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We have investigated the transport properties of insulating phases in Si MOSFET’s at extremely
low temperatures. It has been found that insulating phases in the quantum Hall regime behave in
a way that is similar to a low-density insulating phase: for all phases we find similar behavior of
both the activation energy for the resistance in the linear part of the current-voltage characteristics
and the critical electric field corresponding to the onset of nonlinearity. A characteristic length
extracted from measurements of the activation energy and critical electric field has been found to
diverge near each metal-insulator phase boundary. These results support the localization and reject
the Wigner crystal as the origin for any insulating phase. Nonlinear current-voltage characteristics
of the insulating phases can be explained by electric-field-induced electron delocalization. We have
obtained the critical index for the localization length s ~ 1, which is close to the value s = 1.3 for
classical percolation. We have tested that the effect of temperature can also be treated in terms
of delocalization so that the temperature dependence of the width of peaks in the conductivity is
explained by the thermal shift of the effective mobility edge of a Landau level. The experimental
results point out the existence of the mobility edge in two-dimensional systems in zero magnetic

15 MAY 1994-11

field, in contrast with the predictions of scaling theory.

I. INTRODUCTION

Recently much interest has been paid to the origin of a
low-density insulating phase in the two-dimensional (2D)
electron gas. At low electron densities the ground state
of an ideal 2D electron system is expected to be a Wigner
crystal. 3 The state of a real 2D electron gas in the pres-
ence of potential fluctuations is determined by the rela-
tion between the energy of electron-electron interactions
and the amplitude of a random potential. It is obvious
that in a strong random potential localization of elec-
trons should take place. Results of experimental investi-
gations on Si MOSFET’s (Refs. 4 and 5) have been inter-
preted in terms of Anderson localization at low electron
densities. However, some doubts in this interpretation
have been expressed in recent works.®™® In these exper-
iments strongly nonlinear current-voltage characteristics
were observed in the insulating phase: the dependence
V(I) is linear below some threshold voltage V. and sat-
urated at V > V..%% The resistance corresponding to
the linear part of the I-V characteristics reveals an ac-
tivated temperature dependence. Knowing the values of
the threshold voltage and activation energy one obtains
a characteristic length that is large compared to the dis-
tance between electrons, which excludes single-electron
localization and an explanation of nonlinearity in the
single-electron model. In some publications® ® such be-
havior was considered to be an indication in favor of the
Wigner crystal.

In the 2D case, apart from a low-density insulating
phase, there exist insulating phases in the regime of the
quantum Hall effect (QHE): at filling factors close to an
integer the Fermi level is in a region of localized states.
Below the Fermi level there are the extended states of
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Landau levels capable of carrying a Hall current. (In
the case of the Hall bar sample the Hall current is car-
ried also by the extended edge states at the Fermi level.)
Because at sufficiently low temperatures the dissipative
conductivity 0., tends to zero, this state is an insulator.
Obviously, properties of the insulating phase defined in
such a way depend on the number of Landau levels be-
low the Fermi level, i.e., the insulating phase is charac-
terized by the Hall conductivity value. In weak magnetic
fields only a zero-Hall-conductivity insulating phase is
realized at low electron densities; see Fig. 1. When the
Fermi level lies in the extended states of a Landau level

H (T)

FIG. 1. Metal-insulator phase diagram in the H, N, plane
determined in two ways: (i) at a fixed value of oz, = 500 kQ
(solid lines) and (ii) at vanishing activation energy (symbols).
Digits indicate the Hall conductivity in units e?/h for different
insulating phases.
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the dissipative conductivity is finite and the 2D electron
system demonstrates a metallic behavior. Investigations
of the metal-insulator phase diagram for the 2D elec-
tron gas in Si MOSFET’s reveal that in the H, N, plane
each insulating phase is surrounded by the metallic onel®
(Fig. 1). Hence, a transition into the low-density insu-
lating phase occurs only if all the extended states have
passed, leaving the Fermi sea, through the Fermi level.
These results point out the similarity between all insu-
lating phases characterized by different values of the Hall
conductivity. The aim of the present paper is to prove
this statement by studying transport properties of the
electron system in the insulating phases.

