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We calculate analytically the energies of a class of ¹lectron quantum dots employing a recently in-

troduced symplectic-group chain. The corresponding algebraic Hamiltonians lie beyond the N-electron
Fock-Darwin Hamiltonian which only describes noninteracting particles in a perfect parabolic confining

potential. Nonparabolicity and particle-particle interactions are simulated using quadratic Casimir

operators within the symplectic-group chain. We calculate infrared optical absorption energies as a
function of magnetic field, and analyze the breakdown of the generalized Kohn theorem. We also calcu-
late the addition spectra associated with transport through the ¹lectron quantum dot.

I. INTRODUCTION

Recent technological advances have meant that quan-
tum devices of ever smaller sizes with a tunable number
of electrons can be reliably constructed and investigated
experimentally. The current theoretical goal is to pro-
vide an understanding and classification of the optical
and transport data that have so far been obtained experi-
mentally from quantum dot systems. ' The single-
electron spectrum for a parabolic dot has long been
known. These single-electron, or Fock-Darwin, states
have been used to construct an ¹lectron basis for nu-
merically diagonalizing the many-electron Hamiltonian
including electron-electron interactions (see, for example,
Ref. 5). Such numerical approaches tend to be computa-
tionally intensive.

In a previous paper we presented an algebraic model
based on the symplectic group Sp(2Nd, R) to describe
nonrelativistic N-particle systems in d dimensions. This
model has particular relevance to ¹lectron quantum
dots, large or small, because of the possibility of express-
ing simple Hamiltonians describing such systems within
the symplectic algebra. The Hamiltonian associated with
N noninteracting particles confined by a two-dimensional
parabolic potential in the presence of a perpendicular
magnetic field (the so-called N-particle Fock-Darwin
Hamiltonian) is the simplest example of this type since it
has a pure oscillator term belonging to the Sp(2, R) alge-
bra and an angular-momentum term that is an element of
the algebra of O(d). As discussed in Ref. 6, there are
various appropriate group-chains of the symplectic
model all of which include the chain
Sp(2Nd, R)D. . . &Sp(2,R)XO(N)XO(d). Since we are
focusing on quantum systems of identical particles, any
¹lectron model Hamiltonian must necessarily be invari-
ant under permutation operations of S(N); this group is
contained in O(N)

The ¹lectron quantum dot system must be con-

sidered as an interacting many-body quantum-mechanical
system. Introducing interaction potentials into the N-
electron Fock-Darwin Hamiltonian presents difficulties
as these are not usually expressible as Sp(2Nd, R) opera-
tors and hence lie outside the algebra. The translational-
ly invariant Coulomb interaction is unfortunately of this
nature, although there are some interesting two-body in-
teractions expressible within Sp(2Nd, R) which may be
appropriate approximations to real interactions. For ex-
ample, Johnson and Payne introduce a quadrupole-
moment interaction term which belongs to an Abelian
subalgebra of the Sp(2N, R) algebra. If one were to con-
sider such an interaction potential within the N-particle
Fock-Darwin Hamiltonian, then the appropriate group-
subgroup chain would be Sp(2Nd, R) DSp(2N, R ) XO(d)
with the subsequent reduction Sp(2N, R) DSp(2, R )
X O(N). It is clear that such interaction potentials would
mix states at the Sp(2,R) XO(N) level.

Given the remarkably rapid progress in the manufac-
ture of tailor-made quantum dot systems, it may not be
long before quantum device fabrication can actually cus-
tomize quantum dots with certain types of characteris-
tics; for example a specific confining potential or
geometric shape, or even a particular energy-level
scheme. In fact, dots could even be designed to represent
specific effective Hamiltonians. In this paper, we exam-
ine the energy-level structure and states of various alge-
braic quantum dot Hamiltonians which depend on the in-
variant (i.e., Casimir) operators of the subgroups of
Sp(2Nd, R). We show that matrix elements and energy ei-
genvalues of such Hamiltonians are straightforward to
evaluate, and they have the potential for describing quan-
tum dot properties even in highly anharmonic regimes.
This approach using Casimir operators represents a
change in philosophy from previous calculations for non-
parabolic quantum dots containing N interacting elec-
trons. Previous work ' considered realistic microscopic
perturbations to the ¹lectron Hamiltonian, and calcu-
lated numerically the shifts of the energy levels using per-
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turbation theory (or equivalently, by diagonalizing a
truncated matrix). Here we consider the Casimir opera-
tors to be approximate descriptions of actual perturba-
tions, and then solve for the energy shifts exactly. Such
an approach, while not common in condensed-matter
physics, is well known in nuclear and molecular physics
for describing rotational and vibrational band structures.

