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Optical and acoustic plasmons in cylindrical quantum-well wires
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We study theoretically the collective electronic excitations of quasi-one-dimensional cylindrical
quantum-well wires, the intrasubband and intersubband plasmons in the random-phase approxima-
tion. Using a two-subband model we calculate the dispersion curves for the case that two subbands
are occupied. We study the in8uence of the image forces on the intrasubband and intersubband
plasmons in detail. These modes are split in two branches. The intrasubband plasmon branches can
be classified in an optical and an acoustic branch which are in6uenced quite differently by the image
forces. The intersubband plasmon branches behave like acoustic plasmons.

I. INTRODUCTION

The enormous progress in epitaxial-layer growth tech-
niques and high-resolution submicrometer technologies
has given another dimension in the study of the semicon-
ductor systems. With these techniques the artificial re-
alization of low-dimensional electron systems, &om three
dimensions to quasi-zero-dimensions (QOD), is possible.

In quasi-one-dimensional (Q1D) quantum-well wires

(QWW) the electron motion is only free in one spatial
direction, but quantum confined in the two other spatial
directions. The spectrum of the single particle as well as
of the collective excitations depends characteristically on
the dimensionality of the system. The most prominent
collective excitation of modulation-doped semiconductor
nanostructures is the plasmon and, if a magnetic field
is applied, the magnetoplasmon. Plasmons and mag-
netoplasmons have been explored experimentally and
theoretically wjthoutv

—21 and with magnetic field in
isolated QWW's and lateral multiwire superlattices. The
theoretical works on Q1D plasmons predict, according to
the size quantization, two different types of excitations,
intrasubband plasmons which are connected with elec-
tron motion within one subband, and intersubband plas-
mons which are connected with electron motion between
two different subbands.

Most of the theoretical works were done using the
random-phase approximation (RPA) to calculate the
linear response of the quasi-one-dimensional electron
gas (Q1DEG) to an external charge. r ~s 2~ 2s It was
shown '26 that the intrasubband plasmon shows a loga-
rithmic dispersion u oc )q (a[—ln()q )a)]~~2 for small one-
dimensional wave vectors ~q~. The constant a depends
on the wire size and is equal to the width of a rectangu-
lar potential, to the radius of a cylindrical potential,
or to the characteristic width of a parabolic potential.
The first quantum theory of intersubband plasmons was
presented by Que and Kirczenow. Intersubband plas-
mons in QWW's are investigated in detail by Li and
Das Sarma, Hu and O' Connell, and Wendler and co-
workers.

For the case where more than one electric subband
is occupied Li and Das Sarma, Que, ~2 and Wendler

et aL investigated the intrasubband plasmons using
quantum-mechanical linear response theory in the RPA.
Wendler et al. showed that the intrasubband plasmons
of the higher occupied subbands exist in gaps between
the single-particle intrasubband continua and are &ee of
Landau damping. Exploring intersubband plasmons in
QWW's for the case if more than one subband is occu-
pied, it was shown by Wendler et al. and Mendoza and
Schaich that in the additional regions, which are be-
tween the single-particle intersubband continua and &ee
of Landau damping, new additional branches of intersub-
band plasmons exist.

For an initial parabolic potential (bare potential) it
was shown in Ref. 19 by performing self-consistent calcu-
lations of the ground-state and the linear response of the
Q1DEG that the lowest intersubband plasmon has for
small wave vectors a &equency nearly identical with the
bare harmonic oscillator &equency, and independent of
the density of the Q1DEG. This is a result of the gener-
alized Kohn theorem. 2 Further, the influence of retarda-
tion effects on Q1D plasmons was investigated recently. 20

A far-infrared (FIR) transmission experiment was car-
ried out by Hansen et al. In this paper it was found
that the intersubband resonance &equency has a large
depolarization shift, also measured in the experiments of
Brinkop et al.2 and Demel et al. In a recent FIR trans-
mission experiment Drexler et al. showed that the prin-
cipal collective intersubband resonance is "split" in three
modes above and below the frequency ur = v 2 u, (ur, =
eB/m, : cyclotron frequency) at a higher gate bias. A
FIR transmission experiment on plasmons and magneto-
plasmons propagating along the wire axis was performed
by Demel et al. Plasmons and magnetoplasmons of
the QlDEG have been detected also in resonant inelastic
light scattering.

The theoretical model calculations mostly involve the
rectangular or parabolic shape of the confining poten-
tial in lateral direction but assume a confinement in the
growth direction of the semiconductor sample of zero
thickness. The model of a cylindrical confining poten-
tial has the advantage considering the finite width of the
QWW in both spatial directions. Hence this model is
a good approximation for experimentally used QWW's
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in which the width of the confining potential is nearly
the same for both spatial directions. The density re-
sponse is considered for a Q1DEG confined in cylin-
drical quantum-well wires (CQWW) and hollow
cylinders. In these papers the collective excitations
in the absence ' ' and in the presence of an ax-
ial magnetic field ' ' are discussed and investigated
within the RPA. It is shown ' that for a plasma mode
the collective electron transitions between subbands with
equal difference of the angular quantum number are cou-
pled, but are decoupled from such electron transitions
with a different difference of the angular quantum num-
ber. Further, Q1D plasmons in CQWW's have a spec-
trum periodic with the magnetic field. The collective
excitations of a paraxial ring superlattice are investigated
in Ref. 34. Different types of plasmons and magnetoplas-
mons are found.

