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Coulomb correlations in hopping through a thin layer
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A detailed microscopic investigation of the efFect of Coulomb correlations on the inelastic contribu-
tion to tunneling via localized states through thin amorphous barriers is presented. The theoretical
calculation together with experimental results show that Coulomb correlations play an important
role and also imply that localized states whose single-particle energies lie well below the Fermi level
participate in transport due to the Coulomb correlations.

I. INTRODUCTION

Theoretical and experimental interest in transport via
localized states in tunnel junctions is a subject of in-
creasing interest due to its importance in microelectronic
devices. At the same time, such structures constitute a
model system for studying the role of electron-electron
interactions and correlations in transport phenomena in
general.

The presence of localized states in the barrier of a
metal-insulator-metal tunnel junction leads to a wide va-
riety of transport mechanisms. Experimental work on
amorphous silicon (a-Si) tunnel junctions demonstrates
a crossover &om direct tunneling to resonant tunnel-
ing to inelastic hopping with increasing barrier thick-
ness, temperature, and applied bias voltage. At suf-
Gciently low temperature and bias, direct tunneling &om
one electrode to the other dominates the conduction in
thin barriers. As the barrier is made thicker, resonant
tunneling via individual localized states formed by de-
fects in the barrier eventually dominates. This process is
elastic and coherent. Increasing temperature and/or bias
voltage quickly lead to a regime in which phonon-assisted
hopping processes dominate the conduction. These pro-
cesses are inelastic and incoherent. The first hopping
channel of this kind to contribute consists of chains of
two localized states approximately aligned in the tunnel-
ing direction and dividing the barrier roughly into three
equal segments. An electron tunnels elastically to the
first site, hops to the second site accompanied by the ab-
sorption or emission of a phonon, and then tunnels elas-
tically to the far electrode. Chains consisting of increas-
ing numbers of localized states contribute to the conduc-
tion as the temperature, bias, or barrier thickness are
increased further. In the thickest junctions, a crossover
to Mott variable range hopping was observed. '

All of these transport processes involving localized
states are expected to be highly correlated due to the
presence of electron-electron interactions. Efros and
Shklovskii predicted that the Coulomb interactions be-
tween electrons on different sites in a system exhibiting

variable range hopping should lead to a gap in the den-

sity of states at suKciently low temperature and to a
crossover &om the Mott T ~ to a T ~ law. Such a
crossover has been observed experimentally. Little at-
tention has been paid, however, to the role of the on-

site Coulomb interaction in hopping transport. Glazman
and Matveev predicted that the on-site Coulomb inter-
action U would cause resonant tunneling via localized
states to become highly correlated. They further pre-
dicted that, in tunnel junctions with a high density of
localized states, these correlations should reveal them-
selves most clearly in the magnetic field dependence of
the conductance. Two of us (D.E. and M.R.B) have re-

cently demonstrated this effect experimentally, but were

led to postulate correlations in the hopping transport
channels incorporating two localized states in order to
account fully for the data. 2

In this paper we extend the calculation of Ref. 8 to
cover the case of correlations in the hopping chains con-

taining two localized states. We show that the mag-
netic Geld dependence of the zero bias conductance con-
tribution of these chains can be written as G2(H, T) =
o 2T I f2 (ps H/ks T). We compute the conductance nor-
malized to its zero field value, f2(z), exactly in the limits
of zero magnetic field and very strong field, and approxi-
mately for arbitrary fields. Unlike the function fi(2:), de-

scribing the correlations in the resonant tunneling chan-

nel, found in Ref. 8, f2(z) depends upon the distribution
of localized states as a function of energy. Finally, we

compare the theory with the experimental results and
Gnd quantitative agreement between the two. A brief
discussion of the implications follows.

II. CLASSIFICATION OF THE CONDUCTION
CHANNELS

Although the transport at low bias through the two-

impurity conduction channels involves electrons within a
narrow energy interval of order k~T around the Fermi
level, the conductance depends in a crucial way upon the
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single-particle energies of the localized states that con
stitute each chain. The zeroth order Hamiltonian (with
no tunneling term) describing the two-site chains can be
written as

I= ) e' Tl' + ) Ui2ni~n2~ + ) Un;~n, ~, (1)

TABLE I. The eight types of chains: energies and allow&ed

occupation numbers.