The paper is organized as follows. In Sec. II we briefiy
review the important features of the symplectic-group
analysis of the N-electron dot. Full details are given in
Refs. 6 and 10. Section III discusses the state labelings
and matrix elements within the various group-subgroup
chains, and gives the Casimir operators for the relevant
groups S.ection IV uses these results (in particular the
Casimir operators) to generate the energy eigenvalues of
a class of Hamiltonians describing N interacting electrons
in a nonparabolic dot. In Sec. V, the associated infrared-
absorption energies are calculated as a function of mag-
netic field, and the breakdown of the generalized Kohn
theorem is analyzed. The theoretical infrared-absorption
spectrum is qualitatively consistent with recent experi-
mental data. We also calculate the addition spectra asso-
ciated with transport through the N-electron quantum
dot.

II. THE SYMPLECTIC-GROUP BASICS

We will now briefly review the essential results needed
for this paper; for detailed discussions of the underlying
group theory see Refs. 6, 10, and 11. The necessary com-
pact group results are discussed fully in Refs. 12 and 13.
The noncompact symplectic group Sp(2n, R) will be
denoted by Sp(2n). We use the convention of distinguish-
ing irreducible representations (irreps) of the orthogonal
group O(N) and the symmetric group S{N) by square
brackets, those of the symplectic group Sp(2n) by angular
brackets and those of the unitary group U(n) by curly
brackets. The rank of the group will often be subscripted
to make identification of groups easier.

The Sp(2n) unitary irreps that are considered belong to
the family called discrete series (or harmonic series) rep-
resentations. "' We shall call these uds-irreps. Such ir-
reps are infinite dimensional and will be labeled as
(k/2(a) ) „where (~) denotes the partition, and the con-
straints R&

~ n and R&+F2 k apply. The uds constraints
imply that the summation is over those standard parti-
tions that label covariant tensor irreps of U(n), and those
irrep labels of O(k) that are near-standard since K, could
be greater than k/2 but is certainly less than k. These
two constraints are important when applying
symplectic-group results and provide strong restrictions
when applied to physical situations, in particular in one,
two, or three dimensions as then either n or k can be
small integers. The reduction of the basic metaplectic
spin irrep (s;0) of Sp(2nk) to Sp(2n) XO(k) is

(s;0)„1,1+ —(a) „X[v]k,k
2

where the summation is over all the partitions (~) satisfy-
ing the two constraints mentioned above. ' ' Note that
the branching is multiplicity-free. In addition there is
just one irrep label of O(k) for each irrep label of Sp(2n)

and vice versa —a fact known in nuclear physics as com-
plementarity. '

A second result is the general branching rule for
Sp(2n) D Sp(2) XO(n) which is summarized in the follow-
ing:

k—(~) 1 g (m) [((m/P)0(, ~" 2))„}„/2)]„,
nk

n m 1

(2)

where C and 2) are Schur function series, ' ', a" is the
O(k) signed sequence, "' and the symbols o and denote
the Schur function operations of inner and outer multipli-
cation, respectively. ' Although this result seems compli-
cated, there is some simplification in the evaluation of the
expression ((m/C )0(,v" 2))k)„. First, the signed se-

quence with partitions restricted to at most k parts be-
comes a finite sum of partitions. Second, (m} is only a
one-part partition hence (m /C ) = ( m ) —( m —2) for
m ~2, with the special cases (0/C)=(0), (I/C)=(1).
Third, the inner products are particularly easy since for
m integer (m)o(v)=(v) where (v) is any partition of
weight m. Hence for given m, the result of the inner
product is to extract from (,I~" 2))„ those terms of weight
m and m —2. The terms arising from the inner products
must also be standard labels of U(n) hence the subscript n

in {(m/8)o (,a" 2))k )„. Note that since the inner prod-
ucts are especially simple, we can take the part restric-
tions inside the inner products.