The model of a CQWW has further the advantage of
deriving in many cases analytical expressions. ' Exper-
imental observations by Merkt indicate the importance
of the image contributions, especially for the depolariza-
tion shift of the intersubband plasmons. The cylindrical
symmetry allows one to calculate the influence of the im-

age forces present in semiconductor structures realized
Rom different semiconductor materials having different
polarizabilities. The results obtained until now on Q1D
plasmons in CQWW's (Refs. 10 and 11) to the case
where only the lowest subband is occupied, neglecting
the effects of the image forces on the plasmons. However,
QWW's with many occupied subbands are used mostly
in experiments.

Many properties of Q1D plasmons and magnetoplas-
mons are investigated. But some questions remain open,
e.g. , (i) is the Q1DEG better described as a Fermi liquid,
or is the model of a Tomonaga-Luttinger liquid more ap-
propriate. (ii) What is the physical origin of the v 2u,
"splitting" in the spectrum of Q1D magnetoplasmons?
(iii) What is the physical nature of the Q1D plasmon
modes if more than one subband is occupied? (iv) What
is the inBuence of the image forces on the Q1D plasmons?

The aim of this paper is to give an answer to the two
last questions. In this paper we present a quantum the-
ory of Q1D plasmons in CQWW's within the RPA for
the case of two occupied subbands including the effect of
the image potential. Further, we investigate the physical
nature of the resulting modes in detail.

spin degeneracy, but omit the spin eigenvalue and coor-
dinate for simplicity. Because of the translational sym-
metry in z direction (Born—von Karman boundary con-
ditions) the single-particle wave function and the corre-
sponding eigenvalues are given by

(x~mlk, ) = 4~ii, (x) = e'i ~+"* )K,(r)
g2n L,

and

(2)

h k2
f~i(k, ) =8 i+ ', m=0, +1,+2, . . . , l =1,2, 3

2m, '

2 1

~)& J( (+(k( (&

h k)2

2m.

In these equations m is the effective conduction-band
edge mass and k, is the wave vector component in z direc-
tion. The energy levels are twofold degenerated (8
E &) if m g 0. In Eq. (4) J~ ~(k~ ~ir) is the Bessel
function of order ~m~, m is the angular quantum number,
and l is the radial quantum number. The radial quan-
tum number / is equal to the number of zeros of the radial
wave function ~ i(r) in the interval (0, 8] and k~ ~i

is re-
lated to the 1th root of the Bessel function of order ~m~,

i.e., J~~~(k~~~iB) = 0 resulting from the boundary condi-
tion 4 ii, , (r = R, p, z) = 0. Thus the subband ladder is

~01 + ~11 + ~21 + ~02 + ~31 + ~12 + ~41 + ~03
Because it is our goal in this paper to investigate the

physical nature of the modes if two subbands are occu-
pied including the effect of the image potential, we have
to derive some analytical results. As shown by Gold and
Ghazali, the use of the following expressions of the nor-
malized single-particle wave functions for the lowest sub-
bands:

II. GROUND STATE

The model used in this paper is the following. The elec-
trons are totally confined in an effective potential with
cylindrical shape of radius B in the x-y plane and are &ee
to move along the axis of the wire of length L which we
assume to be the z axis. The single-particle Schrodinger
equation reads

h' 1 0 ( 8 ) 1 8' 0'
+ — + V~(r)

2m~ r l9r ( Br) r B(p Bz

x@ 0, (x) = t i(k, )@ ii, (x), (1)

where we use cylindrical coordinates (r, p, z), suppose

results in a very good agreement with the exact result,
Eq. (4), if one calculates the bare electron-electron inter-
action potential. For the analytical calculations we will
use these wave functions.

III. DENSITY RESPONSE OF A Q1DEG

In this section we calculate the linear response of
a Q1DEG to an external potential on a quantum-
mechanical level within the RPA, also known as the time-
dependent Hartree method. There are diferent methods
to develop the RPA. Here we use the self-consistent field

(SCF) method of Ehrenreich and Cohen.
The single-particle Hamiltonian of the electrons of the
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QlDEG in the presence of the perturbation is written
as H(x, t) = Hp(x) + V +(x, t), where Hp is the unper-
turbed Hamiltonian of a single electron confined in the
CQWW satisfying Hp[m, l, k, ) = E~~(k, )]m, l, k, ) and
V (x, t) is the self-consistent potential which is a sum of
the external potential V'"~(x, t) and the induced poten-
tial V'" (x, t). The total electron number density of the
Q1DEG n = np + n;„s is a sum of the ground-state elec-
tron number density (equilibrium) np and the induced
electron number density n;„g. Writing the statistical op-

erator p~ as p& +p&, where p& is the statistical oper-(o) (i) (o) . ~ ~

(i) .
ator of the unperturbed system and p& is the correction
to the statistical operator to the first order in the pertur-

bation, we have n;~s(x, u) = Tr(p& h(x —x,)). Using a(i)

general state ]v) of the unperturbed system, where (v)
stands for (m, l, k, ), the induced electron number den-

sity is given by

n...(x, ~) = ) n(„,'(x, ~) = ) (v[p~(lb(x-x. )~v),

»; g(x, ru) = fd z'Pi'~(x, x'iru)v (x', ~),

where

(g)

with

(x, x ~~) —) P( l(x x'~tu)
vv'

(10)

(g), np(E'„) np(Z—„)
h((u + ih) + E'„—8„

x C „(x)@„'(x')C „(x')@„',(x) (11)

is the irreducible RPA polarization function with b -+ 0+.
Using the wave functions of the CQWW, given in Eq. (2)
in Eq. (11), we obtain

where n("&l(x, u) is the induced electron number density
of the state ~v). Standard linear response theory relates
n;„p to the self-consistent potential by the equation

