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A uniform quantitative description of the properties of the one-dimensional Anderson model is
obtained by mapping that problem onto an infinitely quasidegenerate master equation. This quaside-
generacy is identified as the source of the small-denominator problem encountered before in investiga-
tions of this problem. An appropriate quasidegenerate perturbation theory is developed to obtain a
uniform asymptotic expansion, in powers of the strength of the noise, for the probability distribution
function of the ratio of the value of the wave function at neighboring sites. Well known results, such
as those obtained by Thouless, Kappus and Wegner, and Derrida and co-workers are reproduced
and systematic corrections to these results as well as some more results are found. In particular, we

find internal layers in the above-mentioned distribution function for values of the energy given by
E = 2 costa with n rational. We also find crossovers in the behavior of the distribution function
(and consequently in quantities derived from it) near the band-edge and band-center regions. The
properties of the model in the band-edge region were studied by us in detail in a previous publication
[Phys. Rev. B 47, 1918 (1992)].

I. INTRODUCTION

The realization that even the most minute amount of
randomness in a physical system can change its prop-
erties in a drastic fashion, has had a most significant
impact on the understanding of phenomena in disordered
materials. It is well understood that unlike ordered mate-
rials, disordered environments give rise to localized states
and have many unusual transport properties.

Perhaps the simplest model describing dynamics in
a disordered system is that due to Anderson. This
model, which is based on the tight-binding descrip-
tion of electronic states in solids, has been thoroughly
investigated. One of the important quantities which
characterize the Anderson model is the localization
length (see, e.g. , Refs. 1, 2) or the inverse Lyapunov
exponent. ' Pioneering work, due to Thouless, based
on a regular perturbation theory, has produced a formula
for the leading-order approximation of the Lyapunov ex-
ponent for small disorder in one dimension. Higher-order
terms in the perturbation theory employed by Thouless
are divergent on a dense set of energies in the band. Sub-
sequent work 2 has shown that the Thouless formula
is correct as a leading-order approximation in the mag-
nitude of the disorder, except in the vicinities of the
band center and the band edge. In the former regime,
it was found by Kappus and Wegner that the correct
Lyapunov exponent divers by about 10% from Thouless'
prediction. Derrida and Gardner proposed a nonlo-
cal linear integrodifI'erential equation for the probability
density function of the ratio of the values of the wave
function at neighboring sites. Using an expansion in

terms of a small parameter e, which measures the disor-
der, they were able to find the Lyapunov exponent in the
troublesome band-edge and band-center regions. When
attempting to compute the Lyapunov exponent outside
these two regions, they encountered difFiculties related
to the problem of reducing the nonlocal equation to a
quasilocal one. A tedious method was then used to
obtain the value of the Lyapunov exponent in neighbor-
hoods of certain interior points in the band. The Derrida
and Gardner method was generalized in Ref. 19 for the
entire interior of the band and the asymptotic conver-

gence of the series obtained by them was established in
Ref. 20. The latter work did not produce a direct expan-
sion of the probability distribution function in powers of
the strength of the noise for a fixed value of the energy
E; it consists of expansions of the energy around rational
values of 0/vr in parallel with the expansion of the prob-
ability distribution function in powers of the strength of
the disorder. In our view, this method, in addition to be-
ing very tedious, is not of uniform nature in the energy
band, it fails to deal with crossover to the band edge, and
it does not reveal the source of the small-denominator
problem. The present paper shows how a uniform expan-
sion for the statistical properties of the one-dimensional

(1D) Andersom model can be obtained. The result is an
asymptotic series in powers of the disorder parameter ~

whose coefFicients are bounded, e-dependent, functions.
This series is uniformly valid in the entire band, including
the band-edge region. The basic observation leading to
the expansion developed here is that the integral equation
satisfied by the invariant measure possesses an infinitely
degenerate spectrum for rational values of 0/7r and an
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infinite quasidegenerate spectrum for irrational values in
the limit of vanishing disorder. This degeneracy is lifted

by the disorder. It is also responsible for internal layers in
the invariant measure in the neighborhood of rational val-
ues of 8/z' and for the crossovers to the band center and
band edge. The results of our formalism are used to com-
pute the density of states and the Lyapunov exponent for
the Anderson model. The Thouless formula is confirmed
as a leading approximation for the Lyapunov exponent
everywhere except in the vicinities of the band center and
the band edge. This work is, in a way, a generalization of
our previous (detailed) study22 of the properties of the
1D Anderson problem for near-band-edge energies. This
article is organized as follows. In Sec. II the problem is
formulated, the basic equation is presented, and a linear
operator is de6ned, whose eigenfunction corresponding to
the eigenvalue 1 is the probability distribution function
of the ratio of the values of the wave function at consec-
utive sites. In Sec. III the problem is recast as a more
convenient eigenvalue problem for a linear operator. In
Sec. IV a decomposition of the operator is given and a
procedure for 6nding the eigenfunction is described. In
Sec. V the formal results of Sec. IV are applied to the
general in-band case (8 g 0, z'/2) and a general formula
for the invariant measure is presented there. Section VI
provides a perturbative solution for the band-center re-
gion (8 vr/2). The transition to the band edge (8 0)
is discussed in Sec. VII. Finally, Sec. VIII provides a sum-
mary and discussion.

punov exponent. 2s'24 Following Eqs. (2.1) and (2.3), R
obeys the recursion relation

1R +i = 2cos8+e( R„ (2.5)

p(z) dx = lim Prob(z & R„&z + dz).
n~oo

It follows from (2.4) that

p(E) = f y(z) lezdz.

Therefore

Re&(E) = f y(z)lese~ de,

(2.6)

(2 7)

(2.8)

and, since arg(ln x) = iz for x & 0, it is evident that

0

Imp(E) = 7r p(z) dz. (2.9)

The density of states p(E) is related to the Lyapunov
exponent by

In the following, only real values of R„are considered.
This is consistent with (2.5). Since (2.1) is real, the con-
sideration of real R„'s does not limit generality. Thus
only this case is considered henceforward. The sequence

(R„) is a Markov process which becomes stationary as
n -+ oo. Its stationary probability distribution function
is de6ned by

II. FORMULATION OF THE PROBLEM
AND BASIC DEFINITIONS p(E) = — p(z) dz = ——d 1 dlmp(E)

—OO 7r
(2.10)

The discretized Schrodinger equation in one dimension
with a random potential e(„at site n is given byis

0 +i+0 = (E+e( )0 (2.1)

E = 2cos8. (2 2)

When e = 0 Eq. (2.1) with E given by Eq. (2.2) has the
bounded (plane wave) solutions e+*" . When e g 0, the
solutions are localized. We define the variable R by

where —2 & E & 2 is the average "energy" (the physical
average energy is 2 E in dimensionless —units) and ((„)is
a sequence of independent identically distributed random
variables with a probability distribution function p(() =
Prob(( = (). The noise ( is assumed to have zero mean
and unit variance, that is, ((„) = 0 and ((2) = 1. The
parameter e, which measures the strength of the noise, is
assumed to be small. It is convenient to de6ne an angle
8 by

Since (R ) is a Markov process its probability distribu-
tion function satisfies, following (2.5), the master equa-
tion

J +i(*)—= (~(R +i —z))

b! 2cos9+eg„—
l R„) (2.11)

where the definition of the linear operator L is evident.
The stationary probability distribution function p(x) =
lim„~ p (x) satisfies the equation

where ( . .) is the average over the ensemble of realiza-
tion Q'~) for —oo & j & n In terms of. the probability
distribution function p(() of the noise, Eq. (2.11) can be
rewritten as

p-+i(*) = p(() d(
!l2coso —z+ e() (2coso —z+ e()2

= Lp„(x), (2.12)

(2.3)
p(z) = Lp(z) (2.13)

The complex Lyapunov exponent is defined as

1p(E)—:lim —) ln R„.&~~ N (2.4)

Mathematically, only Re p(E) is defined to be the Lya-

that is, p(x) is an eigenfunction of the operator L cor-
responding to the eigenvalue 1. Equation (2.13), which
is identical to that obtained by Derrida and Gardner,
contains two parameters, ~ and 0. It is our aim to con-
struct an asymptotic solution of (2.13) for small values
of e and all values of 8.
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III. THE ANGLE REPRESENTATION

The analysis of (2.13) can be significantly simplified

by introducing the angular variable P, defined by (see
Ref. 13)

sin(P+ 8)
SlIl

0&p&7t, (3.1)

where 8 is the angle defined in (2.2). For each R„one
defines similarly

or

R„= sin(P„+ 8)
sin

(3.2)

B„=cos 8 + sin 8 cot P„. (3.3)

The recursion relation (2.5) in the angle representation
assumes the form

p(&) = J (*)
d

(3.6)

where x is related to P by (3.1). In Appendix A it is
shown that (2.13) is transformed into

p(arccot [cot(P —)7() —8]}
p

s 1 —gf sin 2P + q2$2 sin P
—= Lp(&). (3.7)

The operator L acts in the space of 7r-periodic continu-
ous functions which are absolutely integrable. It is con-
venient to use the basis (e2'4'"; n = 0, +1,k2} in this
space. The Fourier expansion of p(P) is denoted by

The parameter g can be considered small as long as
0 )& ~. The stationary probability distribution function
of (P„}which, without confusion, is denoted by p(P), is
related to p(x) by

p„+i ——arccot [cot(p„+ 8) + )7(„],

where

(3.4)

(3.5)

{3.8)

The action of the operator L, defined in (3.7), on the
basis elements (e2'4'"} (see Appendix B) is given by

2i~ 2ign —2ien (1+)7(e '&sing) "
(1+g(e '4' sing)"+i(1+ )7(e'& sing)"+i

(3.9)

Equations (2.8) and (2.9) for the Lyapunov exponent, are
given in terms of the variable P as

and

Re p(E) = [ln
~
sin(P+ 8)

~

—ln
~ sing~] dP (3.10)

0

Im p(E) = m j p(P) dP. (3.11)

The density of states, i p(E) can be expressed in terms
of p(P) as

P (&) = . p(4)»n'A( —4 —8)dd.
sin 0 0

(3.12)

Note that with our definition p(P) is a m-periodic func-

tion, whereas in Ref. 13 it is a 2'-periodic function, ac-
counting for a difference by a factor of 2 in (3.12) between
the corresponding formulas.