For general n, the noncompact symplectic group
Sp(2n) has U(n) as a maximal compact group. In this pa-
per we only need the result for Sp(2) DU(1). Since each
Sp(2) unitary irrep is infinite dimensional and those of
U(1) are all one dimensional, it is particularly useful to la-
bel the basis states according to this U(l) compact sub-

group. The U(1) content can easily be extracted from
each Sp(2) irrep, '

(
Nd

N(rn) Le d [m 2)i]i= g +m+2j .1/2 Nd

J
2

where (m) is a one-row partition of non-negative integers
m and the outer product (m 2), ) is evaluated in U(l).
The half-power of e~d [the determinantal representation
of U(Nd)] implies the presence of a projective representa-
tion of U(Nd). If Nd is odd the U(1) irreps are labeled
by half-integers corresponding to multivalued representa-
tions.

III. MATRIX ELEMENTS AND CASIMIRS
OF THE X-ELECTRON SYSTEM

We now apply the basic character theory results to
particular symplectic-group chains which have relevance
in the modeling of an N-particle system in d dimensions,
and in particular the d =2 quantum dots. There are
three sympiectic-group chains, all three having the com-
mon subgroup Sp(2) XO(N) XO(d) (see Fig. 1. of Ref. 6).
For these three chains we need to establish the corre-
sponding classification of states. We will start by devel-
oping a systematic notation so that the various basis
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states and matrix elements can then be related and dis-
cussed simultaneously. We consider the states of the
Nd-quantal system to transform under the basic meta-
plectic spin irrep (s;0) of Sp(2Nd). This introduces
some simplifications due to the uds constraints given in
the previous section. We remark that in all three chains
the direct product group O(N) XO(d) separates the total
angular momentum of the N-particle system given by
O(d) from its permutational symmetry given by
S(N) CO(N). Below we present the labeling of states for
an N-particle system in d dimensions according to the
three group-subgroup chains.

~(Nd, m )&amv5jkl ) = 2
m X m

m X v~X

jkl
(4)

where a =1, . . . , m(m, v5} is the branching multiplicity
label index for the reduction O(Nd)DO(N)XO(d) and
rn(m, v5) denotes the multiple occurrence of [v] X [5] in
[m]. Here v and 5 are partitions into at most min(N, d)
parts. The labels j, k, and l are arbitrary basis labels of
the irrep spaces (Nd/2(m) ),, [v]N, and [5]d, respective-
ly. For the orthogonal group irreps the bases are finitely
indexed whereas for symplectic irreps they are infinitely
indexed. The physical interpretation is that, given a
Hamiltonian such as the harmonic oscillator Hamiltoni-
an H„, which is expressible in terms of the algebra of
Sp(2), the dynamical symmetry group of that Hamiltoni-
an is at least O(Nd) as discussed in Refs. 18 and 19.

B. Sp(2Nd) D Sp(2N ) XO(d) D Sp(2) XO(N) XO(d)

The first reduction is given by Eq. (1} with n =N and
k =d. The Sp(2N) irreps are then labeled by (d/2(5))~
with the associated O(d} irrep labeled by [5]d, where (5)
is at most an N-part partition whose first two columns
satisfy 5, +52 ~ d. The labeling of the Sp(2N) irreps is less
restricted by these two constraints than in the first case.
For physical situations (d=1,2, 3), this latter constraint
places the strongest restriction. The reduction of the
Sp(2N) irreps is given by Eq. (2). The states under this

A. Sp(2Nd) DSp(2) XO(Nd) DSp(2) XO(N) XO(d)

The first reduction is given by Eq. (1}with the condi-
tions n =1 and k =Nd. Thus the Sp(2) irreps are labeled
by (Nd /2(m) ), with the associated O(Nd) irrep labeled

by [m]~d where m is a non-negative integer. The
O(Nd)DO(N)XO(d) reduction is a standard compact
group reduction. '

The states under this group-subgroup chain can then
be classified by

(s '0) xd

0

group-subgroup chain can hence be classified by

(s;o)„d
0

~(d, 5)[[ibm'v5jkl ) =

m' )X v~X

where m'=w(5)+2i' with i' a non-negative integer and
w(5) is the weight of the partition 5; b =1, . . . , m(5, m'v)
is the Sp(2N) DSp(2) XO(N) branching multiplicity label
index. The partition v must be of at most min(N, d}
parts. This set of states would be more appropriate for
Hamiltonians that commute with the angular-momentum
group O(d), i.e., conserve total angular momentum, since
O(d) is extracted from the outset and simple interaction
potentials are confined to elements of Sp(2N).

