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Exchange-interaction model on the simple-cubic lattice
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The ferromagnetic exchange-interaction model on the simple-cubic lattice is studied by considering
the effective Hamiltonian of a cluster of eight spins which form a cubic unit cell. Through the use of the

Bogoliubov inequality and a group-theoretical method, thermodynamic properties of the model are ex-

amined. Critical parameters are then determined for general spins.

I. INTRODUCTION

In the spin- —,
' Heisenberg model the interaction be-

tween a pair of spins has the property that it permutes
the coordinates of the two spins. The generalization of
the spin-permutation property to a system of higher spins
leads to the exchange interaction (EI) model. ' The EI
model which contains nonlinear interactions (S; Si) is of
theoretical interest. Under the mean-field approximation,
the spin-S EI model and the (2S+1)-state Potts model
are shown to possess exactly the same thermodynamic
properties.

As the EI model is a generalization of the Heisenberg
model, previous studies presumed that the EI model is
characterized by second-order phase transitions with
which the critical temperatures and critical exponents of
the EI model are determined. ' ' ' Recently, the order
parameter of the ferromagnetic EI model has been stud-
ied by using the mean-field theory and the constant-
coupling approximation. It is found that the system un-

dergoes a first-order phase transition for S)—,'. In these

methods, thermodynamic properties depend only on the
coordination number z, rather than on the detailed struc-
ture of the lattice. Generally, the results obtained by the
mean-field theory are correct only for z)&1, while the
constant-coupling approximation gives a correct result
for the linear chain, and predicts reasonably good results
for the body-centered (z =8) and the face-centered
(z = 12) cubic lattices.

The Hamiltonian of the EI model is isotropic in spin
space. It is shown rigorously by Thorpe that such a sys-

tem exhibits no long-range order at finite temperatures
for one- and two-dimensional lattices. Therefore, the
plane triangular lattice, which has z=6, cannot have a
phase transition. On the other hand, the simple cubic (sc)
lattice, which has the same coordination number z =6, is
believed to have a phase transition. Therefore, the
constant-coupling approximation is not expected to give
good results for the sc lattice. The purpose of this paper
is to study the ferromagnetic EI model on the sc lattice.
We consider a cluster of eight spins which form a cubic
unit cell of the lattice. Interactions within the cluster are
treated exactly, and the effects of other spins are de-
scribed by an effective field which is then determined
self-consistently.

II. CLUSTER HAMILTONIAN
AND THERMODYNAMIC PROPERTIES

2S I

Pv= g g A(S, 1)Q'"(S;)Q'"(S ),
1=0m= —I

(2)

where A (S,1) are constants.
In the cluster approximation, we divide the system into

equivalent clusters. The approximate Hamiltonian is

%„=g&(c„),

where %(c„)is the Hamiltonian of the nth cluster and
the summation is over all clusters. The intracluster in-

teractions are treated exactly and interactions between
clusters are replaced by effective-field terms. Consider
clusters of eight spins which form cubic unit cells. Each
cluster contains twelve pair interactions —JP;~. as shown

by solid lines in Fig. 1. Each spin in the cluster has three
field terms

FIG. 1. A cluster of eight spins which form a cubic unit cell.

The Hamiltonian of the EI model is given by

&=—JgP;
(ij )

where P, is the spin-exchange operator which permutes
the spin coordinates of S; and S., J is the coupling con-
stant, and the summation is taken over all nearest-
neighbor pairs of spins. The exchange operator can be
expressed in terms of Hermitian spin tensor operators
(multipole moments) Q'",
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as represented by dashed lines. Here (Q'") are thermal
averages of the inultipole moments Q'".

The Hamiltonian of the eight-spin cluster shown in
Fig. 1 is

&(c)=—J g PJ
(ij & Ec„

2S 1—3J g g A(S, l)(g'") g Q'"(S, ), (4)
1=0m= —1 i 6c„

where (ij ) Ec„andi Fc„indicate that the summations

are over bonds and sites of the cluster e„.Since all clus-
ters are equivalent, the subscript n may be omitted for
convenience. For the ferromagnetic EI model, each spin
is in the same state IP) at the zero temperature (IP) is
any single-spin wave function). Since all multipole mo-
ments are equivalent for the EI model, ' it is reasonable
to assume that

(g'") =q(T)(PIQ'"IP) for 1%0,

where q( T) is called the polarization (or the order param-
eter) of the system. Equation (4) then reduces to

%(c)=—J g P; —3Jq gpg(S;)

where p&(S;) is the single-spin density inatrix for the spin

S, to be in the pure state
I P ),

2S l

p~(S,. )= g g A (S,l)(PIQ'"IP)g'"(S, ) . (7)
1=0m= —I

For any approximate Hamiltonian &„,the Bogo-
liubov inequality" is stated as

F,„„,~F= —kT ln Tr exp( —&„/kT)+ (JY—%q ),
(8)

where F,„„,is the exact free energy and ( ) is the
thermal average taken over the Hamiltonian &z. For a
system of N spins, there are N/8 clusters. It is straight-
forward to show that

2S 1

(%—&g) =(N/8)(12J) g g A(S, I)q'&&lQ'"IP)'
1=1 m= —1

1

2S+ 1

=(N/8)(12J)(2Sq +1)/(2S+1) .