The remainder of the paper is organized as follows.
In Sec. IT we discuss the possibility of a comparison of
transport properties of the insulating phases with dif-
ferent values of o,y. Section III describes samples and
experimental technique. In Sec. IV we report the ex-
perimental results on the Hall bar and Corbino samples;
these results as well as their relation to the Hall current
pinch in the QHE regime and to the scaling behavior of
conductivity are discussed in Sec. V. The main results
are summarized in Sec. VI.

II. I-V CHARACTERISTICS
OF INSULATING PHASES

By the properties of insulating phases to be studied
we mean nonlinear current-voltage characteristics which
define the values of resistance in the linear regime and the
critical voltage corresponding to the onset of nonlinearity.
As long as the resistance shows an activated temperature
dependence one can determine the density of states in an
insulating phase by measuring the activation energy as
a function of electron density.!'™!3 In the present paper
we are going to compare the following characteristics of
different insulating phases: (i) the density of states at the
metal-insulator transition and (ii) the behavior of the
critical voltage in the vicinity of metal-insulator phase
boundary.

For measurements of I-V characteristics the use of
Corbino samples is convenient. Indeed, in quantizing
magnetic fields there are two current channels in a sam-
ple: the dissipative channel at the Fermi level and the
dissipationless one through the extended states of Lan-
dau levels. In the Corbino samples these current channels
are disconnected because the dissipationless Hall current
does not contribute to the radial one proportional to o .
Hence, measuring the dependence of the potential drop
between contacts on radial current through the sample
we obtain I-V characteristics for any insulating phase.
Below we discuss the Hall bar geometry in view of I-V
characteristics.

In contrast to the case of Corbino geometry, in the Hall
bar sample the current channels are connected with each
other owing to the existence of edge channels. When the
Fermi level lies in the extended states of a Landau level,
electrons are backscattered between the opposite edge
channels by tunneling between different Landau levels at
the sample edges and diffusing through the upper Landau
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level in the bulk. The transverse (backscattering) current
has to be compensated by the drift motion of electrons in
Landau levels that gives rise to the longitudinal poten-
tial drop associated with p,,.'* If the tunnel resistance
determined by a tunneling rate between Landau levels is
not vanishingly small, the upper Landau level will be de-
coupled, which results in nonlocal effects.!®1¢ In this case
the longitudinal resistance depends also on the tunnel re-
sistance and contact properties.'*'7 720 On our Hall bar
samples the nonlocal effects were not significant because
values of 0., calculated from the resistances measured
were close to those obtained for Corbino samples.

Let us now consider the case of filling factors close
to integer, i.e., the QHE regime. It is well known that
at some value of the dissipationless bias current the re-
sistivity p,, rapidly grows and the QHE breaks down.
This phenomenon has been studied for a long time; how-
ever, it was impossible to distinguish unambiguously the
breakdown mechanism. A few possible mechanisms for
the breakdown, which include the bulk and edge ones,
have been proposed over the years: (a) thermal insta-
bility, whereby the rate of gain of energy by the elec-
trons exceeds their ability to relax by transfering energy
to lattice modes?!?2 (heating of the electrons eventually
leads to inter-Landau level transitions); (b) spontaneous
emission of phonons when the electron drift velocity ex-
ceeds the velocity of sound in the substrate material;23:24
(c) injection of nonequilibrium electrons from the cur-
rent contact;?® (d) quasielastic inter-Landau level transi-
tions accompanied by acoustic phonon emission at large
values of the Hall field;26728 (e) change of the mobility
threshold in the Hall electric field;2® (f) interedge state
tunneling and backscattering;3° and (g) successive break-
down of small localized inhomogeneous regions within the
device3! due to any of the above processes.