LO 2i4) n —2i8n 2ign (4.1)

so that L can be represented by the diagonal matrix

(4 2)

The kth component of the eigenvector v0 corresponding
to the eigenvalue e '~" is given by v& &

——b„y. When
8 is a rational multiple of m, that is, 8 = pm/q, where

p and q are integers, the eigenvalue 1 of L is infinitely
degenerate, since e ' " = 1 when n is an integral mul-

tiple of q. When 8 is an irrational multiple of vr, there
are infinitely many eigenvalues of L of the form e
in every neighborhood of 1. Thus in this case 1 is an
infinitely quasidegenerate eigenvalue. The perturbation
theory developed below to treat this problem is based on
the following projection operator technique.

The eigenvalues are partitioned into two sets, accord-
ing to their distances &om 1. Choosing an arbitrary num-
ber b such that

IV. THE METHOD g2 ((h (1, (4.3)

A. General formulation

The operator L is represented in the basis (e '~"} by
an infinite-dimensional matrix. Below, we denote the
operator and its representation interchangeably by L. Its
first approximation, corresponding to the noiseless case
g = 0, is obtained from (3.9) as

the set sg of indices is defined, for a given value of 8, by

sg = (n: ~e
* "—

l~ & 8}. (4.4)

The subspace 8 spanned by the eigenvectors v0 with n E
sh corresponds to eigenvalues of L in a b neighborhood
of 1. The projection operator K onto 8 has the matri~
representation
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h„ if n E sh,
0 otherwise. (4.5)

L = K+M. (4 6)

Next, the matrix M is de6ned by M = L —K, so that

quently used, the difference being only in the renaming
of indices in the appropriate spaces. The same holds for
other quantities, such as w and w.

Equation (4.19) is a linear hoxnogeneous system for w
in the subspace 8. Upon separating the zeroth compo-
nent froxn the others, Eq. (4.19) assuxnes the form

The problem of finding p(P) is equivalent to that of find-

ing an eigenvector v of L with eigenvalue 1, that is, Tppwp+) Tp&Bl& = 0 (4.20)

Lv=v.
The projection of v on the subspace 8 is given by

w=Kv

(4 7)
and

(4.8)
) Tl, ,j~q — Ts,om—o for k P 0.
iWo

(4.21)

z—:v —Kv = (I —K)v,

where I is the identity matrix. Obviously

(4.9)

and its projection on the complementary subspace is
given by

The vector es, whose components are eo ~
——bo ~, is in

the subspace 8. We denote the orthogonal complement
of ep in 8 by 8'. The reduction of the matrix T to 8',
by removing its zeroth row and column, is denoted by R,
that is,

Kz =0 (4.10) Rs,~ = TI, ~ for k g 0 and j g 0. (4.22)

and

v = z+w™. (4.11)
Next, the vector w is decomposed into its projection on
ep and its complement u in 8',

Using (4.6), (4.7), and (4.10) one finds that w = u+ mpep. (4.23)

Lv = (K + M)(z + w) = MR + w + Mw, (4.12)

and since Lv = v = z + w, it follows from (4.12) that

Finally, the component of the right-hand side of (4.21) in
8' is denoted by g, that is,

R = (I —M) Mw. (4.13)
gk —= —TA:,o~o. (4.24)

Applying K to both sides of (4.13) and using (4.10) we
obtain

In this notation (4.21) can be written as

Ru = g, (4.25)

K(I —M) Mw = 0. (4.14) or

Moreover, since Kw = w, (4.14) can be written as u=R 'g, (4.26)

K(I —M) MKw = 0. (4.15) assuming R is nonsingular in 8' (this is shown below).
Equation (4.26) can be written as

Clearly, the subspace 8 is an invariant subspace of the
matrix T, given by ux, = —) (R )x, xT, pmp for k g 0.

iWo

(4.27)

T—:K(I —M) MK. (4.16)

Let (nx) be the set of indices in sb, ordered in increasing
order, that is, ng ) n~ if k & j. A reduced matrix T is
de6ned by

Tj,Ic = Tn-, ng, ~ (4.17)

Since Kw = w we also de6ne a reduced vector w as

—QJ~. ) (4.18)

with mo ——ms. Equation (4.15) is thus equivalent to the
reduced equation

(4.19)

Clearly, (4.19) is equivalent to the original problem (4.7),
since once w is known z is obtained from (4.13) which
in turn yields v by (4.11). Below, T and T are fre

For the purpose of calculation of v, we may assume that
mp ——1 or any other nonzero normalization constant. The
true value of mp is found &om the requirement that the
integral of p(z) is 1 [see (2.6)].

Equations (4.11)—(4.27) constitute a formal solution of
the eigenvalue problem (4.7). Equation (4.27) expresses
ug through mp and matrices which are derivable from L.
The vector w is obtained from (4.23), then z is obtained
from (4.13). Thus the eigenvector v, given by v = z + w,
is directly expressible through known matrices. Next we
show how this formalism can be employed in a perturba-
tive calculation.

B. Perturbation analysis for small e

The matrix T plays a fundamental role in our analy-
sis and its properties are studied below. First we con-
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sider the matrix M [see (4.6)]. Let Mo represent M
for g = 0, set g bM = M —M, and g bL = L —L .
Since L = K + M and K is independent of rI [see (4.5)],
we have g2bL = rl bM. Note that terms of order q do
not appear in the expansion of L due to the assumption

((„)= 0. It follows that

(I —M) ' = (I —M —g bL)

I —g (I —M) bL (I —M)
(4.28)

cient of g in the expansion of T is

T =K(I —M) 'L(I —M) 'L(I —M) 'K

+K(I —M ) 'L'(I —M') 'K (4.35)

and rl T = O(g b ). In general, at order g ", n & 2,
we have g2n T2n O(r12nb

—n+1) and ~2n+1T2n+1

O(g "+ b "+ ). A similar statement is true for the ma-
trix T and the matrices T', which contain only indices
corresponding to the subspace 8. Since by assumption
b )) g, we can separate T into

Since both L and K are diagonal so is M = L —K.
From the definitions (4.6) of M and (4.5) of K, and the
value (4.2) of 1,0, we have

T=A+B,
where

(4.36)

e-"& —1 if j ps',
2» e 2 otherwise

(4.29)
A = T'+ q2T2 (4.37)

and B=qT+gT+ (4.38)
—e

—2i HjI —Mj j 1 — —2i8j
if j Esp,
otherwise. (4.3o)

Expanding (4.28) formally in powers of g2bL, where bL
depends on g, we see that at order g2", the expansion
contains a product of n + 1 terms (I —M ) i. From
the definitions (4.4) of sg and (4.29) of Mo we have

l(I —M )~ ~ l
& b', so that terms of order q2" are bounded

by g "b ",multiplied by products of matrix elements
of bL which are O(iso). It follows that for any rI2 « b' the
perturbative expansion of (I —M) i in powers of g2bL
is well de6ned. Moreover, as is shown below, the result
is independent of the choice of b in the range g &( b & 1.
Next, the operator L in (3.9) can be expanded in a power
series in the small parameter g as

(4.31)

Note that Li = 0, as can be seen directly from (3.9)
and from the assumption ((„)= 0. The matrix elements

„(i = 2, 3, 4) are given in Appendix C. Also, it is

easy to see that the matrix element LI, o is of order g".
Using (4.28) and (4.31), the matrix T can be expanded
in powers of g as T = P,. o g'T', the leading order being
a diagonal matrix with diagonal entries

Ri„, = Ai, ~ + Bi, ~, k g 0, j g 0, (4.39)

where R is defined in (4.22) and R i can be written as

R =) (
—A 'B) A

n=O
(4.4o)

provided A exists, which is shown below. Using
(4.31)—(4.33) and the expression (C4) (see Appendix C)
we obtain

+ e
—2i8n

A =b~»
2 e—2ien,

L2
2 nag )nj

+rl
(2 e 2isng

) (—2 e —2isni
)