~(N, v)dcm "v5jkl ) = (
—(v[) X[v]v

m )X v~X

jk l

where m"=w(v)+2i" with i" a non-negative integer;
c =1, . . . , m(v, m "5) is the Sp(2d ) OSp(2) XO(d}
branching label index. The partition 5 must be at most of
min(N, d) parts. These states emphasize the O(N) sym-
metry and consequently the permutational symmetry
S(N), and will be appropriate for systems of N-identical
particles (e.g., N electrons or N holes as opposed to mixed
systems) with an interaction or confinement potential ex-
panded in terms of elements of Sp(4).

Summarizing the above, we have specified three
group-subgroup chains and classified basis states trans-
forming according to irrep spaces of the groups in each

C. Sp(2Nd ) D Sp(2d ) XO(N ) D Sp(2) XO(d ) XO(N)

The first reduction is given by applying Eq. (1) with
n =d and k=N. The Sp(2d) irreps are labeled by
( N/2(v) )d with the associated O(N) irrep given by [v]z,
where v is a partition of d parts satisfying V, +v2 N.
For large N the labeling of the Sp(2d) irreps is clearly re-
stricted more by the dimension d. Since v must be a reg-
ular partition, v, +v2 2v, & 2d. Therefore, v automati-
cally satisfies these conditions if N 2d. This would then
be the generic large N case, although there are physically
interesting small N situations when N (2d involving two
or three particles in two dimensions and two to five parti-
cles in three dimensions. The reduction of the Sp(2d} ir-
reps follows Eq. (2). The states under this group-
subgroup chain can hence be classified by

(svo)Nd
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chain:

(1) 3Sp(2) XO(Nd ) ~ ~(Nd, m ),am v5jkl )

(2) DSp(2N)XO(d)D l(d, 5)~bm'v5jkl ) (7)

(3) 3Sp(2d)XO(N)3 . . ~(N, v)dern "v5jkl) .

We have used the labels in parentheses to specify which
group-subgroup chain is being used. They are essentially
labels constituting the uds-irrep of the intermediate sym-
plectic group, i.e., (k, ~)„~(k/2(x) )„, or equivalently
the rank and irrep label of the intermediate orthogonal
group, i.e., (k, v)„—+ [a]„Sin.ce Sp(2) XO(N) XO(d) is a
common subgroup the associated irrep labels must range
over the same partition values consistent with the follow-
ing constraints; v&

~ min(N, d) and v, +vz ~ N,
5t ~min(N, d) and 5, +52 ~d, and finally m' —ut(5) and
m" —tc(v) both non-negative even integers. Further-
more, a comparison of the three states yields a correla-
tion between multiplicities

m(rn, v5) =m(v, m'5) =m(5, m "v),

from which we can conclude that the multiplicities of the
noncompact symplectic-group chains depend on multipli-
cities of the compact orthogonal group chain.

Since simple Hamiltonians will often be expressible in
terms of operators of the Sp(2Nd) algebra and its subalge-
bras, it is important to be able to determine the action of
operators, or more specifically generators, on the basis
states. The isotropic harmonic oscillator Hamiltonian

H„, is a Hermitian operator belonging to the Sp(2) alge-
bra. We have seen in Sec. II that Sp(2) contains the com-
pact subgroup U(l), and it is easy to extract the U(1) con-
tent from each Sp(2) irrep [see Eq. (3) of Sec. II]. Hence
in classifying the states we could use I Nd /2+ m +2j } to
index the U(1) irreps or, more simply, j since Nd and m

are already explicitly given. If H„, is taken as the gen-

erator of this U(1) group, then it is quite clear that the ac-
tion of H„, is diagonal in all of the three basis states
since the irreps of U(1) are all one dimensional. Explicit-
ly,