Experiments utilizing a photoresistance imaging tech-
nique for macroscopic samples of Al,Ga;_,As/GaAs
heterostructures3? have been performed recently. As
shown in that paper, the behavior of the longitudinal re-
sistance and 2D images makes it possible to distinguish
three stages in development of the breakdown: (i) the ini-
tial rise of the longitudinal resistance is due to a change
with the Hall electric field of the percolation threshold
leading to electron backscattering between the edges; (ii)
at higher bias currents a strong response from the edges
is observed in 2D images, in agreement with the edge
state model; and (iii) on increasing the bias current fur-
ther, electron heating effects start to prevail. Thus, all
the mechanisms mentioned above are classified in Ref. 32
and the conclusion is drawn that the QHE breakdown
really occurs in the bulk of the sample owing to the elec-
tron delocalization in an electric field which leads, for the
Hall bar sample, to an abrupt increase of backscattering
current flowing at the Fermi level between opposite edge
channels. Because the backscattering current is identi-
cal to the radial one in a Corbino sample, both of the
sample geometries are equivalent in the sense of QHE
breakdown. In a similar way to Corbino geometry, in
the case of the Hall bar sample I-V characteristics of an
insulating phase in the QHE regime is the Hall potential
difference as a function of backscattering current. We
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note that as long as 0., < 04y, the quantized value of
04y is a factor of proportionality between the bias cur-
rent I,4 and the Hall voltage U as well as between the
backscattering current I and the longitudinal potential
drop U,,. Since in the experiment we measure depen-
dence Ugz(Isq), it is necessary to calculate I = 04U,
and U = az_yllsd for comparison with the results for the
low-density insulating phase. Henceforth the dependence
U(I) will be referred to as I-V characteristics of the in-
sulating phase in the QHE regime.

Finally, in the case of a low-density insulating phase
there is only a dissipative current channel in the sample.
For this phase the inequality oz, > 04y is valid;3373¢
therefore I-V characteristics are the longitudinal voltage
U,. as a function of bias current I,4.

In the present paper we show that in St MOSFET’s I-V
characteristics of the low-density insulating phase behave
in a way that is similar to those of insulating phases in the
QHE regime. (The resemblance of I-V characteristics of
the low-density insulating phase in Al,Ga;_,As/GaAs
heterostructures to the QHE breakdown characteristics
was observed, according to Ref. 37, in the high-voltage
limit.) Two main consequences follow from the experi-
mental observations: (i) localization of electrons is the
origin of the low-density insulating phase and (ii) the
mechanism of nonlinearity observed for this phase is the
same as that of the QHE breakdown and due to the elec-
tron delocalization in an electric field, at least near the
metal-insulator boundary.

III. EXPERIMENTAL TECHNIQUES

From the above discussions one can see that I-V char-
acteristics for all the insulating phases are directly mea-
sured on Corbino samples. However, in order to real-
ize such measurements the contact resistances should be
small, which is not the case on our Si MOSFET’s at low
electron densities.

The main part of our measurements was made on high-
mobility (gpeak ~ 3% 10* cm?/Vs at T = 1.3 K) Hall bar
Si MOSFET’s in a range of low electron densities (down
to ~ 8 x 101° cm™2) at temperatures down to ~ 25 mK.
The two samples had dimensions 0.25 x 2.5 mm? with dis-
tances between the nearest potential probes 0.625 mm.
The SiO, layer thickness was equal to ~ 1800 A.3® In
magnetic fields of up to 16 T dependences of the longi-
tudinal voltage on the bias current were recorded in the
low-density insulating phase and in the regions of QHE
plateaus with filling factors 1 and 2. These experimen-
tal results were obtained by a four-terminal dc technique
using an electrometer as high-input-resistance amplifier.

I-V characteristics for all insulating phases at a mini-
mum temperature when the nonlinearities are most pro-
nounced were used to determine the threshold voltage
(Fig. 2). The temperature dependence of resistance of
the linear part of I-V characteristics gives the value of
activation energy E,. We investigated the behavior of
the threshold voltage and activation energy as a function
of the electron density N, at a fixed value of magnetic
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field. Regions of N, were chosen so that the Fermi level
was close to a mobility edge.

Part of the measurements on the Hall bar samples at
relatively high electron densities was carried out by a
standard lock-in technique at a frequency of 10 Hz. The
value of the current through the sample was 1 nA and
corresponded to the linear regime. In these experiments
we investigated the scaling behavior of conductivity in
order to find out its relation to the results obtained for
an insulating phase.