' (4.41)

Recall that j and k are indices in 8', and therefore do not
vanish, whereas nj and nI, are the corresponding indices
in the original space. Since I„„+,——0 for i & 2 (see
Appendix C), the matrix L2 is diagonal, unless

The term A is a sum of an O(g2) contribution and one
that is O(b), i.e. , TD, and it can be dominated by either
one of them. The terms in B are O(gs) or O(g4b i),
depending on g and b, and they are easily seen to be of
subdominant order with respect to A. Thus

+ e
—2i8n

yO —e —' (4.32) le
*"

ll &b

where the indices correspond to the subspace 8. Also,
T = 0 since Li = O. It follows from (4.32) that lT
O(b). It can vanish, of course, for 0 a rational multiple
of vr and appropriate values of n~, Following (4.16) and
(4.28) one obtains

and either le
' "+ —1l & b

or le
' + —ll & b (4.42)

for some n. The latter can be avoided if

T =K(I —M) L (I —M) K, (4.33) b & min(i sin 28l,
l
sin Ol). (4.43)

and using L' = 0

T =K(I —M) L (I —M) 'K. (4.34)

According to the discussion following (4.30) To

O(b), rI T = O(g ), and vPT = O(vP). The coeffi-

When g —kyar/2 = o(e ) (k = 0, 1, 2), no choice of b & e

can satisfy condition (4.42). Consequently, the matrix
L is not diagonal. The cases k = 0, 2 correspond to
the band edge and are considered in Sec. VII. The case
k = 1 corresponds to the band center and is considered
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in Sec. VI. If 8 is neither in the band center nor in the
band edge, L is diagonal (in 8'), hence so are T2 and
A. Also, in the subspace 8' the diagonal elements of the
matrix T are nonvanishing since L is proportional to
n2 and n g 0 (see Appendix C). For 8 in the vicinity
of the band center, that is, 8 = vr/2, the matrix T is
tridiagonal.

Note that the construction of the perturbation ex-
pansion is based on Eq. (4.40). Thus, as long as one
can (technically) invert the matrix A, the perturbative
scheme is well defined and can be implemented. This
scheme is then uniformly valid throughout the band. The
above specification of the value of b satisfying inequality
(4.43) is made for the sake of simplifying the procedure,
since obviously it is easy to invert a diagonal matrix.
Since this simplification cannot be achieved in the band-
edge and band-center regions for any choice of 8, one
must invert, in the latter regions, a tridiagonal matrix.
The physical results, in any case, should be (and indeed
are) independent of the choice of b.

Next, at order g the matrix L connects the index n
to indices n+ j, for —3 & j & 3. Thus T is diagonal,
unless there is an n such that

(4.49)

vo(P) = ) tu~e '~~, with 6z ——0 for j g' sb, (4.50)

and

z(p) = ) z~e '~~, with z~ = 0 for j F ss. (4.51)

Obviously

p(&)= (4)+ (4)

[see (2.13)].

(4.52)

V. THE IN-BAND CASE: RESULTS

w, z, v define the functions io(P), z(P), and the probabil-
ity distribution function p(P) in the form

]e
' "—1~ & b and ~e

' ~"+ l —1~ & b.

Hence T is diagonal if

(4.44)
It has been shown in Sec. IV that, as long as 8 is not

close to the band center or to the band edge, the matrix
A in (4.41) is diagonal. Its jth diagonal element is given
by

b' & ~sin38~. (4.45)

~e
' "—1~ & b and ]e

' ~"+ —1~ & b (4.47)

hold simultaneously, e.g. , 8 = pm'/q + bo'/q with 0 & o' &
1. The matrix T' for this particular angle 8 is diagonal in
8' for i & q and ceases to be diagonal for i & q. Moreover,
it is easy to see that the off-diagonal part of T is O(rI'i).
This implies that g = O(rl'i) [see (4.24)]. All in all, the
required vector u, that is, the projection of w on 8, is
given by

ui, = —ioe ) rI~A& - (T~) 0+ higher-ord. er terms in rI

(4.48)

and ui, = O(g'i 2) or ui, ——O(rPb i), depending on 8
and j. As mentioned above, it is found below that the
final result is independent of the choice of b. Diferent
choices of b correspond to diferent decompositions of v
into w + z. As already mentioned, inside the band, that
is, for ]8—s /2] ) b, the problem simplifies, because A is
then diagonal and can be trivially inverted.

Finally, the Fourier series corresponding to the vectors

By assumption (4.42) the subspace 8' does not contain
indices difFering by less than 3. When 8 is in an O(l)
neighborhood of m/3 or 27r/3 such that

(4.46)

T is not diagonal. In general, for any angle 8 and any
given value of b, the smallest n for which T" is not di-
agonal is obtained as follows. First the smallest integer
q is determined such that there is an index n for which
the inequalities

A~~ = —1+e 2'e"& 3 2 2 e 2'8
~

—-g n . . (5.1l
e 2isra~ — 4 2 (2 e 2isn~ )2

'—
Note that A~ ~ is proportional to g when e ' ~ = 1, oth-
erwise A~ ~

= O(b+ r12). The expansion given in (4.40)
is in powers of A iB. Since, by Eq. (4.38), B = O(rjs)
when Ts contains a nonvanishing O(1) contribution (oth-
erwise B is of higher order than gs), the mentioned
expansion (4.40) is not a power series expansion in rI.
Rather, it is an expansion in a family of functions of the
form

O(q ) O(rl')
O(b) + O(rI') O(b) + O(rI )

' (5.2)

Therefore (4.40) is not a naive series expansion in powers
of g, but rather a singular perturbation expansion which
is asymptotic in the sense of Poincare. The coefficients
contain layer terms which peak at values of 8, for which
8 = xo. and o. is a rational number. These terms are
analytic functions of 8 in the band as long as g g 0, i.e. ,
e g 0. Obviously, an expansion in powers of e yields co-
efficients which are discontinuous functions of 0. As 8
approaches ~n with o. a rational number, a term A~ ~,
for some j, is dominated by the rI term in (5.2). Ac-
cordingly, a term in the expansion which may seem to
be of order g& is actually of order g~ at this 8. This
is the manifestation of the internal layer structure of the
probability distribution function p(P).

In this section the probability distribution function
p(P) is calculated perturbatively in rl for in-band angles
8. As explained in Sec. IV, the pertinent perturbation
theory encounters no singularities at any order. Explicit
expressions for the perturbation terms are derived below
up to second order in g.
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The 6rst step consists in 6nding the smallest values of
p and q such that

0 = —vr + ub, q & 3 and 0 & o ( 1.=p
v

Froxn (4.27) the components of u are found to be

ui, = rP—xap ) [A ' —A 'BA + ]g,

borhood of xr/3 or of 2xr/3 [cf. {4.45)]. Note that, due
to the construction of the subspace 8, w j vanishes if
(5.8) is not satisfied. Thus w is not an analytic function
of 0. However, together with its complement z it adds
up to the analytic function v (see Ref. 21). Thus, when

(5.8) holds, np = 0, xx~1 = +3, n~2 —+4, xxps —+6.
Now from (4.34) and (C5) it follows that

g= —OO

T. + gT + (s.4)

~/3 1 3 3 1 1
QJ3 Wp 1 p Q L3 3 p1 —Ms 3 1 M33 233

I

where q & 3. The right-hand side of (5.4) can be ex-
panded in a power series in g and q2/b and is of the form

1 3 3 1 1 3

3,3 P,P

o(
Q(b) + Q(& )

' (s.s) (s.9)

and the nonzero components of the vector w are mp and
xp„, = u~. Next the leading terms in (5.4) are considered.
For q = 3 (5.4) is written as

u= —g xpp[(I —A B)A Tp+xIA 'Tp
-~A-'BA-xT4p+ "

]

+ qw + higher-order terms, (s.6}

where Tp is the zeroth column of the correspond-
ing matrix. The first term in (5.6), w ~s

—g xpp(I —A B)A Tsp, can be O(rI), if 8 is close to
xr/3, or O(q ) otherwise. Similarly, the term w ~4

rI4xppA 1Tp4 is O(r12) if 8 is close to 7r/4, or O(g ) oth-
erwise. The higher-order terms constitute a remainder
which is uniformly O(xjs) for all 8 in the band. Convert-
ing back to the Fourier space, the asymptotic form of
xp(g) up to O(rts) is given by

-m/3 m/3+and 6 3
——63,where + denotes complex conjugation.

Similarly,

1 1 1

1M331MppA33
2e ' —1

6sin 38 —(27((2)/4)rI2 —i sin68' (5.11)

and Cv ~~ = xps
~ *. Again, from (C5) one finds that

~/3 1 3 3 1 1
6 0 p I L631 — 66

' 1 — 33 66

1 3 3 1 1 3x q Isp +O(g ).
1 —M33 1 Mpp A33

(5.10)

Using (5.1), one obtains

u(P) = xpp+xp (P)+m (g)+ O(rP), (5 7)

+sis (5 8)

This in turn corresponds to values of 8 in an O(b) neigh-

where, as mentioned above, xp ~2(g) peaks at 8 = x/3
and xp ~ (p) peaks at 8 = 1r/4. Note that (5.7) holds
with uniform error in the band, away from the band-
center and the band-edge regions.