P( l(x, x'~(u) = ) ) ) e'"(~ ~ le'~*(' ' lP~+l„(q„u))rl +. (r)ri'+„(r'),
z ~,n= —~ l, l'=1q =—~

(12)

with

rI-+- (r) = ~ ~, )(r)~', , (r)

and n—:b,m = m' —m. The RPA matrix polarization function P +„(q„u)of the Q1DEG confined in a CQWW is

( i 1 ) [E(k )'] [8, (k—+q )]
mL, - h(~+ib)+t~l (k, ) E'~ &(k, +q,—)

' (i4)

ReP('+l„(q„(u) =— ln
2~252q

I nojnf +F
+ln

I m+n l
F

which gives at T = 0 K

kP' + q, /2 —(m, /hq, ) (~ —0-+.- )

kP' —q, /2 + (m, /hq, ) (~ —+ -+» m )

q, /2+ (m, /hq, )((u —0 +. )

q, /2 —(m, /hq, )((u —0 +. )

ImP~ +l„(q„ur) =— yml'
2vrh [q, [

s + ——me qz me
(ur —0 +. ) 8 kP ——+ (ur —0 +. )hq «' 2 hq,

—0 k + —+ ((u —0 + ) 8 k
qs me

F 2 hq F 2

me
(~ —B +- ) ),hq,

where the Fermi wave vector of subband (ml) is kg~ =
[2m, (Ey —Z~~)/h ]~~2 if for the Fermi energy E~ ) 8
is valid and zero for E~ & E'~~. 0 = (E~~ —E~ ~ )/h

l~

is the subband separation &equency.
In the RPA and neglecting retardation efFects the in-

duced potential is related to the induced density by Pois-
son's equation, which reads for a CQWW

[V„.s, (xg)V„—s, (xg) q, ] P'" (x~, q, ~(u)

= ——~"(x~ q*l~). (»)
&o

Herein, P' s is the induced scalar potential, and V' s =
—eP' is valid for an electron in the presence of P'" .
Further, p'" = —en; g is the induced electron charge
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) ) [b, „bii, bi i, —V', , „„(q,)
ll l2 ll l

m= —oo l, l'=i

xP „(q„td)]V „(q„(u)= 0. (19)

Herein V'. . . , (q, ) is the matrix element of the
l 1 l2 L$ l4

Coulomb potential

R R
V-'. . . , (q, ) = — dr r dr' r'rI*, , (r)

l 1 l2 l$ l4 P 0 0 1 2

x D„(r, r'; q, ) (r')

xq', , (r')
l$ l4

x b, , b, ,~, (20)

where D (r, r', q ) = Ds"(r, r'; q, ) + D„' (r, r'; q, ) with

and

D.'"(r ~' q. ) = 1-(lq-lr&)It-(lq. lr&)
el

B„I„(lq,lr) if r & R
A„K„(lq,lr) if r )R. (22)

density, s is the permittivity of vacuum, s, (x~) is
the static dielectric function of the semiconductor back-
ground arising &om the high-energy electronic excita-
tions across the band gap and the optical phonons, and

(z, y). This is true because the &equencies of
the optical phonons are usually larger than those of the
Q1D plasmons. e, (x~) is a constant in each semicon-
ductor: s, (x~) = e, i for r & R, and s, (x~) = s, 2 for
r ) R. Poisson's equation is solved by standard meth-
ods. Here we use the Green's function D(x, x'). This
Green's function describes the electrostatic problem for
the nonmagnetic background semiconductor without the
Q1DEG. For inhomogeneous systems in which the ma-
terials have different but piecewise constant polarizabili-
ties, the Green's function of Poisson's equation contains
two parts, the direct Coulomb part, D ", and the im-

age part, D™.With the help of the Green's function the
self-consistent potential is given by the following integral
equation:

V"(-.; q. l-) = V"'(--;q. l-)
2

+— d x~ d zqD xz, x~, q,
o

xP~'l(x~, x~; q, lu))V (x~; q, l(u).

(18)

Performing matrix elements of this equation with the
wave functions of Eq. (2) and assuming that collective
excitations of the Q1DEG exist under the condition that
Vsc g 0 while V'"t = 0, the existence conditions for
collective excitations read

I„(&) and It„(x) are modified Bessel functions, r&-
min(r, r') and r& ——max(r, r'), and the constants A and
B„are determined by the radial boundary conditions.
The conditions m2 ——mq —n and m4 ——mq + n fol-
low from the axial symmetry of the cylindrical potential.
Further, we have defined

R
V-, -. (q. , ~) = dr r q*-, -, V„(r,q. l~)

l 1 l2 0 l 1 l2

xb, ~, (23)

where Vsc(r, q, lur) is the Fourier transform of the
screened potential Vsc(x, u). The system of Eqs. (19)
is identical for n & 0 and n & 0. In the following
we therefore restrict ourselves to the case n & 0 with-
out loss of generality. According to the symmetry of
the Green's function and the polarization function and
the reality of the radial wave functions, the dispersion
relation of the collective excitations of the Q1DEG in
the CQWW, determining the intrasubband and intersub-
band plasmons, follows from Eq. (19), under the condi-
tion that this system of algebraic equations has nontrivial
solution Vsc, (q„~). The dispersion relation is given

l 1 l2

by

det[b, bii, bi i, —V'. . . p. (q. )

xy~'l+„(q„(u)] = 0. (24)