Type
of

chain
AA

A IBII

BifAI
A"B'
BlAll
B'B'
BB

0

—U

—U —U&g
—U —U&g
—U —2Ugg

62

0

—U

—U —Ug2
—2Uyg

—U —2Ug2

Number
of

electrons
Om1
I m2
1++2
1M2
2++3
2++ 3
2++3
3m4

where U and Uq2 are the Coulomb interaction energies for
two electrons to occupy the same site and difFerent sites,
respectively; e; = ~; + crp~H is the energy of an elec-
tron with spin a' = +1 at site i = 1, 2, measured from the
Fermi level. In the experiments on a-Si tunnel junctions, 2

the Coulomb energies U and Ui2 are estimated to be of
the order of 100 meV and 10 meV, respectively, i.e., much
greater than p~H, %AT, and eV. The last circumstance
allows us to develop the following classification of hop-
ping chains.

In the absence of interactions only the impurities with
energy levels close to the chemical potential participate
in transport. In the case of resonant tunneling through
a single localized state with strong on-site interaction U
there are two types of relevant impurities: the ones with
e —0 or e —U. We will denote these impurities as
types A and B, respectively. A type A impurity has an
energy level close to the Fermi level (with accuracy k~T)
and, therefore, may accept either 0 or 1 electron, because
the energy for the second electron is shifted by U ))
k~T. For a type B impurity e = —U, i.e., it is always
occupied by at least one electron. It may or may not
accept a second electron, since its energy shifted by the
Coulomb interaction is now in the vicinity of the Fermi
level. The contributions to the conductance from these
two types of impurities are identical due to the electron-
hole symmetry.

In the case of hopping through a chain of two impuri-
ties we need a more detailed classification to account for
the intersite interaction U~2. Instead of a single type A
we have to introduce three subtypes: A, A', and A", cor-
responding to energy levels close to 0, —Uq2, and —2Uq2,
respectively; type B must be split into B, B', and B",
corresponding to e —2Uq2 —U, —Uq2 —U, and —U.
There are eight types of two-impurity chains, listed in
Table I using this notation, that can contribute to the
conductance. For each of these eight types the processes
of electron tunneling &om the left lead to site 1, hopping
&om 1 to 2, and tunneling &om site 2 to the right lead are

allowed, i.e., do not require activation energy exceeding

kgT.
To find the conductance, one has to take into account

all the eight types of chains. However, some of the chains
are equivalent due to electron-hole symmetry n,
n; . Applied to the Hamiltonian (1), this transformation
changes the energies of the localized states according to
the rule

&'~ ~ —&z~ —U —2Ug2. (2)

One can easily see that under the transformation (2) the
last four types of chains (see Table I) are reduced to the
first four. Additionally, the A'B" and B"A' chains are
also equivalent due to left-right symmetry. Thus in our
calculations we need to consider only the AA, A'A', and
A'B" chains.

III. CONDUCTANCE OF A SINGLE AA CHAIN

Ppp+) (P p+Pp ) =1.

Following Refs. 5 and 8, we solve the transport prob-
lem in the &amework of the kinetic equation approach.
Assuming without loss of generality eq ( ~2, the four
independent kinetic equations may be written as

P o ——2I i[fi Poo —(1 —ft )P o]
—2p[P pN —Pp (N+ 1)],

Pp = 2I' [f Ppp —(1 —f )Pp ]

+2p[P pN —Pp (N+1)].