In the case of insulating phases with nonzero o, the
dependence of threshold voltage on magnetic field at fixed
N, can also be measured in the experiments on charge
transfer in Corbino samples. This method to determine
breakdown voltages can be used even at high contact
resistances. We briefly outline the experimental tech-
nique, which is described in detail in Refs. 39 and 40.
A magnetic field H was applied normal to the plane of
2D electron gas and changed linearly with time. The in-
duced azimuthal electric field causes charge transfer be-
low the Fermi level between the contacts in a similar
manner to Laughlin’s gedanken experiment.*! At min-
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FIG. 2. Current-voltage characteristics at a minimum tem-
perature: (a) for the low-density insulating phase (H = 12 T
and N, = 1.74 x 10! cm™?) and (b) for the insulating phase
with ozyh/e? =1 (H =12 T and N, = 2.83 x 10'' cm™?). In
(b) we measure the breakdown dependence Uz (Isq) and then
convert it into I-V characteristics U(I) (inset) as described
in the text of the paper.
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ima of o, the back charge transfer was negligible during
the experiment at sufficiently low temperatures and low
enough potential difference due to the buildup of charges
in the contacts. In the absence of back charge transfer
the potential difference is inversely proportional to the
input capacitance of an electrometer and proportional to
the increment of magnetic field. As was found in Ref. 42,
the linear rise of voltage with magnetic field changes by a
drop along the ultimate curve corresponding to the QHE
breakdown. At sufficiently small values of the input ca-
pacitance the entire experimental dependence of the po-
tential difference on magnetic field becomes independent
of the capacitance value and tends to the ultimate curve
corresponding to the breakdown voltage.

To study the charge transfer we used Si MOSFET’s
of the Corbino geometry with the following parame-
ters: internal diameter 2r; = 225 pym, external diameter
2rs = 675 pm, SiO2 was 1300 A thick, and mobility at
maximum g ~ 2 x 10* cm?/Vs at T = 1.3 K.

IV. RESULTS

The metal-insulator phase diagram in the H, N, plane
is presented in Fig. 1. The position of phase bound-
aries was determined in two ways: first, assuming that
at vanishing temperature the metal-insulator transition
occurs at a fixed value of o7} = 500 k2;'° and sec-
ond, by means of measurements of the activation en-
ergy in an insulating phase since it tends to zero when
the phase boundary is approached.? The values of o,
on the boundary corresponding to zero activation energy
proved to be o} ~ 500 k{2 for the insulating phases with
ozyh/e? = 1,2 and o7} ~ 100 kQ for the low-density
phase. However, the discrepancy between the results of
two methods is small, see Fig. 1. As will be discussed
below, the latter method is correct.

It is very important that the neighboring insulating
phases are separated by metallic strips, i.e., there is no
insulator-insulator transition. In other words, in the re-
gion of low electron densities there ezist two transition
points on the interval of monotonic growth of py, from
zero to infinity since both p, — 0 and p,, — oo cor-
respond to oy, — 0. We emphasize that our experi-
mental phase diagram contradicts the global phase dia-
gram introduced in Ref. 43, because the former allows a
transition, e.g., from the phase with o,,h/e? = 2 to the
low-density insulating phase.

Figures 2(a) and 2(b) demonstrate the typical current-
voltage characteristics for the insulating phases with
ozyh/e? = 0 and 1, respectively. One can see from
Fig. 2(a) that at a minimum temperature the dependence
Ugzz(Isq) is very close to the steplike function due to the
high resistance in the linear interval. (The longitudinal
voltage is normalized everywhere in the paper by the as-
pect ratio which is equal to 2.5 for our Hall bar samples.)
Figure 2(b) shows U,;(I;4) corresponding to the QHE
breakdown. The result of the conversion of the break-
down curve into I-V characteristics, as described above,
is displayed in the inset. It is clearly seen that I-V char-
acteristics of different insulating phases are very similar.
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The critical voltage can be easily determined from these
dependences as half of the step height.

Measuring the critical voltage at various IV, at a fixed
magnetic field we find that near each mobility edge it
obeys, within experimental uncertainty, the following
law:

U./2 = a(N, — N.)?, (1)

where N, corresponds to electron density at the mobility
edge (Fig. 3). As seen from Fig. 3, coefficients of the
proportionality are of the same order of magnitude so
that all the insulating phases behave in a similar way. In
the metallic phase in between the neighboring values of
N, we observe linear I-V characteristics in the range of
currents used.

The behavior of the critical voltage is confirmed in the
experiments on charge transfer in Corbino samples. In
this case the part of experimental dependence of the po-
tential difference U between contacts on the magnetic
field corresponds to the ultimate curve (Fig. 4). Fig-
ure 4 demonstrates that the ultimate curve obeys the
same power law in the vicinity of mobility edge. Thus
the critical voltage increases as square of the distance
from the phase boundary in the H, N, plane. This fact
is found for all insulating phases investigated.