This equation determines the eigen&equencies of the
Q1D plasmons and each branch we denote by
ur" ~(q, ); n = 6m = 0, 1, 2, . . . and j = 1, 2, 3. . . numer-
ates the modes for each n The Q. lD plasmons are con-
nected with electron transitions (ml) ~ (m'l'). If this
collective electron motion is within one subband the re-
sulting mode is called intrasubband plasmon. In the case
where this mode is connected with the collective electron
transition between two different subbands this mode is
called intersubband plasmon. Only under the condition
that the different transitions are independent is each plas-
mon mode connected with one transition (ml) ~ (m'L')
and hence the plasmon dispersion curves are denoted by

I

cu„" ' . For the Q1D plasmons confined in CQWW's this
is not true. Assuming that only the lowest subband is oc-
cupied the transitions with n = 0: {01)~ (01), (01) -+

(02), {01)~ (03), . . . are coupled but independent from
n = 1: (01) -+ (11), (01) + {12),(01) -+ (13), . . .
and n = 2, 3, 4, 5, . . . . Hence the Q1D plasmon modes
represent mixed states, i.e., are connected for each n with
the above mentioned transitions. The resulting different
branches for each n we numerate by j: w" ~(q, ). In Eq.

(24) y +„(q,u) is the matrix polarization function

given by

l lI
(25)
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where 2 signifies the integral part of 2. The matrix po-

larization function y, (q, u) contains two physically
l l~

difFerent contributions: (i) the intrasubband contribution
for m = m' and l = l' arising from electron excitations
above the Fermi surface within one occupied subband
and (ii) the intersubband contribution for m g m' and
l P t', or m g m' and l = l', or m = m' and l g l'

arising Rom electron excitations above the Fermi surface
between two difFerent subbands.

IV. COLLECTIVE EXCITATIONS:
TWO SUBBANDS ARE OCCUPIED

To solve the complicated algebraic equation which de-
termines the dispersion relation of the collective excita-
tions it is necessary to restrict the discussion to a 6-
nite number of subbands. Here, we use the two-subband
model. Hence we consider only the subbands Eoi(k, ) and
Eii(k, ). Because within the two-subband model the ra-
dial quantum numbers lq, l2, l3, l4 remain always 6xed at
"1," we omit the radial quantum number for simplicity.
The spatial symmetry of the CQWW guarantees that the
dispersion relation splits into two separate ones. One de-
scribes the modes for n = 0 and follows from Eq. (24) in
the form

[1 —Voooo(q )&oo (q ~)i[1 —Viiii(q )&ii (q ~)j

A. Intrasubband plasmons

The dispersion relation of the intrasubband plasmons
of the CQWW is Eq. (26). The full RPA dispersion
curves of the two-subband model with two populated
subbands are plotted in Fig. 1(a) for the InSb-MOS
CQWW and in Fig. 1(b) for the GaAs-AIAs CQWW
including the image potential (solid lines) and neglect-
ing the image potential (dashed lines). The shaded areas
in the u-q plane are the regions where the (0-0) and
(1-1) single-particle intrasubband excitations exist. The

gytrs1
continua have the boundaries co~&~ —— ~ q, + 2" q,

ggtn1
and u2 —— — q, + 2" q, where m = 0, 1. In these

regions Impoo (q„u) and Impii (q„u) are nonzero, re-(x) (x)

12
O
E

6

Vlloo(q. )Vooll (q. )Xoo (q. ~)Xll (q& ~) 0' (26)S s (1) (1)

The second equation follows for n = 1 from Eq. (24),
0
0

q (10'cm')
1 —Vio io (q~) Xio (q» ~) = 0e (1) (27)

Equation (26) describes the intrasubband plasmons and
Eq. (27) describes the intersubband plasmons. The in-
trasubband plasmons are connected with collective elec-
tron motion within the subbands (01) and (11). Only
in the case where the nondiagonal matrix elements of
the Couloinb potential in Eq. (26) would vanish does
the electron motion in both subbands become indepen-
dent. Under such conditions the collective electron zno-
tion within each subband is described by a plasmon
mode u„, m = 0, 1. But for the Q1DEG confined in a
CQWW the nondiagonal matrix elements of the Coulomb
potential are nonzero and hence the electron motion in
both subbands becomes coupled. The mixing of the
both modes ~„results in a rearrangement of the spec-
trum with the result that the new intrasubband plasmon
modes ur and uo'2 occur, which are connected with the
electron motion in both subbands.

Until now most experiments on QWW's are done
for the system GaAs-Gaq Al As and the metal-oxide-
semiconductor (MOS) system on InSb. The material con-
stants used in the numerical calculations are, for GaAs,

12.87 and m, = 0.06624mo (mo.. bare elecron
mass) and for AlAs, e,2 ——10.22. For InSb we use
c,q

——17.88 and m = 0.0139mo and for Si02 c,2
——3.8.