Xd8„, . mv5jkl) =~ . mv5jkl) +m+2j k),

L
~

mv5jkl ) = mv5jkl')[5](L)', , (10)

where gg ~g&r =5r. Such Casimirs commute with all

the elements of the Lie algebra, i.e.,

[C,Z ]=0. (12)

In general there are additional operators that commute
with the operators of the Lie algebra but which cannot be
described by a general relation like Eq. (11). Following
Wybourne, ' for every semisimple Lie group there exists
a set of functions I„(Z ) of the form

(13}

which commute with every operator of the group, i.e.,

where [5](L) is the matrix representation of L in this
basis. It should be noted that O(d) contains U(1) as a sub-

group and the action of any one Hermitian operator of
O(d) can be diagonalized with respect to a basis of this
O(d) DU(1) chain.

In practice it is difficult to evaluate matrix elements
and diagonalize Hamiltonians with general two-body in-
teraction potentials. In addition, there are a wide variety
of additional perturbations to the parabolic confinement
potential which could arise experimentally in the dot.
For this reason we are presenting a simplifying algebraic
approach in this paper. In particular we are going to in-
vestigate the effect of certain "algebraic" Hamiltonians,
i.e., ones whose interaction potentials depend only on
quadratic Casimir operators. Matrix elements, and hence
energy levels, of such interaction potentials are especially
simple to determine. Specifically, we will analyze here
the Casimirs associated with the Sp(2)XO(d)XO(N)
direct product group which, as discussed earlier in this
section, is common to all three symplectic-group chains.
We note that there is only one Casimir for each of the
groups Sp(2) and O(2), while for O(N) there are [N/2J
generalized Casimirs.

We shall first review briefly the main features of
Casimir operators. If Zz denotes the generators of a
group then the quadratic Casimir is defined as

[I„,Z ]=0, (14)

where co is the oscillator frequency and the energy eigen-
values of H„, are given by INd/2+m+2j }fico The.
dots imply any of the three group chains discussed above.

As mentioned earlier, two-body interaction terms and
nonparabolic confinement terms within model dot Hamil-
tonians can give rise to operators belonging to algebras
other than Sp(2). Consider the special situation of Ham-
iltonians belonging to the Sp(2) XO(N) XO(d) algebra.
Generators from these three algebras act only on the
basis labels j, k, and I of the three different states, with
Sp(2) generators acting on j, O(N) on k, and O(d) on l.
For example, if 1. is the generator of the total angular
momentum O(d) algebra, it acts within the irrep space la-
beled by [5]d with basis label k. Hence with the conven-
tion of summing over twice-repeated basis labels

and whose eigenvalues characterize the irreducible repre-
sentations. The minimum number of such operators is
equal to the rank of the algebra. Although the Casimir
operators commute with every operator of the group,
there are cases where their eigenvalues are not sufhcient
to label the irreducible representations. In general, the
functions I„(Z } are called the generalized Casimir
operators.

As in Ref. 6 we will denote the coordinate and momen-
tum components of the rth particle (r = 1, . . . , N) by x„;
and p„; (i =1, . . . , d), respectively, with the associated
operators X„,- and K„- obeying the Heisenberg algebra.
The contracted forms of the symplectic-group generators
of interest are K =E„,K„,, Q—:X„,X„,,



49 OPTICAL ABSORPTION AND ADDITION SPECTRA OF AN N-. . . 14 413

+5, (5, +d 2i }— (15}

C (O~)~ mv5jkl ) =~ mv5jkl )

X g v;(v;+N 2i —)

The quadratic Casimirs of O(k) are well known and are
given by C (Ok )= ,'L —L with eigenvalue

g,p, (p, +k —2i) when acting on the O(k) irrep space la-

beled by [p]. For example,

C (Od}~. . .
mv5jkl ) =~. . .

mv5jkl )