The activated temperature dependence of the resis-
tance in the linear interval of I-V characteristics changes
at low temperatures to the variable range hopping one
(Fig. 5). Measurements of the activation energy at dif-
ferent electron densities when the Fermi level is close
to the mobility edge enable us to determine the density
of states D at the mobility edge. Indeed, E, is propor-
tional to a change in N, (Fig. 6) so that D = ON,/0FEFr
=| ON;/OE, |. One can see from Fig. 6 that both the
critical voltage and activation energy come to zero at the
same electron density N., as was expected. This fact was
checked at all the points depicted in Fig. 1. Moreover, ex-
trapolation of the linear temperature dependence of the
width of peaks in p,, to a zero temperature (Fig. 7) gives
the value of N, which is consistent with that obtained
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FIG. 3. Square root out of the critical voltage against
electron density at the phase boundaries corresponding to
ozyh/€®* = 0,1,2 in a magnetic field H = 12 T.
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FIG. 4. Measurements of the charge transferred between
the contacts of the Corbino sample when sweeping the mag-
netic field around the filling factor v = 2. Bottom: potential 5

difference between the sample contacts as a function of mag-
netic field. A part of the ultimate curve is shown by bold
lines. Arrows indicate the sweep direction of H. Top: square
root of the absolute value of voltage on the ultimate curve.

from measurements of the activation energy. Hence we
can introduce the correct definition of the metal-insulator
transition point as a point of vanishing activation energy.

It is interesting to investigate the behavior of a and D
on the phase boundaries. With increasing magnetic field
the coefficient a on a given boundary tends to decrease
(Fig. 8) while the density of states reveals the opposite
tendency. From our experimental results it seems diffi-
cult to find some regular behavior of « at different phase
boundaries at a fixed magnetic field. Anyway, there is
nothing special for any insulating phase so that the ex-
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FIG. 5. Arrhenius plot of resistance of the linear interval
of I-V characteristics. H = 16 T and N, = 2.17 x 10! cm 2.

The deviation at low temperatures points out the change of
the conductivity mechanism.
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FIG. 6. Behavior of the critical voltage and the activation
energy near the phase boundary. H =16 T.

perimental results prove the similarity of all insulating
phases including the low-density phase.

V. DISCUSSION

The results obtained show that in all insulating phases
the electron system has very similar properties. As is
known, in Si MOSFET’s there exist, due to the spin
and valley splitting, four quantum levels having the same

- T
1.5 | %
o
~ 1.0 | -7
= ' P
o /A ﬂ
= o5 | 1
0.00.0 0.5 1.0 1.5

NL -‘Ns (10“ Cl’n_2 )

FIG. 7. Temperature dependence of the width N — N, of a
peak in p. (determined at half of the peak height) on another
Hall bar sample (circles). We counted the peak width from
Ny, in order to compare this dependence with the behavior
of the activation energy (triangles). H = 14 T. The peak
corresponds to a filling factor v = 2.5.



49 INSULATING PHASES IN A TWO-DIMENSIONAL ELECTRON . ..

0.2 r
6T 8T 12 T 16 T

K y /
= ¢
[N 0.1
A
| S
g

0.0 = . -

0.0 0.5 1.0

-2

Ne—Ng (10" em™®)

FIG. 8. Square root of the critical voltage as a function of
deviation N, — N, from the upper boundary of the insulating
phase with o.,h/e® = 2 at different magnetic fields.

wave functions. Electrons of the upper Landau level
should occupy the potential minima in the same suc-
cession order as those of the lower Landau levels if the
screening of random potential by electrons of totally oc-
cupied levels is negligible.

In order to analyze nonlinear I-V characteristics of the
low-density insulating phase the following argumentation
has been used:5® the localization length of electrons can
be evaluated from the relation

| Ep — E. |= eLF. = eL(aD?/d)(Er — E.)?
= eLB(EF — E.)?, (2)

where F, = U./2d is the critical electric field, d is a width
of sample, and e is an electron charge. By using the typ-
ical parameters E, =| Er — E. |= 1 K and F, = 0.1
V/cm one can obtain the localization length L ~ 8 ym.
This evaluation shows that nonlinear behavior cannot be
explained by the electric-field-induced breakdown of in-
dividual electron localization,® because the localization
length is large compared to the distance between elec-
trons. In a number of experimental works® ® this fact
has been considered as evidence of a Wigner crystal. In
this case it would be reasonable to associate the length
L with the size of a Wigner crystallite. However, any
estimation of the crystallite size leads, in agreement with
our results, to the divergency of L near the transition
point, which seems dubious. As was shown in Ref. 10, the
metal-insulator phase diagram points out the similarity
between the low-density insulating phase and insulating
phases in the QHE regime because an insulator-insulator
transition is absent. The results of the present paper
prove the similarity of all insulating phases, thereby com-
pletely rejecting the Wigner crystal as the possible origin
of the insulating phase.