(4)

Here we have introduced the Bose function N
[exp P(e2 —ei) —1] for the absorbed phonons (P:—
1/k~T), the fermion occupation numbers fi (ei) and
f„(e2) in the two leads, the widths of the levels with
respect to tunneling to the left and right electrodes, I'~

and I „,and a parameter p that characterizes the phonon-
assisted tunneling between the two sites, 5

p = vr) ~T~] b(Ac —(uq),

Here we consider the contribution of the first type of
chain, AA. Analogous calculations for A'A' and A'B"
chains are outlined in Appendixes A and B. For the
AA configuration five different occupations of the two-

impurity sites are possible: (0, 0), (t, 0), ($, 0), (0, $),
(0, f). We denote the probability that the first localized
site be occupied by a spin o and the second site be empty
by P 0, the probability that the first site be empty and
the second be occupied by a spin o by Pp, and the prob-
ability that both of these sites are empty by P00. These
occupation probabilities are not independent, since
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Here Ee = ~e2
—ei~; u~ is the frequency of the absorbed

phonon; Tg and T„are the matrix elements of transitions
from state k in the left lead to the first impurity, and
from the second impurity to state p in the right lead;
and Tq is the matrix element of tunneling between the
two impurity states accompanied by the absorption of
phonon q (see Ref. 5).

The two terms in the right-hand side of Eq. (4) have a
simple physical meaning: the occupation of site 1 can be
changed by the processes of tunneling between the left
lead and the first impurity, or by hopping between the
two sites. Correspondingly, the first term in the right-
hand side of kinetic equation (4) represents the current
I' of electrons with spin 0 from the left lead to site 1,
whereas the second term gives the current —I ~ from
site 2 to site 1. A similar interpretation applies to Eq. (5).

In the stationary regime P p = Pp = 0. Therefore the
three currents I,I, and I " are equal and may
be written as

I = 2el'( [f( Ppp —(1 —f( )P p]

= 2ep[NP p (N + 1)Pp ]

= 2eI' [(1 —f„)Pp —f Ppp].

To calculate the conductance of the chain in the linear
regime eV && k~T, we take the derivative of the current
with respect to voltage, G = BI /BV. Then the partial
conductance G can also be written in three equivalent
forms,

( 1 BPpp
G = 2eI')fi Ppp

~ p(Ppp BV

(1 OPp= 2epNP p
~(P p BV

(1 OPp= 2eI' f„pp
~(Pp OV

BP p + eP p ctV )
1 ctPp. l

Pp BV )
1 OPppit

Ppp OV )
(io)

We reckon all the electron energies from the chemical
potential of the right electrode, so that f~ is a function
of voltage while f, is constant. We also used the fact
that in equilibrium, at V = 0, the current is zero, and,
consequently,

fr~Pop = (1 —f~ )P p,

NP p = (N+1)Pp
f. Poo = (1 —f )Po

We do not know the derivatives of the occupation prob-
abilities in Eq. (10). However, we can find the partial
conductance G

Ppp ——Z
P o

——Z ' exp( —Pci ),
Po —Z exp( —Pe2 ),

(I'if' Ppp) + (pNP p) + (I „f Ppp)

To express the conductance explicitly in terms of the en-
ergies of the localized states, we use the following values
of the equilibrium probabilities of occupations:

where the partition function Z is defined as

Z = i + e-~"- + e-t'"- (12)

This gives the following result for the conductance of an
AA chain:

.2Pe2 (e~"- + 1) el&2~ eP&i~

(e~"- + 1)+

The above calculation shows how to find the contribu-
tion to the total conductance of an AA chain. Similar
calculations for the other types of chains are outlined in

Appendixes A and B.

IV. AVERAGE CONDUCTANCE

Thus far we have calculated the conductance of a single
two-impurity chain. In the experiments on a-Si junctions,
however, many chains of each type contribute to the con-
ductance, and the junctions are of sufficiently large area
to be in the self-averaging regime. ' ' In order to corn-

pare our calculation with the experimental results, we

need to average over the positions and energies of the
localized states. Note that the conductance of any chain
strongly depends on the positions of localized sites as
reflected in the parameters

I't = Er exp( —2zi/a),
I'„= Er exp( —2z2/a),

p = E&(ei, e2) exp( —2ri2/a).