&ij &Cc inc
—24J(1 —

q )/(2S+ 1), (6)
I

Let K =J/kT. The free energy defined in Eq. (8) be-
comes

F(Kq)= ——kTln Trexp K g Pv+3Kq g p&(S;) +12JN 2Sq 2+2q —1

&ij &Cc i E.c

2S 2+2 —1—kT ln Z, (K, q )+ 12Jc 2S+ 1
(10)

As F gives an upper bound to the exact free energy, the
stable solution of the order parameter q ( T) is the one
which minimizes F(K,q). Therefore, the self-consistent
equation for q( T) can be obtained from BF/Bq =0. If we
define L =Kq, then dF/Bq =0 leads to

24(2Sq+1) 8
1 Z2S+1 aL'" '

For the sc lattice of N sites there are 3N bonds. The
internal energy per spin UIN is

3I(p,, )=—— x— p(, )
U J
N 4 (ij}~c

J a
lnZ, (K,L ) . (12)

The dimensionality of matrices involved is
(2S+1) X(2S+1) . For example, it is 390625X390625
for S=2. Numerical calculations of Z, (K,L) and its
derivatives are highly nontrivial, especially for large
spins. We developed a group-theoretical technique which
simplifies the calculations considerably.

III. APPLICATION OF GROUP THEORY

For a cluster of n spins the matrices of the operators
P; and their products fo. rm a (2S+1)"-dimensional rep-

I

resentation (called the I representation) of the symmetric
group of degree n, denoted as S„.The group elements
can be divided into classes. ' The number of elements in
the class ~ will be denoted as h„,and the character of this
class in the irreducible representation v will be denoted as

Chen and Joseph have proved the following
theorem which is very useful for the EI model.

Theorem I. If A is any matrix which commutes with
all elements of 4„in a inatrix representation I, then

h„Tr[(Pr ) W]= gg y„'Tr(P"') Tr(P %) (13)
V K

where I is any integer and P' ' and P "' are sums of ele-
ments in 4„in the I - and v-irreducible representations,
respectively. P„is any element in the class ~ and the
summations are taken over all i.rreducible representations
v and all classes sc. This theorem can be generalized to
the following. '

Theorem II. For any matrix A commuting with all
eleinents in 4„in a matrix representation I, iff(P) is an
analytical function of P, then

h„Tr[f(P ')%]= g g y,'"'Tr[f(P' ')]Tr(P'„"'A) .
V K

(14)



1452 BRIEF REPORTS 49

The proof of Theorem II is straightforward. We ex-
press f(P ') as a power series of P'"), apply Theorem I,
and then resume the power series of P'") to obtain
f(@"').

With Theorem II we can calculate Z, (K,L} and its
derivatives shown in Eqs. (10)—(12). If we define

X & ij ) E c Pij ~

f(P "')=exp(KP "'),
and

%=exp 3LQ p&(S;}
iEc

2

1

2

2
5

3
10
20

100

kT, /J

2.5363
1.8126
1.5089
1.3326
1.2141
1.1275
0.723:
0.5780
0.3729

0
0.4917
0.6543

0.7351
0.7834
0.8155
0.9316
0.9612
0.9912

L /NJ

0
0.2078
0.3924
0.5020
0.5663

0.6038
0.5496
0.3736
0.0646

TABLE I. Critical parameters obtained from the eight-spin
cluster.

then the left-hand side of Eq. (14}is equal to the partition
function Z, (K,L ). It is also straightforward to see that
P'") and % commute. Therefore,

h„
Z, (K,L)= g g, y(k")A("'(K)Bk(L),

V K

(15)

where A'"'(K) and B„(L)are defined and calculated as
follows:

A '"'(K )—:Tr exp K g P
(ij&ec

= g exp(KA, (")), (16)

where A,
'"' are eigenvalues of the operator

p(v) — ~ p(y)
Ij

&ij ) Ec

The explicit forms of P ' in any irreducible representa-
tion can be obtained by the technique introduced by
Yamanouchi. ' We find P "' and then diagonalize P'"' to
obtain A,

( ). For Ss, there are 22 irreducible representa-
tions, and the size of the greatest matrices is of dimension
90X90 (for v= [4211]).

The matrices P'„"' and % are of dimension
(2S+ 1) X (2S+ 1) . But B„(L) can be calculated
analytically. there are 22 classes. For the class
K= [aiaza3 ] (a; & 1, a; &a;+i, ga; =n =8) it can be
shown that

=g [exp(3a;L)+2S] for K= [a,aza3

(17)

From Eqs. (15) to (17), we can calculate the partition
function Z, (K,L) for any values of K and q (L=Kq).
The derivatives (}A( )/BK and dB„/dL can also be ob-
tained easily froin Eqs. (16) and (17). With these deriva-
tives, (8/M )lnZ, and (8/BL )lnZ, can be calculated.