5'
S

E

LU

0
0

q (10'cm')

FIG. 1. Dispersion relation of the intrasubband plasmons
of an InSb-MOS (a) and a GaAs-A1As (b) CQWW where two
subbands are occupied. The dispersion curves calculated in-
cluding image e8ects are given by the solid lines and without
image efFects by the dashed lines. The shaded areas corre-
spond to the single-particle intrasubband continua.
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spectively, and hence the collective excitations become
Landau damped. The dispersion curves of the intrasub-
band branches u„' and u„' start at q, = 0 and u = 0
and approach for large wave vectors the boundaries ct)y

and u~, respectively, of the single-particle intrasubband
continua. Both intrasubband plasmon branches, cu„' and

~„', are connected with electron motion within both the
lowest and 6rst excited subband. The gap region between
the boundaries ~2 and u& is free of Landau damping.
Inside of this region the intrasubband plasmon branch

exists. But we note that the branch u„' only exists
if the second subband E'iq is occupied. The image forces
exert a stronger influence on the intrasubband plasmons
in InSb-MOS CQWW's than in GaAs-AlAs CQWW's
for smaller wave vectors, but this becomes opposite for
larger wave vectors (see also Fig. 2). The same behav-

ior is also true for the upper plasmon branch and the
lower plasmon branch, i.e. , the upper plasmon branch is

more strongly influenced by the image forces than the
lower plasmon branch for smaller wave vectors and the
opposite is true for larger wave vectors. The contribution
of the image forces on the upper and lower branches is

I

vn1

ir2g' [(m (u/hq )' —(k™)]
(kP')2+ 3(m, ur/hq, )' q,

'
x 1+.

12 [(kgi) —(m, w/hq, ) ]

0 — k
8 hlq, l

(2S)

Using Eq. (28) for the matrix polarization functions and
the Coulomb matrix elements in the small wave vector
limit (Appendix) in Eq. (26) we obtain

26% and 23% at q, = 1 x 10 cm and 2% and 4% at
q, = 3 x 10 cm for the InSb-MOS CQWW. The cor-
responding values for GaAs-A1As system are 14%, 15%
and 7%, 10%, respectively.

To get a deeper insight into the physical properties
of both branches it is necessary to derive analytical ex-
pressions. In the small wave vector limit, i.e., lq, l/2 «
kPi —m ur/hlq

l
& kP + m u/hlq l, it follows for the

matrix polarization function (m = 0, 1) that

0,1 (d

, [(~F')'+ (~V)'] + ' [-»(lq. IR)1

4

+ 4„.[(~F)' —(~V)']'+ 2R', „o + 2„'„[(~F)'—(UV)'][-»(lq. lR)]+ 4'[ln(lq. lR)]'
- «/2 x/2

(29)

For lq, lR -+ 0, Eq. (29) reads

and

= ~'lq IR[-»(lq. lR)]" (30)
2.00

01 ll
02 oi ii. 2vF + v

F F 2viz+voxF F

1.75

with M, 2 = [riiDEGe /(2irs s,2m, R )] and vP
hkgi/m, the Fermi velocity in subband (ml). The
branch ur„has in lowest order of lq, lR a linear disper-
sion and depends only on the carrier density and not on
the dielectric screening.

The quotients of the eigen&equencies of the intrasub-
band plasmon branches including the image potential
(u ~) and neglecting the image potential (uo ~ ) are plot-
ted in Fig. 2. It is seen that the influence of the image
forces on the plasmon branch cu decreases monotoni-

p
cally from w ' /~„= 4.7 for lq~[R = 0 and vanishes

(u„' /u ' = 1) for lq lR ~ oo. The physical reason for
this behavior is that in the limit of large lq lR nearly
all field lines of the Coulomb potential are inside of the
CQWW. On the other hand, in the limit lq, lR m 0
nearly all field lines are outside of the CQWW, but in-

side the surrounding medium and so the image effect

1.50

1.25

1.00
0.0 0.4

q, R

0.8 1.2

FIG. 2. The ratio of the dispersion relations of the upper
~„' and lower ~„' intrasubband plasmon branches includ-

ing the image potential with the dispersion relation ~„'. and
u„'. , respectively, calculated neglecting the image potential.
The solid lines correspond to the InSb-MOS CQWW and the
dashed lines to the GaAs-AIAs CQWW.



49 OPTICAL AND ACOUSTIC PLASMONS IN CYLINDRICAL. . . 14 537

21

19

)
E
~17
CD

4)
C

UJ

13
0 2 4 6 8 10

q (104cm')

reaches its maximum value. For the intrasubband plas-
mon branch u„' the image forces have vanishing inBu-
ence for ]q, ~R ~ 0 and ~q, ~R ~ oo. The vanishing in-
fluence of the image effect for ~q, ~R -+ 0 is the result
of the fact that the branch u„' behaves like an acous-
tic plasmon (see Sec. V). The induced charge density
of this excitation vanishes in this limit and thus the im-

age effect vanishes too. Further, it is seen that the im-

age efl'ects more strongly influence the Q1D intrasubband
modes of the InSb-MOS CQWW for smaller wave vectors

(q, R ( 0.8) but for larger wave vectors the QlD plasmon
modes of the GaAs-A1As CQWW are more strongly in-
Quenced. In the case of large wave vectors the lower &e-

quency plasmon branch cu„' is more strongly inHuenced

by the image forces than the upper ones QJp' .

B. Intersubband plasmons

The dispersion relation of the Q1D intersubband plas-
mons of the two-subband model, assuming that two sub-
bands are occupied, is given by Eq. (27). In Fig. 3
the full RPA dispersion curves of the two-subband model
with two populated subbands are plotted including the
image potential (solid lines) and neglecting the image
contribution (dashed lines) for the InSb-MOS CQWW
[Fig. 3(a)] and for the GaAs-A1As CQWW [Fig. 3(b)].
The shaded area in the cu-q, plane is the single-particle
intersubband continuum [Imp(~o)(q„ur) g 0] which has

yp hA:~the boundaries uz —— q, + 2" q + Oqp,
hk

q +. , q +-- - = -", q —.-.q.