First we consider xp ~s(P). In this case Tsp P 0 only if

j = +1, which corresponds to nial ——+3 and to
Hence

and

irl'xpp((s) ( 23@sic s's(Lrs)

8 g 2e 's —1 )

I 2 p = i, I, , = 23i—e (( ),
M') 2 -s;e 2

L 3 e
—sip((3) L 2 27e

—12is((2} (5.12)

(5.13)

sg xpp (( ) cos 68 + 3i sin 68
~ L

16 (2 —e s*s)(6 sin 68 —i sin 128 —27g2((2))
(5.14)

xe ~s(P) = 2Ree(xp ~ e *@+xp e"* ). (s.1s)

Note that when 8 —n. /3 = O(g2) or 8 —27r/3 = O(xI2),
the denominator in (5.11) is proportional to rI2 so that
Z = O(g 2). It follows that xas~ ——O(q). Similarly,

= O(q2). In the Fourier space one obtains

I

Note that {5.15) is not uniformly O(qs), since due to
internal layers it may be O(g) for certain values of 8.
It is the leading-order term in the asymptotic expansion
of xp(f) only for 8 near m/3 and becomes subdoxninant
to xp ~ (P) for 8 near P/4, as shown below. The layer
behavior of xp(P) as a function of 8 for 8 —xr/3 = O(rl2)
is best exhibited in terms of the layer variable
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as

vr/3- 8

7l
(5.16)

-7c/4 4 —1 4
m4 ———g mPA4 4T4 0& (5.19)

iv(P) = ivp+ (8ycos6$+Qsin6$) +O(q ).ivpq{( ) ~ 2

3 64y2+ 81

(5.17)

This behavior is due to the contribution of ivs ~ (P), since

ws (P) = O(rI ) in this neighborhood. As y becomes
O(g ) the leading-order correction to ivp in Eq. (5.17)
is O(r12).

Next we consider iv ~4(P). When b is chosen suffi-

ciently small [though O(1) for small g] to ensure that A
is diagonal for a large range of values of 8, it is obvious
that for 8 near n/4 or 37r/4 it is impossible to satisfy
inequality (5.8). Instead, the requirement is

(5.18)

Similarly to the previous case, if (5.18) is not satisfied,
w ~4 = 0. The lowest-order term in (5.4) has the co-
efficient g4 for 8 in a b neighborhood of vr/4. Since A
is diagonal the leading-order term in the expansion of B
yields

error. However this is not the most efficient method for
expanding iv(P) for a given 8 and a given order of ac-
curacy. A more efFicient way is first to determine q as
the smallest positive integer such that

~

sin q8[ ( b. Then
the leading-order contribution to B is O(rP) or O(rl~ ),
depending on whether

]
sin q8~ = O(1) for small rl or not.

For q & 4 this construction yields terms which are uni-
formly of higher order than g2.

In order to construct the full vector v, it remains to
calculate the vector z in (4.9) (in the subspace 8). Using
the obvious identity

(I —M) '(M —I+I) = —I+(I—M) '

in (4.28) we obtain &om (4.9)

(5.23)

R = g ivp(I —M ) ep + r2, (5.25)

~ = —w+ (I —M ) 'w+rl [(I —M )

xbL(I —M ) ]w

+rI[(I —M ) bL(I —M ) bL(I —M ) ]w
+ 0 ~ ~ (5.24)

Recall that, by definition, z is orthogonal to 8. It follows
that the leading contribution in (5.24) is O(g2). From
(4.23) w = u + ivpep, so that the leading-order term is
w = ivpep + O(rl). Therefore (5.24) can be written as

and u) ~4 = iv4 '. From (4.35)

4 2
4)0 Mp 4,2 Mp 2,0 Mp1 — 44

' 1 — 22 1 00
1 4 1
MO 4&o MO1 44 1 00

(5.2o) 1 =9' 1
1 1 Mp 10 1 Mp 2 1 2~@

1,1 0,0
(5.26)

where r2 ——o(g ). Denoting the first term on the right-
hand side of (5.25) by s2 one obtains for the components
z~ of z the expressions

Using (C4) and (C6) in (5.20) one obtains

~4~ (g4) 3{g2)2e—2i&q

16 I 2 2i sin 28 )
X + O(&'). (5.21)

6sin 48 —isin88 —12' {()

The remainder term is uniformly O(rP) As in the c.ase
considered above, if 8—m/4 = O(q2) or 8—37r/4 = O(r12),

then iv4~ ——O(g2). The contribution of ivz~ and ups~

in these neighborhoods is O(rP) so that it is contained
in the remainder term. Similarly, the term of order g in
(5.21) is contained in the remainder term in (5.13) for 8
near vr/3 or 27r/3. Thus iv ~ (P) is given by

.g4(~)
n'~p R, ) - ~&(&') + 3{&')'e ""&~

2 2i sin 28A )
esi@

X (5.22)
6sin 48k —isin88A —12' (( )

If for a given b and 8 both (5.8) and (5.18) are satisfied,
then vi ~s(P) and iv ~4(P) do not vanish. It is obvious
that for such 8 both terms are O{rls).

It is evident that the expansion (5.4) with q = 3 can
be continued to obtain a uniform asymptotic representa-
tion of vi{P) for all 8 in the band with arbitrarily small

g~ 1

4 1 e—4i8 ' (5.27)

Also 2 = (z )', where e denotes the complex con-
jugate. The remaining components of z vanish. The
function corresponding to z2 is given by

2 (~) = g Q)0 e4ig
Re

2 —e 2'~ 1 —e 4'~

e2ig
(5.28)

By (5.24) the remainder term r2 in (5.25) can be written

+rl (I —M ) L (I —M ) 'u+rs. (5.29)

3=Z = F2 —F3, (5.3o)

one finds that when q ) 3, that is, if (5.8) does not hold,
then the second term in (5.29) can be included in the
remainder and z& reduces to

We keep in (5.29) only the leading term in the expansion
of u [see (5.9) and (5.19)]. Since u = O(g) for 8 = 7r/3
and u = O(g2) if (5.8) does not hold, the second term in
(5.29) is at worst O(vP), so that rz = o{rjs) uniformly for
all 8 in the band. If (5.8) does not hold, u = O(q ) and
the second term in (5.29) is O(q4). Defining
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L3
zk ——g mp

' 0, for k = +1,k2, k3.
k, k

To facilitate the notation the quantities

(5.31)
z=z +rg and r2 = o(il2),

z=z +z +rs and rs —o(gs)
(5.38)

L3
Zk —g top

'
0 for k = +1,+2, +3
k, k

are introduced. Then (C5) gives

Z. ~' -i~o(&')
e-2ie '

its iiop((s)
4 1 —e 4'~'

s il i~a(~ )
] e —6i8

(5.32)

(5.33)

3=3 9 2 12

z2 —Z2+ L23 0 u1,1- 22
' 1- 33

3= 9 2 12

4 Mp 4 3 Mp 1')
44 '1—

z = L
2 1

z5= 0 L53
55 33

(s.a4)

(s.as)

The term z3 vanishes, since for q = 3 the component +3
belongs to 8. Also here zs

&
——(z&~)*. Using (5.13) and

(C4) in (5.34} one finds that

and Zs
&

——(Z&s)*. When q = 3 the nonvanishing compo-
nents of I are

3=3 9 2 12

Z1 Z1 + p L13 0 8
1 —M ' 1 —M1,1 3,3

and so on. This sequence of approximations constitutes
an asymptotic expansion of z. A similar expansion is
constructed for w.

The probability distribution function p(P) can be rep-
resented asymptotically as

p(&) = -(4) + -(4) + -(4) + -(4), (s.ag)

where r „(P) and s„(P) are the remainders in the expan-
sions of z(P) and u)(P), respectively. The last terms in
the expansions z„(P) and ii)„(P) are at worst O(rl") and
the remainders are uniformly o(il").

Finally, the asymptotic expansion of p(P) yields
asymptotic expressions for the Lyapunov exponent and
for the density of states. The normalization

p(P) dP = 1
0

(s.40)

dP 1 sin 0
po(*) = p(4) —=-

de & (z —cos0)2+ sin 0
(5.41)

Its contribution to the Lyapunov exponent, as given in
(2.7), vanishes, so that the main contribution comes from
terms of order g2 in the expansion of p(P). The calcula-
tions are simplified by writing Re p(E) as

fixes u)0 ——1/x. In terms of the original variable the
leading term in the expansion of p(z) is given by the
Lorentzian

s s s 'X)
z1 ——Z1 —g top

32 1 —e
1

6 sin 30+ (27((2)/4)g2 —i sin 60

5'(&')
Z2 = Z2 +'g %00

16 1 —e—4'

1

6 sin 38 + (27(( )/4) i1 —i sin 68
'

Vi(( ) 1

e—Si8

1

6sin 30+ (27(p)/4)il —i sin60'

s s»(&')
16 1 e—10i8

1

6 sin 30 + (27((2)/4) vP —i sin 60

(5.36)

(s.37)

Im p(E) = w f p(P) dP. (s.43)

Using the expansion of p(P) and scaling (P) back into the
problem one finds that with E = 2 cos 0 (see Appendix
D)

e2((2)
Rep(E) =

2 + O(e4),
Ssin 0

(s.44)

which is the Thouless formula. Note that at O(e ) there
is no contribution to Rep(E) (this is also valid for 0—
vr/3). For Im p(E} one finds &om (5.43)

Imp(E) = 8 —
s +O(e ),

"(&')
24sin 0

(5.45)

valid for all 0 in the band. For the density of states p(E),
formulas (2.10) and (5.45) yield

Re p(E) = ln(sin P) [p(P —0) —p(P) j dP, (5.42)
0

and Im p(E) as

The terms of order g peak to O(q ) when the denom-
inator is O(q ), that is, when 0 —n/3 = O(q2) or
0 —2m/3 = O(g2).