(i4)
(i5)
(i6)

Here zq 2 denote the distances from the localized sites to
the nearest lead, rq2 is the distance between the two sites,
and a is the localization length. In the first approxima-
tion the preexponential factors E~, which represent the
energy scale of the corresponding transition rate, may be
considered to be independent of the coordinates. The for-
mulas for the partial conductances of the AA and A'8"
chains have the same general form

2Pe2 (A. B C l
D (I'( (i7)

A B C (ABC'—+ —+ —&3I—
I'(

(ABC i "'
EEr'E~)

exp
i

Here d is the width of the barrier. Thus the maximum
possible conductance of a single chain is

[see Eq. (13) and Appendix B]. The parameters A, B, C,
and D depend on the energies of the localized states, but,
to a good approximation, not on their coordinates. For
A'A' chains, this inverse resistance structure (17) is valid

only in the limiting cases of low and high fields (x = 0
and x = oo, see Appendix A). Let us find the maxi-
mum possible value of the conductance for fixed ~q, c2.
Obviously,
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(2O)

2 e3 E3E ( 2d
exp ——

I
(19)

3D gABCy g 3ay
This maximum value is achieved if the impurities are in
the optimal positions: they must be aligned along the
tunneling direction (z axis), with the distances zi, ri3,
and zz chosen in such a way that

A B C
r~=~ =r

This optimal position corresponds to zq —rq2 z2

d/3. Due to the strong exponential dependence of con-
ductance on the coordinates of the localized sites, only
the chains close to the optimal configuration give a sig-
nificant contribution to the conductance. Then one can
write the integral over the positions of the sites in terms
of their displacements &om the optimal positions, and
the conductance averaged over the positions and ener-
gies of impurities takes the form

(G) = ~ J l/ —2dll ). / @r'~~

d(id(3d P
exp(2(i/a) + exp[—2((i + (3)/a] exp(p /ari3) + exp(2(3/a)

(22)

A = e~"-+].,
leP 2 eP z

D = 1+) (e
—P"- + e

—P"-)

The substitution of these formulas into Eq. (21) gives

(GAA(II T)) T /

o'3 ———a de (Ez'Ez) exp
I

4u 3 3 3 I i/3 / 2dl
3 & 3a)

(23)

where g~ is the density of states at energy e = 0 corre-
sponding to the A-type states and

Here (; is the displacement of the ith impurity from its
optimal position in the longitudinal (z) direction, p is
the displacement in the transverse direction, and r&2 is
the optimal value of r~2. We have also introduced the
densities of states gi and gz appropriate for the single-
particle energies of the first and second localized sites,
respectively.

In the first approximation rio3 ——d/3 and does not de-
pend on e; . This allows us to factorize the integral over
the coordinates. Further, the dimensional estimate of
(22) gives J = aasd, with a being a numerical factor,
whose exact value is unimportant for our purposes.

In calculating the integral (21) we have assumed that
the density of localized states is independent of energy on
the scale of pBH around the appropriate values (Table I).
In the experiment p~H is less than 500 p,V, and this is a
good approximation. However, we have so far left open
the possibility that the density of localized states may
vary over energies on the scale of U, which is estimated
to be on the order of 100 meV in the experiments with
a-Si barriers. In this case all the eight types of chains
listed in Table I contribute to the tunneling current.

For the AA chain, comparing (13) with (17) we see
that

1 . ( l&2+1
2 ((e~& + 1)

l

e* —e
l

(e~2 + 1))

dXydX2
X

]. + (].+ e 3~*)(e ~~ + e ~~)
(24)

Here we have taken into account the fact that the preex-
ponential factor in the phonon-mediated hopping rate p
is proportional to the energy of the phonon

which can easily be proven for acoustic phonons. s

An important property of result (23) for the average
conductance due to AA chains is that the latter depends
on magnetic field only through the ratio

This is not surprising since the origin of the magnetoresis-
tance is the spin polarization of electrons occupying the
impurity states, and the characteristic scale for this po-
larization is H kBT/IJB. We therefore expect all other
contributions to the average conductance to depend on
magnetic field through the same variable x,

(G""(a,T)) =,T'/'g„'J, (*),

(G (II, T)) = o3T gzigB«J'3(x),

(G (II)T)) —o2T gA" gB' J3(x))
(GB (H, T)) = o3T gB, J3(x),

(GBB(H, T)) = ozT4/ gB Ji(x)

(26)

(27)

(28)

(29)

(3o)

(31)

Above we proved the general form (26) [see Eq. (23)];
this also proves (31) due to the electron-hole symmetry.
The other two relations, (27) and (28) [and therefore
symmetry-related Eqs. (30) and (29)] are discussed in
Appendixes A and B.