In our opinion, the existence of a large characteris-
tic length is in favor of the percolation picture in ‘which
L should be the cluster dimension (or the localization
length). Indeed, at sufficiently low temperatures the con-
duction in the insulating phase is due to variable range
hopping (Fig. 5) while in a cluster the electron system is

14 491

metallic. This implies that at electric fields less than F,
the cluster at £ = EF is equipotential, i.e., the minimum
energy separation between the mobility edge and cluster
decreases as compared to | Efp — E. |. At the thresh-
old value of the electric field given by Eq. (2), where L
is the radius of cluster at £ = Ep, this energy sepa-
ration equals zero (in other words, the electrons reach
the mobility edge), which gives rise to an abrupt in-
crease of conduction in agreement with experiment. It
is clear that at higher temperatures the nonlinearity will
be smeared out leading to smooth current-voltage char-
acteristics. (By the electron delocalization in an electric
field we can also explain the peculiarities in charge trans-
fer observed in the experiments on Corbino samples with
a circular gate for creating inhomogeneous distributions
of electron density.**)

In such a picture one should expect the parameter 3 to
be weakly dependent on magnetic field. This is really the
case; see Table I. Moreover, the values of 3 for different
phase boundaries are approximately the same. Looking
at Table I it is difficult to find some regular dependence
of the coefficient B since the accuracy of determination
of D is not high. One can only state that such a depen-
dence should be weak, if # changes at all. The relative
dispersion of 3 is equal to 30% while that of « is 80%.

We note that Eq. (2) is consistent with the known ex-
pression for cluster dimension in the vicinity of mobility
edge

L(E) x| E—E.|™*. (3)

In our case the critical index s = 1, which is in agree-
ment with the theoretical value in classical percolation
problem s = 1.3 (Ref. 45) within experimental uncer-
tainty. So, electric-field-induced electron delocalization
in the classical percolation picture is capable of explain-

TABLE I. Density of states D and coefficients a,3 on
a given phase boundary at different magnetic fields. The
phase boundaries are denoted in the following way: 0 for the
low-density insulating phase, 1! and 1u for lower and upper
boundaries for the insulating phase with a.,h/e* = 1, etc.

H (T) 0 6 8 12 16

a (107*2 cm?V) 0 021 0.35 0.22 0.11 0.071
i 069 0.20 0.11

1lu 0.49 0.18 0.092

21 0.60 0.51 0.21 0.12

2u 0.25 0.11 0.061 0.040

D (10" cm™2eV™') 0 1.50 1.14 1.15 1.64 2.20
1 0.88 2.01 1.79

lu 1.12 153  2.07

21 0.88 0.87 1.26 1.53

2u 1.00 1.96 2.31 3.37

B8 (Vecm™'K™2) 0 0.14 0.13 0.09 0.09 0.10
u 0.16 0.24 0.10

1lu 0.18 0.12 0.11

21 0.14 0.11 0.10 0.08

2u 0.07 0.12 0.10 0.13
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ing the experimental observations. However, in order to
substantiate our model, we have to answer, first of all, the
following questions: (i) How can the macroscopic change
in electron density caused by an electric field (in par-
ticular, the Hall current pinch®47) influence the shape
of I-V characteristics? (ii) What is the relationship be-
tween the results obtained and the scaling behavior of
conductivity?

A. Hall current pinch

Under QHE conditions one can distinguish the two
regimes of the screening of external electric field by a 2D
electron system: either the thermodynamical equilibrium
is available or absent. In the latter case the screening
charges do not enter the bulk of the 2D layer within the
characteristic time of experiment so that the screening is
realized just by charges at the sample edges. An exam-
ple is experiments with the nonequilibrium populations
of different edge channels (e.g., Refs. 48-50) and, on the
other hand, the case of sufficiently small 0., in partic-
ular, the screening by an ideal electron system.%! In our
experiments we dealt with the equilibrium regime owing
to the proximity of Er to mobility edge: I-V characteris-
tics were the same when we cooled the sample down from
the equilibrium state either turning the bias current on
or keeping I,4 = 0. Since in the equilibrium regime there
exists the Hall current pinch?®4” we have to discuss this
effect.