+Quip (AJ4 — q, —2" q, + 0~p . If two subbands
are occupied, a gap region, the area between the curves

(AJ3 and u4, arises, for which Imp yp: 0 Within this
region the additional intersubband plasmon mode 4)p'

exists. This additional branch of an intersubband plas-
mon was predicted by Wendler et al. and Mendoza and
Schaich. It is seen &om Fig. 3 that the fundamental
mode ~„has a 6nite depolarization shift and a posi-
tive dispersion, the additional mode ~„' has a vanishing
depolarization shift at q, = 0 and a negative dispersion.

The quotients of the eigen&equencies of the intersub-
band plasmon branches including image effects (or ~'~) and
neglecting image effects (or~'~ ) are plotted in Fig. 4. It
is clearly seen that the inBuence of the image forces for
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FIG. 3. Dispersion relation of the intersubband plasmons
of an InSb-MOS (a) and a GaAs-A1As (b) CQWW where two
subbands are occupied. The dispersion curves calculated in-
cluding image effects are given by the solid lines and without
image effects by the dashed lines. The shaded areas corre-
spond to the single-particle intrasubband continua.

FIG. 4. The ratio of the dispersion relations of the upper
cu„' and lower ~„' intersubband plasmon branches including
the image potential with the dispersion relations cu„'. and
cu„'. , respectively, calculated neglecting the image potential.
The solid lines correspond to the InSb-MOS CQWW and the
dashed lines to the GaAs-A1As CQWW.
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decreases monotonically with increasing wave vec-
tor q, and vanishes in the limit ~q, ~R ~ oo. For the
intersubband plasmon branch u„' the image forces have
vanishing influence for ~q, ~R m 0 and ~q, ~R m oo. If
we compare Fig. 2 with Fig. 4 we see that the plasmon
branches u ' and u ' on the one side and u ' and u '

p p
on the other side show a similar dependence on the image
forces over the wave vector because of the same physical

reasons as described above. In general, the inHuence of
the image forces on the Q1D intrasubband plasmons is
stronger than on the intersubband plasmon.

To get a deeper insight into the physical proper-
ties of both modes we derive analytical expressions in
the limit of small wave vectors. In this limit, i.e.,
vF ~q, ~, hq, /2m, (( u —Olp, the needed matrix polar-
ization function reads

01 11

(,", )
"

2qr2g2q, m, (ur 6 Olp)

qrq AlDEG 5q t kF + ~q, ~/2 )

2m. ()d + n, o) m, ), )d+Alo ) (32)

(1 + o!l l) Alp,1,1 1/2 (33)

with

(nlDEG —nlDEG)e l2 1 e, l —e,21
O'1, 1 +

qleqqesl Mlp (7 8 esl + es2 J
(34)

As seen from Eq. (33), the image contribution enters
the zero-order term of the intersubband plasmon branch
(A)p This behavior is different &om the case of inter-
subband plasmons of a quasi-two-dimensional electron
gas, where the image contribution enters the Erst-order
term of an expansion in powers of the wave vector (see,
for instance, Ref. 38). It is seen from Eq. (34) that
the image contribution to the depolarization shift is in-

dependent &om the diameter of the wire. The maxi-
mum contribution of the image forces to the depolariza-
tion shift is 17%. In the leading order of ~q, ~R and if
vF ~q ~

&) hq, /2m, ~u —Olo~ we obtain

)z) ' 0 lP —fq1,2 2 (35)

with

~2g2 P1 1 h, V + V11 V01V11

m, Vl'plo(0) vF —vF 2m, vF —vF 20ip

(36) .

Because of v&1 ) v+ it follows that for all electron den-
sities ( ) 0 is valid. Hence the explicit analytical expres-
sion of w„'2, Eq. (35), shows the negative dispersion.

where nlDEG E E) lpEG with niDEG
2~/EF —8 ) the 1D electron number density of

the subband (mt). Using this long-wavelength expres-

sion of P(„) (q„ur) and the Coulomb matrix element
Ol

Vlplp(q, ) (Appendix) in the dispersion relation, Eq. (27),
we obtain

n,„,)x, q) = ) ) j s~n!„",'(x, q!q„~),
n=p q, =p

(38)

with

( )
( t~ )

i(qqqq+q z qst)—1ind» (2~)2I

x ) ) l) +. (r)P( ~)„(q„)d)
m= —~ t, , l, '=1

x V„„(q„(u)+ c.c.

) ) n(„"d ' )(x, t~q„u)), (39)
m= —~ l=1

where c.c. means complex conjugated. In Eq. (39)
n,.„"d(x,t~q„ur) is the electron number density at (x, t)
induced if the Q1DEG oscillates with ~. Hence

n, „"d
' (x, t~q„ur„"'~) is the induced electron number den-

sity at (x, t) induced in subband (mt), if the Q1DEG
oscillates in the plasmon mode with the dispersion rela-
tion w ~ (q ).

A. Intrasubband plasmons

band is occupied whereas the plasmon branches u ' andp
exist also if only one subband is occupied. In this

section we want to investigate the physical nature of the
different branches in detail.