The universal dimensionless functions Ji(x), Jz(x),
and J3(x) need to be calculated numerically. In terms
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(G2(*)) = ~2T" (» + 9B)Ji(*) + (9A + 9B')J2(*)

+2(gA' gB" + gA" gB' )Js (z) (32)

of these functions the magnetic field dependence of the
total average conductance due to two-site inelastic chains
can be found by summing the contributions from each
type of chain,

The function f2(z) may be compared with the experi-
mental data for a-Si barriers (see next section). Apart
&om the universal functions J;(z), it contains informa-
tion about the density of localized states at different en-

ergies, gg, g~, . . . , etc.
In the limit of high magnetic field, we can find f2 ex-

actly, because at x = 0 and x ~ oo the contributions of
all types of chains reduce to the general form (17). The
asymptotic values of the functions J, (z) are

(G2(*))
(33)

so that

Below we concentrate on the total average conductance
normalized to its value in zero field,

Ji(0) = 3.853, Ji(oo) = 3.102,

J2(0) = 3.868, J2(oo) = 3.102,

Js(0) = 3.017, Js(oo) = 0,

(34)

(35)

(36)

(~) 3'1 (9A + 9B + 9A' + 9B')
(9A + 9B) + 3.87(9Ai + 9B,) + 6.03(gA gB + gA" gB')

' (37)

where g~ is the density of type A states, etc.

V. DISCUSSION

If all of the localized sites contributing to transport
were to be found in the range of energies encompassed by
the A series of energies or the B series, but not both, then
the calculation predicts f2(oo) = 0.80. If, on the other
hand, the density of localized states is taken to be the
same at the six energies enumerated above, then f2(oo) =
0.45, in excellent agreement with the experimental results
(see Fig. 2 below). If we take the experimental value to
be 0.45 + 0.10, then we reach the interesting conclusion
that the density of states at the six energies are all within
a factor of 2 or 3 of one another, barring any pathological
dependence of the density of localized states on energy.

For arbitrary fields the integrals Ji(z) and Js(z) were
calculated numerically and are shown in Fig. 1. The ex-
act numerical evaluation of J2 (z) is quite cumbersome for
arbitrary z (see Appendix A). However, J2(0) is within
0.5'Pc of Ji(0) and Ji(oo) = Jq(oo) by particle-hole sym-
metry. Thus we feel it is justified in this context by the
requirement of monotonicity and near coincidence at the
end points to take Ji(z) Jq(z) for arbitrary z for the
purpose of comparing theory and experiment.

Note that f2(z) depends upon the relative density of
states at the various single-particle energies enumerated
in Table I. In contrast, the function fi(z) derived in Ref.
8 for the magnetic field dependence of the resonant con-
tribution to the conductance is independent of the ratio
gA jgB (these are the two approximate single-particle
energies that yield a contribution to resonant tunneling
since there is no Ui2 term in this case). Ji (z), J2(z), and
Js(z) all decrease monotonically with z, so the predicted
magnetoresistance is always positive.

The magnetoresistance of the two-site hopping chains
arises physically &om two distinct mechanisms. For sim-
plicity consider a single AA chain. Each localized site has

associated with it two spin-degenerate localized states,
so there are two separate channels associated with the
chain: one for spin up electrons and one for spin down
electrons. These two channels are highly correlated be-
cause the on-site and the intersite Coulomb interactions
permit at most one electron to be anywhere on the chain.
The application of a strong magnetic field (z )& 1) splits
the spin degeneracy. When the distribution of localized
states is dense, the net effect is on average to replace
every pair of correlated channels with a single, uncorre-
lated channel capable of transporting spin down electrons
only. 2 Intermediate fields have this effect only partially,
of course. Similar reasoning applies to the A'A', B'B',
and BB chains. The dashed curve marked A/B in Fig.