The total angular momentum of the system is obtained
from the O(2) group labeled by 5. Recall that the stan-
dard O(2) irrep labels are one-row partitions; [M] with
M + 1, [0] and [0'] [which is equivalent to [1 ] in 0(2)].
Furthermore, except for the one-dimensional irreps [0]
and [0'], the irreps [M] are two-dimensional and hence
each total angular-momentum quantum number M is
doubly degenerate. The component of angular momen-
tum can be found by the reduction to a U(1) subgroup
given by

[M]q&[0;M])+[M;0])=[+M])+[—M]), (21)

and similarly C (O~d) acting on irrep space [m ]Nd gives
m ( m +Nd —2}. The Sp(2) Casimir is of the form

with the special cases

[0]kg[0;0])=[0]), [0 ]2([0;0],=[0], . (22)

This means that C2(Sp2) acting on the (N(m})2 irrep
space yields the eigenvalue

1 +Nd +Nd Nd
m m+

8 2 2 2

The interesting aspect of this is that it is quadratic in
both N and m. We shall use these Casimir results in the
following section.

IV. ENERGY EIGENVALUES OF ALGEBRAIC
HAMILTONIANS

In this section we will focus our attention on two-
dimensional quantum dots, i.e., d =2. Our starting Ham-
iltonian will essentially be the N-particle Fock-Darwin
Hamiltonian H„D describing N noninteracting electrons
in a two-dimensional isotropic harmonic oscillator in a
homogeneous magnetic field with circular gauge

2
Bj Xj where B;j is skew-symmetric with B

& 2 equal
to the magnetic-field strength. This is given by

fi mco ~~a
HFD= K+ Q

— L,
2m 2 2

where co=+coa+co, l4. We will be considering pertur-
bations to HFD constructed from the previously intro-
duced quadratic Casimirs. As H„D belongs to the
Sp(2)XO(N)XO(2) algebra, it is not important at this
stage which chain of groups, and hence basis states, we
take. As a consequence we shall label our states as

~. . .
mv5jkl ), (20)

C~(Sp~) =
—,
' [ [ Q,E ]

—
—,
' T']

(see for example Ref. 19) but it can be shown that this
Casimir is related to that of O(Nd),

The U(1) labels distinguish clockwise from anticlockwise
rotations.

To label the basis of the Sp(2} irrep spaces, we exploit
the reduction to the subgroup U(l),

(N(m)), leg [m D],= g [N+m+2j], . (23)
j=a

In general for a given Sp(2} irrep (N(m}) &, the range of
angular momentum will be bound by 0 M ~ m decreas-
ing from m in steps of two, with the possibility of multi-
plicities equal to zero or greater.

As explained in the previous paper, the presence of
O(N) is important as this contains the subgroup S(N) and
means that spin states of permutation symmetry conju-
gate to that of the spatial states can be coupled to pro-
duce totally antisymmetric states in accordance with the
Pauli principle. However the spin states are restricted to
permutational symmetry type [e ]= [o' &, o 2] with
0 &+0.2=N. Only spatial permutational symmetry types

0'2 0'
) 0'2

[2 ', 1
' '] are, therefore, permitted and as a conse-

quence certain spatial states are absent. Although for
simplicity we will essentially ignore these permutation
considerations, in general the O(N) DS(N) reduction can
be given in an ¹xplicit way using the form

[v]„ly m(v, p)[N r,p]„, —
P

(24)

where r =w(p) is the weight of (p), m ( v, p) is the multipli-
city of (p) in (v), and the partitions (p) are obtained by a
compact Schur function formula involving plethysms as
discussed in Ref. 6. We emphasize that this formula
gives results that are valid for any N.

Using the above results the states under the group-
subgroup chain

Sp(4N ) D D Sp(2) X O(2) X S(N) DU(1) XU(1) X E

(with E the identity group) can then be classified as

(s'O)~~

where the dots indicate whichever chain of groups is
desirable. As discussed in Sec. III, m is a non-negative
integer, v is a two-part partition where the sum of the
first two columns is less than N, and the partition denoted
by 5 is either [M] (where M is a non-negative integer) or
[1'].