We note that the method developed here for the eight-
spin cluster can also be applied to the cluster of four
spins which form a square, and to the cluster of two
spins. For other clusters, P and % in Theorem II do not
commute, and the group-theoretical method is no longer

IV. RESULTS AND DISCUSSIONS

For a given value of S the polarization q(T} is obtained
by solving Eq. (11) for each temperature. In general,
there are three solutions: (i) the trivial solution q =0, (ii) a
solution with dq /d T & 0, and (iii) a solution with
dq/dT&0. The solution with dq/dT&0, which is un-
stable, exists only in a small range of temperatures. The
free energy as a function of q is a maximum at this solu-
tion. The solution with dq/dT(0, which describes the
ordered phase, exists at low temperatures. This solution
has the lowest free energy and is the stable solution below
the ordering temperature T, . It becomes metastable for
temperatures above T, . It is the trivial solution which
has the lowest free energy, and is stable above T, . In Fig.
2, we plot nontrivial solutions q(T) for several spins.
The stable solutions are shown by solid lines, and the
metastable or unstable solutions by dashed lines. The
internal energies, calculated by Eq. (12) for the stable
q(T), are given in Fig. 3. The phase transitions are first
order for S & —,'. In Table I, we present the ordering tem-

peratures, kT, /J, discontinuities of q at T„denoted q„
and the latent heats L/NJ (discontinuities of U/NJ at
T, ) for several spins.

Consider the latent heat first. We see from Table I that
L is small for small values of S and for S )&1. The latent
heat as a function of the spin has a maximum. This is
qualitatively different from the mean-field result,

L /NJ =3(2S—1) /[2S(2S+ 1 )],

I.O

0.8—

0.6 /2

0.4—

0.2

0,0 i ) ( }

0.0 0.5 ].0 t.5 2.0 2.5 3.0
kT/ J

FIG. 2. Polarizations (or order parameters) q( T) versus T for
several spins.

applicable. Therefore, the extension of the study to
larger clusters is extremely difficult.
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FIG. 3. Internal energies U!NJ versus T for several spins.

which approaches 3 for S» l. As mentioned above, the
cluster approximation described for the eight-spin (n =8)
cluster can be applied to clusters of four (n =4) and two
(n =2) spins, respectively. We have also calculated
L/EJ for n =2 and 4. The latent heat has a peak for
each n &2. If we regard S as a continuous variable, the
maxima of L/NJ occur at 1/S =0.27, 0.23, and 0.21, for
n =2, 4, and 8, respectively. The peak shifts to larger S
when n increases. The peak might occur at 1/S =0 when
n ~~. More studies are needed to confirm this point.

In the mean-field approximation, the Oguchi method
and the constant-coupling approximation, q, are found
to be (2S —1)/2S. In the present calculations for the
four- and eight-spin clusters, q, are smaller than
(2S—1)/2S, but the differences are within a few percent.

In order to see how the ordering temperatures depend
on the cluster size n, we consider S as a continuous vari-
able and plot kT, /J versus 1/S in Fig. 4 for n =1, 2, 4,
and 8, respectively. The n =1 result is simply the mean-
Geld solution and the result for n =2 is what is obtained
by the Oguchi method. When S=—,

' the EI model is
identical to the Heisenberg model. Based on the high-
temperature susceptibility series of 10 terms, '5 kT, /J for
the sc lattice is determined to be 1.677+0.003. For the
EI model (S & —,'), high-temperature susceptibility series
are available only for seven terms. The series
coeScients are irregular for large spins. For the sc lattice
some series coeScients become negative for S ~

—,'.
Therefore, reliable estimates of T, are obtained only for

S= 1 (kT, /J=1. 27+0 02)

0.0
0.0 1.0 l. 5 2Q

I/$
FIG. 4. Ordering temperatures k T, /J versus 1/S for

different cluster sizes n. The high-temperature series-expansion
results are shown by open circles, and the predicted T, for
n ~ 00 is represented by the dotted line.

0,5

For comparison, k T, /J obtained by the high-

temperature series-expansion (HTSE) method are shown

by open circles in Fig. 4.
Usually, HTSE results are considered to be the "best"

values when exact or rigorous results are unavailable.
But it is important to note that in the HTSE method, T,
is analyzed by assuming that the phase transition is
second order. ' One determines the temperature at
which the susceptibility diverges. If the system under-

goes a first-order phase transition, this temperature is not
the ordering temperature, but is the temperature, called
T, at which the order parameter has an infinite slope.
For the EI model on the sc lattice, we see from Fig. 2
that T is very close to the ordering temperature, espe-
cially for small values of S. The percentaged difference
between T, and T for each spin is within the error bar
of the estimate of T, in the HTSE method. It is then
reasonable to believe that the series-expansion results for
the EI model on the sc lattice are accurate, although the
phase transitions are first order.

The ordering temperatures obtained in the present
study for the eight-spin cluster are higher than the HTSE
results. If we assume that results of the cluster approxi-
mation will converge uniformly to the HTSE results
when n ~~, then the best estimates of the ordering tem-
peratures for general values of S may be given by the dot-
ted line shown in Fig. 4.
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