I I I I
)

I I I I

]
I I I I

)
I I I I

O

FIG. 1. Numerical calculation of the functions Ji(x) and

Js (z).
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of states at each of the six relevant single-particle energies
is roughly the same within a factor of about 2.

Thus, we reach the interesting conclusion when we
combine the theory with the experimental data that hop-
ping conduction via localized states in disordered materi-
als is in fact highly correlated by the presence of a strong
on-site Coulomb interaction with additional correlations
present due to intersite Coulomb interactions. Local-
ized states whose single-particle energies lie far below the
Fermi level participate in hopping transport. Finally,
we find that the single-particle density of localized states
in unhydrogenated amorphous silicon is roughly constant
&om e = 0 down to at least e = —U. We point out that
the theoretical methods of this paper can be combined
with transport measurements in other disordered insula-
tors to form a crude spectroscopy of the distribution of
localized states.

FIG. 2. Theoretical prediction for f2(z) when only A or B
states are present (dashed curve A/B), and when the states
at all six energies are present in equal proportions (dashed
curve A/A'/A" /B" /B'/B) The sol.id line is the prediction
for a particular choice of the distribution of localized states
(see text). The markers are experimental data from Ref. 2.

2 shows the theoretical prediction for f2(z) if the local-
ized states are all type A or all type B. The proximity
of f2(z) to 1 for z )) 1 for these two cases indicates the
strong degree of correlation present in zero field, since
two correlated channels (zero field) do not conduct much
more than one uncorrelated channel (strong field).

A different mechanism is responsible for the suppres-
sion of the conductance of the A'B", A"B', B'A", and
B"A' chains (hereafter called AB chains) in a strong
magnetic field. The A series of states and the B se-
ries differ fundamentally in that in a strong field the
A series transport only spin down electrons while the
B series transport only spin up electrons. Thus, a
strong field completely breaks the AB chains and leads
to a more drastic suppression of the conductance if
AB chains are present (in zero field). This is re8ected
by the limit Js(oo) = 0. The dashed curve marked
A/A'/A" /B" /B'/B in Fig. 2 shows the prediction if
the density of localized states is the same for all six rel-
evant energies. The various symbols are experimental
data for four different temperatures &om a Mo/a-Si/Mo
tunnel junction with d = 120 A. .2 The data were obtained
by subtracting off the resonant tunneling contribution to
the conductance; this procedure amplifies the noise and
the small systematic errors in the data since the resonant
conductance ranges from 86% of the total conductance at
1.5 K down to 74% at 2.4 K. The solid curve shows the
prediction of the theory if the ratio of the density of states
g~.g~ .g~ .g~ .g~ .g~ is taken to be 1:1.2:1.4:1.4:1.2:1,
corresponding to a slight bump in the density of local-
ized states below the Fermi level. We do not feel that
the data warrant such a close comparison with the the-
ory given the scatter in the data and the approximations
in the theory. We show this curve simply to indicate that
the data are consistent with the theory when the density

ACKNOWLEDGMENTS

H.B. wishes to acknowledge the support of the Theo-
retical Physics Institute at the University of Minnesota
and the Physics Department at King Fahd University
of Petroleum and Minerals. D.E. acknowledges support
&om NDSEG. The work at Stanford is supported by the
Once of Naval Research.

APPENDIX A: CONDUCTANCE OF AN A'A'
CHAIN

We consider the second type of chain where ei
—Ui2. Now we have eight possible states, (o, 0), (0, o),
(o, o ), and (o, —o ), where o = t for spin up and $ for spin
down. The (0,0) state is very high in energy and conse-
quently cannot be occupied. The associated probabilities
are given by P p, Pp, P, and P, respectively. We
have four independent master equations,

P p

Pp

P

2r„) [P...(1-f„..) -P.,f„.]
~l

+2p[Pp (N+ 1) —NP p],

2r, ) [P...(1-f,.) -P,.f,.]
~l

+2p [P pN —(N + 1)Pp ],
2I'i [Pp fi —P (1 —fi )]
+2I'„[P p f —P (1 —f„)],
21'i [Pp f) —P (1 —fi )]
+2I'„[P pf, —P (1 —f„)].