In conclusion, a hierarchy of approximations is con-
structed such that

1 s ((s) cos 0 4

2' sin 0 32vr sin g
(5.46)

We conclude this section with a discussion of the role
of b in our asymptotic procedure. Obviously, the result
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at any order in rl (i.e., in e) must be independent of the
choice of h. We have assumed h' » r) in order for the
scheme to be consistent, otherwise the divisors would be
too small and the series would not be asymptotic. We
have chosen for convenience b small enough for the matrix
A [see (4.37)] to be diagonal. The main effect of chang-
ing the value of h (without violating the above-mentioned
limitations) is to redefine the subspace 8, thereby chang-
ing the vectors vr and z. The vector v (= iU+ z) is, of
course, left unchanged. Thus one can choose b = rI with
0 & o. & 2 provided h « 1.

In Ref. 21, where an expansion of the form

where ~z~ & 1. Due to symmetry it suffices to consider
only z & 0. When for some ni, both

e *""—1 &h and
—2ie(ng +2) 1 (6.2)

( I)"&e'~"& 1

(6.3)

are satisfied, then ni, +i ——n~ + 2 and L „„„,+2 g 0. In
this case the matrix A, given by (4.41), is not diagonal.
When z = 0 the set sb [see (4.4)] consists of all the even
integers —oo & ni, = 2k & oo. When z g 0 the set sg
consists of all the even integers satisfying

p(z) ) e"p„(z,E, e)
n=O

(5.47) ( 1)1lh 'az(t4k+2) 1

For z « b the set sg is of the form

was used, no use of b was made in balancing the equations
in the asymptotic procedure. The expansion in Ref. 21
contains the same terms as the expansion presented here,
but some terms are shifted from the remainder into the
expansion.

In the band edge and in the band center, that is, for
8 m/2, the requirements that 1 & h » i) and that A
be diagonal are contradictory and one faces the nontrivial
task of inverting a tridiagonal matrix. Once this is done,
the calculations proceed as in the in-band case.

VI. THE BAND-CENTER CASE: RESULTS

In the present section the case 8 = x/2 is considered.
We recall that in this case the leading term in the ex-
pansion of the matrix A is no longer diagonal, and thus
an additional difBculty is introduced. To overcome it we
first define the variable z by

ss = {0)U Si U S i U S2 U S 2 U (6.4)

b
Spg = nj, ——2k: kk & 0, k & (6.5)

where the first index in Si is ni ——2 if (6.2) holds. Then
Si ——{2,4, . . . , 2(K —1)), where (6.2) holds for all in-
dices in Sq, but not for n~ ——2K. Similarly, S q

——

{—2, —4, . . . , —2(L —1)), where (6.3) is satisfied for all
elements in S i, but not for nl, = 2L T—he fi.rst index
in S2 is the smallest odd integer nM ——2M+1 & 2K, such
that (6.3) holds. Then S2 ——{2M+1,2M+3, . . . , 2N —1),
where (6.3) holds for all elements in S2, but not for
nag ——2N + 1. The set S z is defined in an analogous
manner. The first element in S3 is the smallest even in-
teger nI = 2P & 2N+ 1, such that (6.2) holds. Then
Ss ——{2P,2P + 2, . . . , 2(Q —1)), where (6.2) holds for
all elements of Ss but not for nq = 2Q, and so on. The
above partition of sg into subsets can be simplified using
the smallness of 8 to

7r Z8= ———
2 2' (6 1) where [ ] denotes the integer part of a number. Also

vr —b
S~2 = ng ——2k+1: k & 0)

2x
1 x —b 1(k& +—
2. 2X 2. (6.6)

The matrix A is block diagonal; its blocks are either di-
agonal or tridiagonal. The block in the matrix A belong-
ing to Sq is tridiagonal; this block defines a submatrix Sq.
The next block, whose indices range &om max(k C Si)+1
to min(k E Si) —1, is diagonal, defining a submatrix Di,
followed by a tridiagonal block, S2 for k ~ S2, and so
on. The structure of the matrix is unchanged under the
transformation k + —k. When x = 0 the matrix A
consists of two (infinite) blocks S i and Si. As z in-
creases the angle 8 approaches the in-band region. The
nondiagonal blocks shrink down to single elements and
the matrix A tends to a diagonal matrix. The problem
of the exact inversion of A, as given in (4.41), leads to
a rather involved algebraic procedure. To overcome this
difBculty we use the following device. The matrix A is
expanded in powers of g as

A ~ ~2A2+ q4A4+. . . (6.7)

T = g'A'+B,
where B is now given by

B- rj'T'+ rI'(A'+ T') +.. .

(6.8)

(6.9)

As in Sec. IV we obtain

ug = —happ) Rq T, pfor k/0, . (6.10)

where

The construction of the vector u in (4.26) is now different
than that presented in Sec. V. The operator T is now split
as
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(6.11)
Ca &+6' + Cg+x 0,

that is,

(6.19)

It follows that to leading order in rt [see (4.48)]

ui, ———iiio ) [A']„,'T,'0+ O(rI') = O(1). (6.12)

Ci, = [A ]q, . (6.13)

Hence, using (6.13) and that n~ = 2j in the first block,
the identity

(6.14)

takes the form

) C~b'~ i, i + (—2iyk + 3k )C~ hi, ,
2k(2k —1)

2k(2k + 1)
C, b, g+i ———8g i (6.15)

yielding the homogeneous system of difFerence equations

2k(2k —1)
Cib, g i+ (

—2iyk+3k )C,8i, , .

+ C~ &~,i,+i ——0 (6.16)
2k(2k + 1)

Note that to leading order in rj the sum in (6.10) reduces
to j = +1 because T- 0, being proportional to L„.0, van-
ishes for n~ & 2. Because of the block-diagonal structure
of A (and therefore of A ) it is sufficient to invert Syi in
order to calculate [A ]& +i. The matrix Si is considered

first and it is assumed that the block size N = [h/2z] is a
large number. Using the expressions given in Appendix
C for the elements of L, (4.36), (4.37), and (4.33) one
finds that the nonvanishing elements of A are

if np ——n~,
if ng ——n,. +2,
if NI, ——n~ —2.

where x = yg2.
To simplify the notation we denote the 6rst column of

[A2]& i as the vector C, that is,

C, - WX", +BX,",

where

Ai 2 ———3 6 v 8, with ~Ai~ & 1 and ~A2~ ) 1.

The boundary condition (6.18) at k = N becomes

CN —1 + 6CN

yielding

(6.20)

(6.21)

(6.22)

(6.23)
2

The general solution of (6.16) is a linear combination of
two solutions, G~ and HI„where Gp is the exponentially
increasing solution, that is, Gi, = O(A2), and Hi, is the
exponentially decaying solution, that is, Hi, = O(Ai), for
k && y. Hence

CA,. = AGg+ BHg. (6.24)

1

(—2iy+ 3)Hi + H2- (6.26)

The error introduced at the boundary k = N is then
exponentially small in N, provided B = O(1) for large
N. The latter is self-consistently satisfied (see below).
Thus the problem has been reduced to that of determin-
ing the exponentially decaying solution of (6.16), which
is considered next.

First (6.16) is solved in the domain —oo & k & oo.
Multiplying (6.16) by e'" and summing over all k a dif-

ferential equation for the generating function H(n) of Ci,
is obtained

(3 + cos a)H" (n) —(—2y + 2 sinn)H'(n)

—
2 cosaH(n) = 0. (6.27)

Noting that (6.27) can be written as

[(3 + cos n) H'(n) —(—2y + 2 sin n) H(a)]' = 0,

one finds easily the solution

(6.28)

Substituting (6.24) into the boundary condition (6.17) at
k = 1, we obtain

(
—2iy + 3)(AGi + BH, ) + 4 (AG2 + BH2) = —1. (6.25)

From (6.23) it follows that A 0 for k )) y, so that
(6.25) gives

for k = 2, . . . , N —1, with the boundary conditions

and

(—iy+3)C, + -,'= —1 (6.17)

2N(2N —1)
8

Civ, + (4iyN + 3N )Civ = 0. (6.18)

The case y « N is considered first. The case y )) N is
treated separately below.