At large enough Hall potential difference the local
change of electron density may result in an appreciable
variation of the conductivity 0., over a sample because
0zc depends on filling factor v. As a result, the Hall
current flows in the narrow channel corresponding to a
minimum o0,,. The stronger the dependence of dissipa-
tive conductivity on filling factor, the smaller the width
of the current channel. The latter decreases also with
increasing Hall voltage. The Hall current pinch was ex-
perimentally detected in the QHE regime at relatively
high temperatures when activation transport dominates,
leading to the exponential dependence of o, on the fill-
ing factor.

In the case of the low-density insulating phase the large
longitudinal voltage results in similar nonlinear effects:
the voltage drops at the place where o, is minimal, i.e.,
the effective length of the sample decreases. Hence the
change of electron density can be, in principle, the origin
for nonlinear I-V characteristics. However, this is really
not the case because of the following reasons. (i) The typ-
ical change in N, due to potential difference in the plane
of the 2D electron gas is small compared with | Ny — N, |.
As a result, I-V characteristics are mostly symmetrical,
except for the maximum | N, — N, |, where the asym-
metry does appear, in the first turn, for the low-density
insulating phase since the aspect ratio is more than unity
(Fig. 2). (ii) At lowest temperatures the variable range
hopping conductivity becomes dominant; therefore the
dependence of o,, on the filling factor should be weak.
(iii) Subject to the validity of the nonlinear mechanism
in question, we obtain a nonphysical behavior of the den-
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sity of states determined from nonlinear characteristics at
relatively high temperatures.>? This points out the exis-
tence of another mechanism of nonlinearity. (iv) Also,
it is difficult to explain the threshold behavior of I-V
characteristics at lower temperatures.

B. Scaling behavior of conductivity

As was found in a number of experiments (see, e.g.,
Refs. 53-58), the width of peaks in 04, (or pg,) follows
a power law

Av x T", (4)

where K ~ 0.4 in the case of low-mobility heterostruc-
tures and k =~ 1 for Si MOSFET’s. The conventional
explanation of the scaling dependence (4) is based on the
existence of a temperature-dependent phase-coherence
length Lg that determines the position of the effective
mobility edge E.g.5%5° If the localization length L given
by Eq. (3) is more than Lg, these electron states should
be effectively delocalized. Hence E.g is connected with
temperature via some Lg. We note that this considera-
tion implies the Anderson localization of electrons which
occurs in a weak short-range random potential: the elec-
tron wave functions are overlapped so that each inelastic
process (with the typical energy about kT) should de-
localize electrons. In the case of long-range or strong
random potential the percolation picture is valid, and
one can give the following explanation of temperature
dependence of the peak width.

We argue that in the percolation picture the effect of
temperature is similar to that of the electric field dis-
cussed above. Indeed, the conduction between clusters
due to electron thermoactivation to the mobility edge is
of the order of maximum o,, when the activation energy
E, ~ kT. Hence we can introduce the effective mobility
edge E.g so that

| Eeg — E. |= vkT. (5)

Here v is a numerical coefficient of the order of unity.
Assuming that near the mobility edge E. the density of
states is constant, we conclude that a change of the width
of the 0., peak should be proportional to temperature.
Such a situation takes place in Si MOSFET’s; see Fig. 7.
The width of peak | N, — N, | (N pertains to the center
Ep of a Landau level) gives the value of N, corresponding
to the effective mobility edge F.g. Since the position
of E.g can be determined by measuring the activation
energy (Fig. 7), we find v = 3. As seen from the figure,
both the dependences run to the same point N — N, # 0,
which contradicts the scaling relation (4). This means
that the mobility edge E. does not coincide with the
center of the Landau level E;. In agreement with Ref.
56, we believe that the position of E, is determined by
the sample size so that in the sample of finite dimensions
the region of extended states in the Landau level is finite.
Using the data from Fig. 7 we can roughly estimate Ef, —
E. < (N — N.)/D =~ 0.2 K. The difference is small;
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therefore our results are in agreement with the concept
of the divergency of the localization length at the center
of a Landau level in the case of infinite sample

L(E) x| E - Er |™*, (6)

where s is close to the theoretical prediction s = 1.3.
Knowing the value of 3, we obtain by means of Eq. (6)
another evaluation | Ef, — E. |~ 0.1 K, which seems rea-
sonable since the temperature dependence of the width of
peaks in p,, is observed down to minimum temperatures.