(N(m ) ),X [M ]2 X [v]N

d

[N+m +2j],X [M],X [N r,p]~—
k

(25)
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where the dots signify the intermediate chain of groups,
d=1, . . . , m(v, p) is the O(N)DS(N) branching label,
k =1, . . . , ~p~ is the basis multiplicity label of the S(N) ir-
rep [N r,—p]~ of dimension ~p~ with r =w(p), and
M=+M determines the component of angular momen-
tum. As discussed above in connection with the partition
fii, [M]2 must be substituted by [1 ]2 to obtain the com-
plete set of states.

Having established the state classification and deter-
mined the action of the Casimirs, we turn to the energy
spectrum of the N-electron algebraic Hamiltonians. The
eigenenergies of a single electron in a parabolic potential
subject to a magnetic field (i.e., the single-electron Fock-
Darwin Hamiltonian) are given by

E(j,l ) =(1+~l ~+2j )A'co —
—,'lirico, , (26)

E„D(N, m,j,M)~(N+m+2j )ficoo (29)

and become independent of angular-momentum values M
for N ) 1. Comparing with the well-known single-
electron energy curves as a function of magnetic field, the
form of the ¹lectron energy spectrum not surprisingly
remains identical for any N. Essentially one needs only
to make the substitutions of 1 —+N and I ~m in the %co

term. The only differences are that each energy curve
can now correspond to various values of N, and there are
in addition many possible many-electron configurations
for each N.
parameter perturbing Hamiltonian Hc which depends
linearly on the quadratic Casimirs associated with the
Sp(2) XO(2) XO(N) direct product group, as discussed in
Sec. III. The perturbing Hamiltonian is a polynomial of
X and P of order 4 and is given by

where l is any integer while j is a non-negative integer.
The action of the noninteracting N-electron Hamiltonian
HFD on the above states gives the ¹lectron energies

E„D(N, m,j,M)=(N+m+2j )A'u —
—,'MA'co, , (27)

which clearly depends on additional quantum numbers.
The noninter acting ¹lectron contribution increases
linearly with m. For electrons the positive angular-
momentum states [+M j have lower energy with respect
to the associated negative angular-momentum states

[
—M] of the same quantum numbers. The set of states

with m=M, M=+M, and j=0 corresponds to the so-
called lowest Fock-Darwin level. In the high-field limit
or zero confining potential regime, co~co, /2, the N-

electron energies approach

EFD(N, m,j,M)~ ,'(N+m+2—j —M)iiico, .

Unlike the single-electron Landau levels there is no com-
plete cancellation of the energy contributions coming
from positive angular momentum for the ¹lectron
states unless M=M=m. In the low-field limit, co, ~0,
co~coo and hence the ¹lectron energies are given by

Ec(N, m, v, M)=iiico&+ [(N+m )(N+m —2)

+N(N 2)]Ac02+—M fico)

+ [v&(v&+N —2)

+v~(vi+N —4) )A'co4, (31)

where v, and v2 are the parts of the partition v. In the
fields of nuclear, atomic, and molecular physics, the
coefficients of the Casimirs (coi, co2, etc.) would be ob-
tained by fitting the theoretica1 energy spectrum
EFD+E~ to available experimental vibrational-rotational
spectra. Such a procedure can equally well be carried out
for quantum dots.

V. OPTICAL ABSORPTION AND ADDITION
SPECTRA

A. Infrared optical absorption

Here we consider the infrared optical-absorption spec-
trum for the N-electron quantum dot. First for the N-
electron Fock-Darwin (i.e., unperturbed) Hamiltonian

HFD, we see that the possible absorption energies

AEFD —=EFD(final) —EFD(initial) are given by

such as product terms of the Casimirs which generate
perturbations that are polynomials of X and P of order 8.
The Casimirs comprising Hc correspond to anharmonic
terms. For example, consider N electrons initially in the
lowest Fock-Darwin level: the O(2) Casimir C (Oz) pro-
vides an energy perturbation that is basically proportion-
al to the square of the sum of average moments of inertia
of the individual electrons. [The average moment of iner-
tia for a single electron of angular momentum m, in the
lowest Landau level is proportional to (m„+1).] The to-
tal Hamiltonian H„D+H& is, therefore, an anharmonic
(i.e., nonlinear) ¹lectron oscillator. Note that the per-
turbing Hamiltonian Hc includes product terms involv-