Case I: y « N. The asymptotic behavior of the so-
lution Cq of (6.16) for k )) y is determined from the
reduced equation

1 t' iy
Z, (n) = exp

i
I(a) ~,3+cosn ( 2 )

where

e' (~2+1)+ (y 2 —1)
e' (~2 —1) + (~2+ 1)

The second solution of (6.27) is given by

iy l 'dt
E2(a) = Fi(n) exp

i
I(t)

~

2 j 3+ cost

(6.29)

(6.30)

(6.31)
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Setting

z(~2 + 1) + (~2 —1)

z(~2 —1) + (~2 + 1)
(6.32)

and z2 ———
2 —1

(6.33)

As n increases &om 0 to 2a, z moves on a closed contour
enclosing zi (note that ~zi~ & 1) and H(o.) is multiplied
by the factor

one finds that I(z) is an analytic function in the complex
z plane with branch points at the points

(2iy+ 3)C i + 4C 2
———1. (6.42)

The difference equation (6.16) for Hs holds for k = —1
as well, hence

s4H 2 + (2iy + 3)H—i + 4i Hp = 0~ (6.43)

This determines the coefficients Cs for k E Si, that is, for
k ) 0. Next we show that the same solution, for k & 0,
satisfies the boundary conditions (6.17) at k = —1 and
(6.18) at k = N—, therefore determining Cs for k E S
that is, for k ( 0.

First, the boundary condition (6.17) at k = —1 for the
block 8 q is

exp
~

2ir
~

= e
iy l
~2

(6.34)
or, since Hp ——4,

4H 2+ (2iy+ 3)H i ———1, (6.44)

It follows that the generating functions Ei(o.) and E2 (o.)
are not 2'-periodic in a because of the branch point at
z = zq. However it is possible to find a suitable linear
combination of Fg and F2,

which is the boundary condition (6.42). Now the Fourier
coefficients Hs are the matrix elements [A ]& i for indices
k in Syi. From (4.33) we find

H(n) = Q[Ei(n) + KE2(a)], (6.35)
ITi2

+1 4~ (6.45)

Ei(0) + KE2(0) = Ei(27r) + KE2(2ir))

or, using (6.29) and (6.31),

(6.36)

so that the branch point at z disappears, rendering H(o.)
a 2x-periodic function of n. The constant K is then
determined &om the requirement

so that the leading-order term in the expansion (6.10),
which is O(1), is given by

us = Hs for—0 & ~k~ & N.Q)p

4
(6.46)

Finally, using (4.23), the leading-order term wP in the
expansion of w is given by

Ei(0) = e "~ 1+K exp
~

I(t)
~

1'iy

p &V& )
dt

X Ei(0),/3+ cost

yielding

(6.37)

ui, + ipp for 0 & ]k] & N,
~2a —

0 otherwise. (6.47)

In terms of the variable P the leading term ipP (P) in the
expansion of ip(P) is given by

K = (e"e~ —1) exp
~

I(f)
~

p Ev 2 ) /3+ cost

(6.38)

ipp(p) = —[H(4$) —Hp] + ipp. (6.48)

Note that the generating function corresponding to ug is
H(4$) —Hp and not H(4$) because up ——0 by definition.
Using Hp ——4, Eq. (6.48) reduces to

Thus a 2ir-periodic generating function for (6.16) has
been constructed. It follows from Parseval's inequality
that the coefficients Hs of the Fourier expansion of H(o;)
decay exponentially and can be calculated &om

ip (P) = —H(4$),
4

(6.49)

2&

Hs = — H(a)e '" da,
2K p

(6.39)

with H(n) given by (6.35) and (6.38). The constant Q
in (6.35) is fixed by the boundary condition (6.17),

and the constant Q need not be calculated since it can be
absorbed in mp which is fixed by the overall normalization
of p(P). For small y the constant K in (6.38) is expanded
as

( 2iy+ 3)Hi + 4H2————1. (6.4o)

—,'H. + (-2iy+ 3)H, + -', H, = O, (6.41)

The coefficient Ho is determined next. The difference
equation (6.16) for k = 1 is

2&

K=~yJ% + O(y')
p /3+cost

2„~1'(3/4) + O(„.)r(1~4)
(6.5o)

which combined with (6.40) yields Hp ——4. The constant
Q can now be determined from (6.35). The coefficients of
the generating function H(a) satisfy both (6.16) and the
boundary conditions (6.17) at k = 1 and (6.18) at k = N.

Finally, using (6.35) and expanding for sinall y, one finds
that
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'(4) =
i/3+ cos4$

x 1+ ln
iy e4'~(v 2 + 1) + (~2 —1)
~2 e4'~(~2 —1) + (~2+ 1)

8~~r(3/4)
+y r (1/4)

O 2

(6.51)

The result (6.51) coincides with that obtained in Ref. 15.
The case y )& N is considered next.

Case II: y » N. It is still assumed that x && b, that
is, yq2 « 1. Note that when yq2 = O(1) the condition
(6.3) is violated and A is fully diagonal, reducing to the
in-band case of Sec. V. One observes that, in each row,
the diagonal elements of the matrices Sg1 are much larger
than the off-diagonal ones. The off-diagonal elements can
be viewed as perturbations about the diagonal matrix.
In such a case Jacobi's iterative method for inversion is
appropriate. The iterations are known to converge to the
unique fixed point of the scheme, provided the modulus
of the diagonal terms is larger than the sum of the moduli
of the off-diagonal elements in the same row. Equation
(6.16) shows that this is indeed the case. In matrix form
(6.16) is

ip (P) = iop 1+ —sin4$0 1

4y

(&) = '(P)+~ '(y)+~' '(y)+O(&'), (6.59)

and that tpi(P) and ip2(g) are x/2-periodic functions.
Since they contribute neither to the Lyapunov exponent
nor to the density of states [see (3.10)—(3.12)], their cal-
culation is not presented here.

The nonvanishing contribution to the Lyapunov ex-
ponent comes from z(P), which by definition is not a
vr/2-periodic function, being orthogonal to ip(P). The
leading-order nonvanishing contribution to z(P) is of or-
der g, that is,

z(P) = rt'z'(P) + O(rl ), (6.60)

1 1&
(12cos4$+ 3cos8$) + 0 ~—

32y 4y )
(6.58)

Note that when y » 1 the in-band solution is recovered,
as expected.

The higher-order contributions to w can be calculated
by means of (6.10) and (6.11). It is easy to see that ip(P)
is of the form

A C=e1, (6.52)
where z2(P) is the Fourier series corresponding to the
vector z, given by

where e1 k
——bk 1. The diagonal elements of A2 form a

matrix D whose elements are
z =(I —M) Lw, (6.61)

Di, , = (2iy+ 3k )bg „
so that (6.52) can be written as

C = D '[D —A ]C+ D 'ei.

The iterative scheme for the solution of (6.54) is

(6.53)

(6.54)
2(y) ) 2 2ig(2k+1)

k= —oo

(6.62)

Therefore we have

where w is given in Eqs. (6.52) and (6.58). In addition,
z2(P) has only "odd" components, that is,

C"+' = D [D —A ]C"+ D (6.55) 2 1 y. 2 0 y. 2 0
2k+1 2 ~2k+1,2k~2k + ~2k+1,2k+2~2k+2' (6.63)

with the obvious choice

C = D e1. (6.56)

Using (C4), multiplying (6.63) by exp(4igk), and sum-
ming over k, one finds that

The nonvanishing terms in the consecutive iteration are
given by

1d (. du "r
z (P) = ——

~

sin 2$w (P) —cos 2P
8dg g dP j

Using (6.28) it can be shown that ip (P) satisfies

(6.64)

1 12 (1)
2iy 16yz q ys )

C,'=, +0( —,/,
3 (1&

&y'J '

(6.57)

d p (3+cos4$) dip (P)

——sin 2gip (P) = 0. (6.65)
1 . 0

2

It follows that at order g we can write

and C z
——(C&)', k = 1, 2. Further iterations preserve

the leading terms in (6.57) and introduce terms of higher
order in 1/y. Once Cl, is known uI, can be calculated and
then mk. Thus finally

1
z'(4) = ——+(4')8dg

where

(6.66)
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y(. 1 dl o—
I

sin2$ ——cos2$—
I

u) (P).
4 5 2 dP)

(6.68)

The leading-order approximation is p(p) = u)s ((t)) + o(1).
In the band center u)e(()t)) is given by (6.51) with y = 0,
that is,

0

/3+ cos4$' (6.60)

where the normalization constant is given to leading or-
der by

f 3+ cos4$ —4cos2(t)) du) (P)=—2y~' +
I 4 ) d

+(sin2$ —
z sin4$)u) (P). (6.67)

Note that these results dier from those of Ref. 15 by the
term

so that the leading-order approximation to the Lyapunov
exponent (6.75) can be expressed as

Re p(E) = rp [a + O(y) j = 0.114 24' for y « 1

(6.77)
3 (11

Re p(E) = g' + 0
I

—
I

for y » 1.
8 128y2 Ey2 j

(6.78)

The imaginary part of p(E) can be calculated from (3.11)
in the form

7r n/2+yg /2

1m~(E) = ~ p(4) d4 p(&) d&
~/2 m/2

(6.79)

which, using the identity

4~~
r2(1/4)

(6.70) f =1 1'™
p(4) 4 = —+ — p(4') p I 4 ———

I
d4»

/2 2 2 /2 2)

In terms of the original variable the leading-order ap-
proximation to p(z) is given by

p(*) =
F'(1/4) &1 + * (6.71)

We can now calculate the leading-order approxima-
tions to the Lyapunov exponent and to the density of
states. The calculations follow closely those given in
Ref. 15 and are presented here for the sake of complete-
ness. First we note that

can be written in the form

~ .(~) = -+- .(~) .(~--) ~-~
2 2 7r/2- 2

yg
p +094

Thus

(6.80)

(6.81)

n l,4+ —,) n(4) = 2n'*'(4) + o(n'—) (6.72) Imp(E) = —+ mr/ z (P) dP — " io (0) +O()7s).