(A1)

(A2)

(A3)

(A4)

G=2epN) P p(W pWo ),

we obtain

Taking the derivative with respect to voltage in the limit
V —+ 0, we obtain a system of equations for the 1ogarith-
mic derivatives Wx. = P&/Py Solving these eq.uations
and substituting in the expression for the conductance
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where

x e
i a ~(i + Rp~ii

—1

+a, l
~ ), (A5)

, + " ):a +R& a +HO a +Bp
Thus we arrive at the exact result Jz (0) = 3.87, very close
to Jq(0) = 3.85. In addition we have J)(oo) = Jz(oo) as
required by particle-hole symmetry.

APPENDIX B: CONDUCTANCE OF AN A'B"
CHAIN

2I')
R) = e "ft(e& + U12),Z

2I'„R„= e "f (ez + U).z),

27 — ~Ro ———e P" N(Ae),

g ~
—P (~1+~2+ U12)

x ) 1 + —2ox + P(Ey~+Ugm) + P(Eg~+Uzz)

and f and N are Fermi and Bose functions, respectively.
The presence of Rp /(Rp + 6 ) ln the second term of
(A5) spoils the usual inverse resistance structure of the
conductance (17). However, the general form (27) of the
average conductance due to A'A' chains still holds. To
prove this, one only has to show that the conductance
(G+ +

) scales as T4/3 if temperature and magnetic field
are changed proportionally, so that their ratio z is con-
stant. This can be done in the same way as in Ref. 5. At
fixed 2: one can easily see &om Eq. (A5) that the optimal
position of the two impurities in a chain corresponds to

r, - ~ - r„-r -=(E,E,) / exp
~

——
~

.( 2d )

To Gnd the average conductance, the maximum value
G Pr should be multiplied by the "phase volume"
of the nearly optimal chains. The latter is proportional
to T, because only the sites with energies e; T con-
tribute to the conductance. Taking into account that
E~ De T, we find (G ) T /, with the propor-
tionality coefBcient depending on x, in complete agree-
ment with Eq. (27).

The limit z = 0 restores the structure (17) with the
following parameters:

-P(.,+U) + 1

~
—P (~1+U) —P (~2+U)

—P(~1+U) + 1

D —2 + ) ( 1+U) + 2g(~&+U)

We consider the third type of chain, eq —Uq~ and
—U. The number of unknowns amounts to seven,

Pp, P, P, and Pp2, following the same notation
as before. In the presence of a magnetic Geld there are
seven master equations which can be written as

Pp

P
P

Pp2

2r„[(1—f,.)Po2 —f, .Po.—]

+2ri[(1 —fi )P —
f& Po ]

+2r([(1 —f( )P —f( Pp ],

2r([f( Pp —(1 —f( )P ],
2I' [f Po —(1 —f )P ]

+2p[(N + 1)Po2 —NP ],

2p ) [NP —(N + 1)Ppz]

(B1)

(B2)

(B3)

+2r„) [f, P —(1 —f, )Po ) (B4)

-P(...+U) + &

—p(eq +U) + (1 + 2nx)

[1 + —P(Elm+U12) + P(E1—cr+U12)]

Using these results back in (21) and comparing with Eq.
(28) we obtain

l+2 +1
)/3

J3 Z
2 f l(e" +I) ~e —e

~

(e" +I))
Axydx2

(B5)
e *2 + (1+e z~~)[1+ e ~&(1+ e~~*)]

'

The result of a numerical calculation of integral (B5) is

plotted in Fig. 1.

The above equations can be solved using the same tech-
nique as in Sec. III. As a result we Gnd the same general
form (17) of the partial conductance G with the follow-

ing parameters:

—P(~1 +U12) + y

—P(62cr +U) —P(61cr +U12 )
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