We suppose that these arguments also hold for het-
erostructures. In this case | E — E. | is probably less
than in Si MOSFET’s and the assumption about the den-
sity of states weakly varying near E. may be wrong. As
a result, the exponent x can be less than unity. There
is also another reason for decreasing k: one cannot use
Eq. (4) since at T — 0 the width Av is finite due to
the finite dimensions of sample. If we do use it we will
artificially reduce k. For instance, in Ref. 54 the value
of k has been found to approach unity as the temper-
ature increases. When replotted in the linear scale the
data Ay(T) taken from Ref. 54 behaves in a way that is
similar to the case of Si MOSFET’s (Fig. 7).

Numerical calculations of the critical index s provide
s = 2 (e.g., Refs. 61-63). We do not think that a com-
parison of this value with our experimental results makes
sense because the calculations are made for submicrom-
eter samples while the measurements were performed on
macroscopic samples. In the first case | Ef, — E, | is ex-
pected to be large so that E, lies in the region where the
behavior of L(FE) can be different.

It seems evident that the coefficient 3 should depend
on the parameters of a random potential. The above dis-
cussions enable us to make the following suggestion: the
higher the quality of sample, the more (3, so that for an
ideal system the dependence (6), which is valid only in
the vicinity of Er tends to a § function. This implies
that far from Ep the localization length should change
with an energy stronger as compared to Eq. (6). If this
suggestion is true, then in order to reach the vicinity of
E;, where the relation (6) is valid, either the low-quality
samples should have very large dimensions or the small
samples should be of very high quality. In such a way
we can account for the dependence of the minimum peak
width on the sample dimensions (see Ref. 56) that yields
s & 2: the samples used in Ref. 56 are an order of mag-
nitude less than ours. Hence the characteristic energies
corresponding to the smaller samples may be too far from
Ej, where the expression (6) is not applicable.

From Table I it follows that the behavior of the lo-
calization length near the mobility edge hardly depends
on the value of magnetic field. This implies that in the
absence of a magnetic field there exists a finite mobil-
ity edge separating the 2D metallic band from the tail
of the localized electron states (see, e.g., Ref. 64). In
other words, the measurements of the localization length
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along with the study of the phase diagram (see Fig. 1 and
Ref. 10) prove the existence of the mobility edge in a 2D
system in a zero magnetic field.®® This is in contradiction
to scaling theory.¢

VI. CONCLUSION

In summary, we have investigated nonlinear current-
voltage characteristics in the case of Si MOSFET’s for
a low-density insulating phase as well as for insulating
phases in the QHE regime and found that for all the
insulating phases these characteristics behave in a simi-
lar way. This fact contradicts the hypothesis about the
formation of a Wigner crystal as the origin for the low-
density insulating phase and supports the localization
picture. Then, the nonlinearities on I-V characteristics
find their natural explanation as electric-field-induced de-
localization of the electron states which is also the reason
for the QHE breakdown, as has been shown in a recent
paper.3? The measurements of the critical electric field
and activation energy enable us to determine the local-
ization length that has been found to diverge near each
metal-insulator phase boundary with the critical index
close to the theoretical value s = 1.3 for classical per-
colation. The larger values of s obtained elsewhere can
be due to the smaller dimensions of samples used. The
behavior of the metal-insulator phase diagram and the
localization length proves the existence of the mobility
edge in a 2D system in the absence of a magnetic field, in
contrast to the predictions of scaling theory. In zero and
weak magnetic fields the position of the mobility edge
is determined by the bottom of the 2D electron band.
As the magnetic field increases, the Landau levels enter
the 2D electron band giving rise to the oscillations of the
lower phase boundary,'® so that in the case of quantiz-
ing magnetic fields each Landau level corresponds to the
region of extended states due to the finite dimensions of
sample. We have shown that in the temperature depen-
dence of the width of the peaks in conductivity the role
of temperature is similar to that of the electric field: this
effect can be explained by the thermal shift of the effec-
tive mobility edge in a Landau level, which is confirmed
by the analysis of the data from previous works.
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