Then, using 8 = 7r/2 —yi12/2 and (6.72) in (3.10) we
obtain

Finally, using (6.64) in (6.82) one finds that

(6.82)

Rep(E) = lnsing 2i1 z (P)
0

y)7' du) (P)
2 dP

(6.73)

Im p(E) = ——7ril u) (0) + — + O(g ),
0 1dw (0)

2 2 dP

(6.s3)

which is equivalent to Eq. (76) in Ref. 15. The results
are therefore

The last term in (6.73) vanishes because of the 7r/2-
periodicity of u)e(P), hence

Rep(E) = 2g 1nsinr)()z ((t)) d(t)+ O(i1 ). (6.74)
0

Now, using (6.66) and integration by parts, (6.74) be-
comes

=9'Re p(E) = — (1 + cos 4$)u) (P) dP + O(g ), (6.75)
8 0

where u) (r)t) is given in (6.51) or (6.58) and io() is a y-
dependent normalization constant for u) (P). It is conve-
nient to define the constant

Im p(E) = — 1 —)7 ynV 8 + O(y ) for y « 1, (6.84)
2

y 1 (11
Im p(E) = — 1 —rP —+ + 0 I—

2 7r 327ry (y

for y » 1. (6.85)

Cs yes l
P I

——
I
=~~2+O(y) «ry«1,(2 2 )

(vr yq l 1 ( 1 ) (11
P I

——
I

= —
I

1—,+o
(2 2 ) 2z' ( 32yz) (ys)

(6.86)

for y && 1.

Using (2.10) one finds the approximation to the density
of states as

r(3/4) '
I'(1/4) (6.76)

These results agree with those of Refs. 13 and 15.

(6.87)



14 518 I. GOLDHIRSCH, S. H. NOSKOWICZ, AND Z. SCHUSS 49

VII. TRANSITION TO THE BAND EDGE

~

2'("+i)s 2'"s~ = O(0) (7.1)

Since the small parameter of the expansion around the
noiseless dynainics is g2 = e2/ sin 0, the obvious condi-
tion for the validity of the expansion developed in the
previous sections is that 8 )) g . This condition is equiv-
alent to 0 )) e /, which thus defines the in-band region.
Nevertheless, even when 0 = O(e2/s), that is, inside the
band-edge region, the expansion method used above can
be extended with minor modifications. Specifically, simi-

larly to the band-center case, the operator A in Eq. (4.41)
is no longer diagonal. It is necessary therefore to invert
it as was done for the operator in the band-center case.

Recall that the condition for the operator A in
Eq. (4.41) to be diagonal is that the inequality (4.3) and
Eq. (4.43) are satisfied, that is,

t)' & h & ~2sin0~,

which is equivalent to

(7.2)

(7.3)

where C is a constant. Clearly, in the band-edge region
Eq. (7.3) cannot hold. Upon relaxing the condition b &
~2sin0~ 2~0~ in the inequality (7.2) one finds that the
two terms on the right-hand side of Eq. (4.41) may be
comparable so that A is not diagonal to leading order,
similarly to the band-center case. The structure of A is
now as follows.

The condition (4.4), i.e. , {~e
' " —1~ & h), defines a

As long as the expansion parameter around the noise-
less dynamics, g, is small the expansion presented above
can be used. However when the perturbation becomes
comparable with the spacing between the eigenvalues of
the unperturbed system, a crossover to a diferent ex-
pansion can be expected. Specifically, the separation be-
tween the consecutive (leading order in e) eigenvalues is

set of blocks for the linear operator L and the operators
derived &om it (e.g. , A). The first block is defined by
the set of indices for which ~2n0~ & b+ 0(0 ), the second
block is defined by the set of values of n for which ~2n0-
2vr~ & b + O(0 ), and so on.

Consider now the first block. The first block of A,
corresponding to indices k and j satisfying

b

28' (7.4)

is not diagonal. To leading order in g we have to solve

u~ = ~on'):(A 'j„T,'., (7.5)

for ~k~ & 8/20, where (A ) . is a matrix element of the
kg

inverse of the matrix defined in Eq. (4.41), that is, of

1 + ~
—2i8n

A A;,j —
A;,j 2 2 e

Ln jg inj ~7.6~
(2 e —2isnz

) (2 e —2isni
)

'

Note that g is still assumed to be a small parameter,
i.e., ~ ( 8. The range e ( 0 & e / is in the band-
edge region though it does not reach the band edge. It
is possible to consider the region 0 ( 8 ( e as well.
Since this was done in detail in Ref. 22 we refrain here
&om considering the latter region. It turns out that the
probability distribution function in the latter domain has
the same functional dependence on 0 and e as for 0 & e.

In the first block defined above the projection operator
K reduces to the identity operator so that to leading
order in 0 the matrix element T 0 is reduced to L o. %e
also note that z = 0 so that defining uo ——mo we have
ll=W.

Next we derive a differential equation for w(P). Mul-

tiplying Eq. (7.5) by A„i, exp(2ing) and summing over
k and n we obtain, using the the matrix elements of L
from Appendix C,

—0zu'(p) + tl (is[cos4$ —4cos2$+ 3]ui" (p) + s[2sin'2p —sin4$]to'(p) + 2[cos2$ —cos4$]tU(p)) p. (7.7)

Equation (7.7) was derived by letting ~k~
—i oo in the first

block of A. As in the case of the band center, the error
is exponentially small in the block length. Obviously,
the solution of Eq. (7.7) matches the in-band solution

w(P) =constant when q « 0. An exact solution of
Eq. (7.7) is found as follows. is zi Setting

z—
0

(7.8)

using Eq. (3.1), to(g)dg = p(x)dx, and defining P(z)dz =
p(x)dx, Eq. (7.7) is transformed into

zdP z
0 (z'+1)' + 2z(z'+ 1)P(z)

dz

The integrable solution of Eq. (7.9) is given by

P(z) O
—2t(z /3+z) 2t(z' /3+z')d

where t = 0/t), and the normalization factor is

DO z
—2t(z /3+z) 2t(z' /3+z dZ dZ

(7.1O)

(7.11)

+—(z' + 1), —O. (7.9)
d2P(z)

The case 0 (( e was considered in Ref. 21. The full study
of the statistical properties of the wave function in the
band edge is given in Ref. 22.
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VIII. CONCLUSION APPENDIX A: DERIVATION OF (3.7}

The analysis of the Anderson problem has invariably
led to a problem of small denominators. When the value
of the energy considered is of the form 2cosvrn/N (in
one dimension), one obtains vanishing denominators in
perturbation theory beyond the Nth order and its multi-
ples. When the energy is of the form 2 cos 8 with 0 not a
rational multiple of vr, one obtains small denominators at
finite orders in perturbation theory. In the present work
we have investigated in detail the structure of the theory
which underlies the perturbative approach in the case at
hand. We have traced the source of the above-mentioned
difBculties to the fact that, in the Fourier representation,
the matrix to be diagonalized has an infinitely quaside-
generate spectrum in the absence of noise, if 8 is a ratio-
nal multiple of s., and an infinitely quasidegenerate spec-
trum, if 8 is not such a multiple. Both cases are similar
and are treated by the same method. To overcome the
problem of degeneracy we have developed a degenerate
perturbation theory, which is suitable for the (infinitely)
quasidegenerate case at hand. The essence of this theory
is the use of a projection method which projects the ma-
trix into the subspace of quasidegenerate states. Once
this is done, the resulting perturbation theory is free of
divergent terms and one can use it to calculate physical
quantities, such as the Lyapunov exponents and densities
of states, to desired orders in perturbation theory. Thus
one obtains a systematic method for solving for the rele-
vant quantities associated with the Anderson model in an
asymptotic series for small noise variance. The asymp-
totic expansion shows that the probability distribution
function and consequently the quantities derived &om it,
is an analytic function of 8 as long as noise is present. It
develops singularities only in the limit of vanishing noise.
Our expansion reveals the internal layer structure of the
probability distribution function which is the root cause
of the anomalies one encounters in a power series expan-
sion.