The induced electron number density n;„d (x, t) is given
by

OO

n;nd(x, t) = — due ' 'n;nd(x, )d), (37)2x-
where n;„d(x, u) is given by Eq. (9). Using the wave
functions of the CQWW, Eq. (2), in Eqs. (9) and (37)
we obtain

V. INDUCED DENSITY
OF THE COLLECTIVE EXCITATIONS

We want to consider the intr asubband plasmon
branches (n = 0; m = 0, +1; 1, /' = 1). In this case
we have

In the previous sections, we have calculated the eigen-
frequencies of the Q1D plasmons of a CQWW which
have the branches w ', ~ ', cu„', and u ' for a two-
subband model with two occupied subbands. The plas-
mon branches u ' and cu ' only occur if the second sub-

p p

n, '' (x, t~q„w) = . e*1
ind q '

(2~)2L

x [r)pp(r)Ppp (q )q))
(1)

xVop (q„~)]+c.c. (40)
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1n( s' l(x, t~q„(u) = e'(~*'
z

x[n ( )P (q. )V (q. )]
(1) SC

+c.c., (41)

where n, &'. (x, t~q„u) = n, „&
' (x, t~q„ur) is valid

and we drop l = l' = l for simplicity. Because
Vo'ooo(q ) = Vi'. 111(q ) = Vl'100(q ) = Vo'oil (q )—e2/(e s,2) ln(~q, ~R) in the lowest order of ~q, ~R we ob-
tain from Eq. (19)

P„ (q, ) )Vi, (qg, )
(1) SC

1 —Voooo(q, )P00 (q. ~,' ) ~Os 2kFe (1) o,1 11

2V0'000(q, ) mniDEGe2 ln(lq IR)

(44)

p(1) o,2 m, 2k~ + k11 01

Poo (q ~ p ) 2~2 (kll)2 (kol)2
+ (45)

and

Hence the induced electron number densities in sub-
band m = 0 and subband m = kl oscillate in phase
if the branch u„' is excited and following that the up-

per branch ~ ' behaves like an optical plasmon. For the
p

lower branch ~„' it follows that

(1)1 —Vo'000(qg)Poo (q, ~ ~) Vsc( ) (42)
oooo(q~)

For the discussion of the induced electron number density
of the two intrasubband plasmon branches u„' and cu„'

we use the lowest-order expressions of Ppp (q td) Eq.(1)

(28), and the explicit dispersion relations, Eqs. (30) and
(31). For the upper branch ufo 1 it follows that

(1) 0 1 2806e2k 01

irniDEGe2 ln(~q~ ~R)

and

1 Vpppp(q, )P00 (q„~„' ) m, 2kF + kF
2V0'«, (q, ) 2ir2h' (kF')' —(kF')2

(46)

This indicates that the densities, induced in subband
m = 0 and subband m = 1, oscillate in antiphase if
the intrasubband plasmon branch cu„' is excited. Thus

the lower intrasubband plasmon branch ~„' behaves like
an acoustic plasmon.

Integrating n,.„&(x,t~q„u) = n, „&
' (x, t~q. „ur) +(o) (o;o,1)

2n(
&

' (x, t~q„ur) over the cross section of the CQWW
we obtain the number of induced electrons per unit
length,

f
2~ R

i(q s—cut) (1)
d&p dr r n( &l(x, t]q„u) = e'(~*' Poo (q„ur) + Voooo(q )Poo (q ~) Vsc(

e (1)

Voo q» ~ + c.c. (47)

Using Eqs. (43) and (44) for the optical plasmon and
(45) and (46) for the acoustic plasinon, Eq. (47) gives
a nonzero value for the optical plasmon branch but a
vanishing value for the acoustic plasmon branch in the
limit [q, ~R -+ 0. This difFerent behavior of the induced
electron density of both branches in the limit ~q, ~R ~ 0
results in the different inBuence of the image forces on
both branches (see discussion in Sec. IV A) and this is
the reason that u ' ) ~ '2.

p p

B. Intersubband plasmons

In Sec. IV B we have obtained two intersubband plas-
mon branches (n = 1; m = 0, +1; i, I,

' = 1). In this case
we have

n. ' ' (x, t]q„u) = e*(~+ *'I
(2')2L,

n. ' ' (x, t~q„ll/) = e'(++ *'

X [riol (r)Ppi (q„~)V,', (q„~)]
(49)+c.c.,

and

where Vio (q»&u) = Vpi (q»ur) and rjlp(r) = @pl(r) are
valid. For the discussion of the induced electron num-
ber density of the two intersubband plasmon branches

and ~ ' we use the lowest-order expressions ofp p

Plo (q„u) and Pol (q„u) given in Eq. (32), and the
explicit dispersion relations, Eqs. (33) and (35). For the
upper branch u„' it follows that

kol k11
( )

(q ~1) 1
)

F F ) 0
m 2 h((u~' —010)

x[g, (r)P, (q„~)V, (q„cu)]+ c c(1) SC

(48)

(1) 1 1 k~ —k~11 01
Poi (q ~p' ) = & 0.

Vr2h((up' + 010)
(51)

and
Hence the induced electron nuInber densities in subband
m = 0 and subband m = 1 have different signs and
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therefore oscillate in antiphase if the plasmon branch u '
p

is excited. Note that Pzo (q, ur ' ) ) ~Poz (qz, &u '
) ~

is
valid. Thus the upper intersubband plasmon branch cL)p'

behaves like an acoustic plasmon.
If we look for the lower intersubband plasmon branch

we can see that for q, -+ 0 and tu -+ Oqo Eq. (14)
diverges for b -+ +0 and the analytical expressions for

P~o (q, = 0, (d = Oyo), Eqs. (15) and (16), become inde-
terminate. From Eq. (48) it follows that we must have

V~o (q, = O, ur = Qqo) = 0 to avoid unphysical divergen-
cies of the induced electron number density. Poisson's
equation, Eq. (17), gives then the result that for q, = 0
and a = 01p the induced electron number density van-

ishes: n,„s(x,t~q, = O, ur„= Oqo) = 0. Hence the depo-
larization shift must vanish too and in this limiting case
there is no excitation. This is a result of the resonant
screening, i.e., at the intersubband separation &equency
01p the electrons completely screen the external fields.

