requires extraction of the effective masses from the
linear specific-heat coefficient y(0)-Tx ', as well as the
knowledge of other parameters. Speci6cally, we have cal-
culated the derivative 8,'t = (d8ct/d—T) at T= T, and
have plotted it as a function of T,y, as displayed for
various systems in Fig. 1(a). The systems with large y
scale linearly, as predicted by Eq. (17). Moreover, the
slope for the systems UBe&3, CeCutSit, and UPt3 is very
close to unity, as predicted by (17). The data were ex-
tracted from the works listed in Ref. 10. Only the sys-
tems with large mass should scale precisely, as one can

see from detailed calculations. In Fig. 1(b), we have plot-
ted the quantity of 8,', —:~d8, &/dt

~
at T= T, as a func-

tion of y
~ T„ the experimental values for various sys-

tems are also marked ". The solid line represents predict-
ed scaling, which is not ful5lled for UPt3. Clearly, the
clean limit scaling represents the trends of the data.

In summary, we have presented a semiquantitative and
universal scaling of both normal and superconducting
properties of heavy fermions, taking into account pro-
cesses of the order V /U, which produce the hybrid pair-
ing. We have reduced the problem to the one-band form
and on this basis have derived the Ginzburg-Landau
functional. Even though FoL is of standard form, the
coefficients acquire unusually high values because of the
factor m '/mc in Eq. (13). In general, one should also in-
clude the scaling with temperature of the effective mass;
this follows from the low-temperature expansion, which
leads to Z&(T)=kJtTIt[l+(T/Ttt) ]. Similarly, e (T)
=e [1 (T/Tx—) ]. These renormalizations will intro-
duce non-BCS corrections to the T dependence of the
fundamental parameters, as will be discussed elsewhere.
Finally, the effect of f-f exchange interactions, as well as
of the hybridization Vz anisotropy must be included be-
fore a quantitative analysis of superconductivity of heavy
fermions, coexisting with itinerant antiferromagnetism in
systems like UPt3, is undertaken.
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