Using the method developed here, we have reproduced
the known results for the Lyapunov exponents and densi-
ties of states for 8 = 0, vr/2, vr/3, and confirmed the Thou-
less formula as the leading-order approximation every-
where in the band, except at 8 = 0, vr/2, where this for-
mula indeed fails. Corrections to this result can be found
in a straightforward though tedious manner. The result-
ing theory produces a uniform expression for the prob-
ability distribution function (and other desired quanti-
ties) in the entire band, including the band edge. It is
possible that some of the ideas and techniques bear some
relevance to the higher-dimensional Anderson models. In
particular, it is conceivable that the exploitation of de-
generacies is a key ingredient in the study of these mod-
els. This possibility is presently under active study.

& + (&) -=(6(& —&)) (A2)

one finds, in view of the Markovian property of the pro-
cess P„, that

p+i(4) = p(()4 p (4 )—OO 0

x6(arccot[cot(P„+ 8) + g(] —P}dP„. (A3)

In the large-n limit, it is assumed that p„(P) + p(P).
Furthermore,

6(arccot[cot(P„+ 8) + g(] —P}

= (1 + [cot(P„+8) + g(]'}sin (P„+8)6(P —P'),

(A4)

where P' is the unique solution of

arccot[cot(gV + 8) + gg] = P,

implying

(A5)

P' = arccot[cot P —g(] —8. (A6)

Hence

(1+ [cot(&'+ 8) + 9(]'}»n'(4''+ 8)

1+cot2$
1+ (cot P —g()2

(A7)
1 —g( sin 2P + @2' sin2 P

Substituting (A7) into (A3) we obtain (3.7).

APPENDIX B:DERIVATION OF (3.9}

Using (3.4) it follows that

(6(P„+q —P)) = (6(arccot[cot(P„+ 8) + g(„—P]}),
(A1)

where ( . .) is the average over all the ( s with 0 & i & n.
Defining
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, .;s. xp( ~[~c o (cot4 —nL.')l}
1 —g$ sin 2P + g2(2 sin

x p(() 4.
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Defining

u = cot P —g(, f—:cos arccotu,

g = sin arccotu,

we obtain the identities

(B2)

g =
Ql + u~

gl + u'

hence

sin

(1 —g( sin 2p + il ( sin p) '&

cos P —q( sin P
(1 —g(sin2$+g ( sin P)'&

(B3)

(1 e iP ~-2n.
exp(2in[arccot(cot p —g()]j = (f + qg)s" —e

—&'&

(1 —q(sin 2$+ g&P sjn p)~
(B4)

Substituting in (Bl) we obtain

Z 2ign —2i8n —2ign

APPENDIX C: THE MATRIX ELEMENTS OF L

The matrix elements L „are defined by

(1 —q(e iP)~"

~ (1 —g(sin 2P + q ( sin~ P)"+i
x~(() d(

re@"= X L em jfL )

(B5) and upon expanding (3.7) in powers of q

L „=L' „+gL' „+g' „+

(Cl)

(C2)

The denominator in (B5) factors into

1 —q(sin2$+ q ( sin P

= (1 + g(e '~ sin P) (1 + gee'~ sin P), (B6)

yielding (3.9).

the matrices (L' „)are defined. Using (B5) we find that

(C3)

At order g the matrix L vanishes since ((„)= 0. At order
g2 we have

(n+ 1)(n+ 2) (n+ 1)(2n+ 1) 3n~

8
h, „+&+

4
b „+i — b

(n —1)(2n —1) (n —1)(n —2) I+ b b (C4)

At order g

L
ie-"'"((') ( (n + 1)(n + 2) (n + 3) „+s+ (n+ 1) (n+ 2)b6

(n + 1)(5n~ + 5n + 2) 2n(5n~ + 1) (n —1)(5n —5n + 2)
2

~m, n+1 +
3

b
2

8

+(n —1)'(n —2)b
(n —1)(n —2)( —3)

(C5)

and at order g we have
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4L
e-"'"((') t (n+ 1)(n+ 2)(n+ 3)(n+ 4)

16
i

24

(n+ 1)(n+ 2)(7n + 14n+ 9)+ -,-+2

(ri+ 1)(n+ 2)(n+ 3)(2n+ 3)
6

m )%+3

(n + 1)(2ns + 3n2 + 37n + 18)n —1 n+2 2n+1 +
6

m n+1

5ri2(7n t 5) 2 (n —1)(2n —3n2 + 37n —18)
12 6

(n —1)(n —2) (7n2 —14n + 9) (n —1)(ri —2) (ri —3) (2n, —3)+
6

b
6

b
t

(n —1)(n —2) (n —3)(n —4)
24

b m, n —4 ~ (C6)

APPENDIX D: CALCULATION OF THE
LYAPUNOV EXPONENT IN THE BAND

1. Calculation of Rep

Defining 6f(P)—:f(re —8) —f(P), Eq. (3.10) becomes

Z(hut) = ReI(ipsAe '~) = ——Re ups (e
* —1)

(D9)

As above, if 8 = 7r/3 —yr12 with y = O(1), then
ios ——O(rl) [see (5.13)] and e s's —1 = O(rI2), so that
2'(b, iU) = O(r12) for all 8. Therefore we have to calcu-
late the contribution at this order. We consider the two
possible cases ~8 —m/3~ && g2 and 8 = vr/3 —yg with
y = O(1). In the first case we get from (5.13)

Z'( f)—: 6f (re) ln sin P dP.
0

Then, from (3.10),

Re p(E) = Z'(b, u~) + Z(b, z).

The following identities are used below

(D2)

Qfs ——wP7/ 2 + o(rl ),6sin 38 —i sin68
(D10)

and it is easy to see from (D9) that Z(Eui) = 0 in this
case.

When 8 = vr/3 —yrj with y = O(1), (5.17) must be
used rather than (D10). Defining the constant

Z(sin 2ng) = sin 2ng ln sin P dP = 0,
0

7r
Z'(cos2ng) = cos 2nglnsingdg = ——.

0 2n
(D4)

ui(P) = uip + 2Re (ur4e '~). (D5)

We calculate below Re p(E) with remainder of order e4.
First we consider Z(b, w) in two possible cases q & 3 and
q = 3. If q & 3, then ui(P) = O(q ) only if 8 is suKciently
close to x/4, that is, if q = 4. Then

~p(&')
3(64y2 + 81)

one obtains

Z(b, ip, e"&+oui, e s*&)

gvrK sin 38
[8ysin38+ 9cos 38]3

= —9~Kyrl + O(rI ).

(D11)

(D12)

Noting that Amp = 0 and

g(+e2ni4 ) (e
—2mie 1)2n

one obtains Rom (D6)

(D6)

Equation (D12) is the O(e ) contribution of ui(P) to
Re p(E).

Next we calculate the contribution of Z(b, z) to
Re p(E). Using the expression (5.28) for z2($) one finds
that

X(b,ip) = ——Reui4 (e
'*' —1) .

4 (D7)
Ez (P) = (cos4$ —cos2$),

2
(D13)

If 8 = vr/4 —yrI with y = O(1), then ui4 = O(F2) [see
(5.21)] and e+ ' —1 = O(g2), so that

yielding

Z[& '(&)] = (D14)
Z(&ui) = O(rl ) for all 8 in the band.

If q = 3 then using (D6) one obtains

(D8)
Now the contribution of zs(p) is calculated in the two
cases q & 3 and q = 3. If q ) 3, then (5.34) and (5.33)
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imply that X[6,Z (P)] =' 0. If q = 3, then Rom (5.36)
one obtains

i((')
64 1 —e 's 27(( )/4 —6iy'

and so on. After some algebra one obtains

X[Az (P)] = 97rKyrj + O(q ).

(D15)

(D16)

Note that the O(res) contributions of (D12) and (D16)
sum to zero.

Finally mo ——I/x to normalize the probability distri-
bution function. Combining the contributions of orders
less than e one obtains

2

Rep(E) = srI +O(e ) =
z +O(e ).

Ssin 8
(D17)

2. Calculation of Imp

As above, we find that

vr w d = 8+0 g for all 8 in the band

(D20)

[compare with (D7)]. If q = 3, the contribution of order

We have to calculate

Imp(z)

=barf

p(p)dp

w +z d. (D18)

First we evaluate the integral of to(P). If q ) 3, then
m(P) is given by (D5), so that

d =0+ —Im w4 1 —e ' . D19

comes from

—+ 2Re (urse '~) dP.
1 6i

71.—8
(D21)

The contribution of zs(p) depends on q. If q ) 3, we use
(5.33) to obtain

zs(p) d4 =—
~—8 24

If q = 3 and i8 —vr/3i )) g, we use (5.36) to obtain

(D25)

z d =Op

and for 8 = vr/3 —yrl2 (D15) yields

81K
8

~ f *'{y)zy =—

(D26)

(D27)

The final result is

Imp(E) = 8 —
s +O(e ),

(4')
(D28)

24 sin 0
and is valid for all 0 in the band, both near and far &om
vr/3.

We consider separately ]0 —s/3] )) rj and 0 = s/3 —yrj
with y = O(1). In the former case we use the expression
(D10) and obtain

—+ 2Re (use '~) dP = 8 — . (D22)
m —8 24

In the latter case we use (5.17) and obtain
7r

vr —+ 2Re (tuse '~) dP = 0 —8Ky . (D23)
~—8

Next we calculate the integral of z(P). For all 8 we have

vr z d = 0. (D24)
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