For the lower branch u ' and for the small but nonzero

q, it follows that

Pio (qz ~p' ) =(1)

and

me

2vr2h

1 1
kP1 k11F F

&0

2m.( ( 1

'E&Y ~oi)

(52)

kP1 —k11
(53)

Hence in this case the induced electron number densi-
ties in subband m = 0 and subband m = 1 have different
signs too and subsequently oscillate in antiphase if the in-
tersubband plasmon branch sr~' g Oqo is excited. Thus

the lower intersubband plasmon branch u„' behaves like
an acoustic plasmon. But in comparison with the upper
plasmon branch ~„' the induced electron number density

of the lower plasmon branch u„' vanishes for q, ~ 0.

tic plasmon. In the limit of the vanishing wave vectors
the induced electron number density of the QlDEG is
nonzero when oscillating in the upper intersubband plas-
mon branch but tends to zero when oscillating in the
lower intersubband plasmon mode.

The classification of the modes in optical and acous-
tic modes is well known in the physics of multicompo-
nent plasmas. Recently, Bonitz et al. investigated an
electron-hole plasma, confined in a QWW and found op-
tical and acoustic modes. Further, Shikin et al. calcu-
lated within the Thomas-Fermi model the Q1D plasmons
of two coupled QWW's. The resulting modes could be
classified into optical and acoustic plasmons. But we note
that in Ref. 21 the classification is according to the elec-
tron number density induced in both wires whereas in our
calculations only one wire with two occupied subbands is
considered. Hence we hope that the present results give
a deeper insight into the physical properties of the Q1D
plasmons of one isolated quantum-well wire. Especially,
the nature of the additional modes which occur if more
than one subband is occupied should become more clear.

Further, we have shown the importance of the inclusion
of the image effects on the Coulomb interaction potential
in a relatively wide range of the wave vector (~q, ~R —1).
The image forces increase the eigen&equencies of the
Q1D plasmons in GaAs-AlAs and InSb-MOS CQWW's.
The inBuence of the image forces is stronger for the intra-
subband plasmons than for the intersubband plasmons.
It is shown that the two branches of intrasubband and
intersubband plasmons have a different dependence on
the image potential when varying the wave vector. The
two plasmon branches ~„' and ~„,present also if one
subband is occupied, show a monotonically decreasing
image in8uence with increasing wave vector. The other
two plasmon branches u„' and u„', only present if the
second subband is occupied, show vanishing image inHu-
ence for zero and infinite wave vectors.

VI. CONCLUSION

In this paper we have studied the collective excitations
of CQWW's within the full RPA for a two-subband model
if two subbands are occupied. It is shown that there are
two different modes, the intrasubband and intersubband
plasmons, each split into two branches. The occurrence
of the second branch is the result of the occupation of
the second subband. The upper intrasubband plasmon
branch behaves like an optical plasmon, i.e. , the electron
number densities induced in both subbands oscillate in
phase. But the lower intrasubband plasmon branch is
characterized by an electron number density oscillating
in antiphase in both subbands and hence is an acoustic
plasmon. If the Q1DEG of the CQWW oscillates in an
intersubband plasmon branch, the induced electron num-
ber density of both subbands oscillates in antiphase and
it follows that both branches have the character of acous-

ACKNOWLEDGMENT

We gratefully acknowledge financial support by the
Deutsche Forschungsgemeinschaft (DFG), Project No.
We 1532/3-1.

APPENDIX: MATRIX ELEMENTS
OF THE COULOMB POTENTIAL

In this appendix we calculate the small wave vector
{~q,~R && 1) expressions of the direct Coulomb potential
and the image potential V'

~ ~
defined in Eqs.

(18)—(20) using the wave function of Eqs. (6) and (7):
+8 ( ) Vdlr q ~yim

TllllllZTT53TT14 (qZ/ TlllTTlZTT13TTl4 (qZ I TT11TTlZTT13TT14 {qZ)

The calculation is straightforward with the following re-
sults:

1TT'T'T[4 ) = — ln
I I

—0.6088+(4 R) —1z ( ~

—0.1450 ),
e' (p/q, /Rl), 1 (p/q, )R')

) (A1)
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e2 (I
+oooo(q ) =

~o (~el
&Zlq. l&& 2 e i 2 &plq. l&&)

(A2)

(A3)

e'f1
+iioo(qs) = —

I

eo ), ~el

~ Y[q ~+ ) 2 e l 2 ) 7~q. ~&& 13 ('7~q, ~R& 1
(A4)

eoe, l ( 2 ) 5 0 2
(A5)

e2 (I
+i'iii(qs) = —

l

eo (eel
&~lq. l&&~

( )
~ &y[q. J&& 1 (pJq. J&&)

(A6)

vxo~)0(q ) —+ (qs) —l,n
~ ~

—0 0453 )
1 fp~q, ~B)

7 16 i, 2 ) (A7)

&,l —e,2 (I (q, R) 1 e,2 —e, i (p~q ~p) ]
eoesl esl+ee2 (8 4 16 e',2+e, i g 2 J 5

where p = 1.781072418 is the Euler constant.
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