ing more than one particle index. Hence in addition to
describing one-body perturbations (i.e., nonparabolicity)
of the external parabolic confining potential seen by each
electron, there are terms in Hc that will actually simulate
two-body interactions between the electrons. Moreover,
these electron-electron interaction terms are not in gen-
eral translationally invariant. Such nontranslationally in-
variant interactions can actually arise in experimental
quantum dots due to the lack of translational invariance
of the quantum dot structure in the two-dimensional x-y
plane, and the presence of image charges in the surround-
ing dielectrics. (This is in contrast with the situation for
an infinite, translationally invariant two-dimensional elec-
tron gas. ) To our knowledge, all theoretical work to date
on quantum dots has assumed the electron-electron in-
teraction to be translationally invariant.

Using the results of Sec. III we can easily write down
the eigenvalues of Eq. (30),

He=fico, I+AcoiC (Spi)+fico3C (Oi)+Aco4C (O~) . bE„o=(bm+2bj )fico ,'bMAco, , ——(32)

Note that more complex terms can in fact be included,

which is independent of N So far Eq. (32.) allows for
multiphoton absorption (i.e., arbitrary b,M). For single-
photon processes, the incoming photon polarized in the
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xy plane can be considered as carrying either +1 or —1

of angular-momentum component along the z axis (i.e.,
either right- or left-handed circular polarization). From
the constraints given earlier we see that hM =+1 implies
that hm is an odd integer. The possible transitions asso-
ciated with b,m+2' =1 and 5M=+1 correspond to
photon absorption at frequencies co+—,'co„ in agreement
with the generalized Kohn theorem. ' '

Now consider the e5ect on the absorption spectrum of
the additional perturbation Hc introduced above. The
¹lectron energies are given by Eq. (31), yielding energy
shifts EEc=Ec (final) —Ec(initial) of

b Ec= (2N+ m '+ m 2}b—m Acoi+ (M'+M )EMfico3

+[hv&( v+iv&+N 2)+bv—2(vz+vi+N 4)]—
(33)

where the primed (unprimed} variables correspond to the
final (initial) ¹lectron state. The two absorption lines at
e+—,'co, for the ¹lectron Fock-Darwin Hamiltonian
have been replaced by sets of lines located near (but not
at} co+—,'co, . Another way of viewing this is that the
center-of-mass motion has become coupled to the relative
motion. Again from the constraints given earlier, we
note that if hM =+1 then this necessarily induces only
odd-integer changes in both hm and b,w(v)
=w(v') —w(v). [Recall w(v) is the weight of partition v.]

For simplicity we will only discuss low-order excita-
tions b,m=+1 and b,w(v)=El associated with single
photon absorption 6M=+1. First consider the case
where both the initial and Snal states lie in the lowest
Fock-Darwin level (m =M, M=+M, j=0); b, m =b,M
=1 and, in addition, b,v, =+1 with hv~=0 or vice versa.
The Kohn theorem absorption line at co —

—,'co„ therefore,
becomes replaced by a set of lines shifted from co —

—,'co,

by

EEc= (2N+2M 1}A'coi—
+(2M+ 1)iiico3+(2v;+N 2i+1 }Rco4—. (34)

In particular, taking hv; &0 means that the single ab-
sorption line at co —

—,'co, has been replaced by two lines, as
shown schematically in Fig. 1. (Note that the heights of
the lines in Fig. 1 do not represent predicted intensities.
The actual intensity of each line will depend on the dipole
matrix element squared, which is not considered explicit-
ly in this paper. ) So far we have considered the case
where the initial and final states lie in the lowest Fock-
Darwin level. Relaxing this restriction is straightforward
since Eq. (33) is independent of the j quantum label. In
this case hm =hM= —1 and hj = 1; the Kohn theorem
absorption line at co+ —,'co, becomes replaced by a set of
lines which are shifted from co+ —,'co, by

EEc= (2N+ 2M —3 )ficoi—

1
(0 —

2 (Oc
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I
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I

I
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PHOTON ENERGY

FIG. 1. Schematic infrared-absorption spectrum (solid lines)
for N electrons in a quantum dot at finite magnetic field. The
quantum dot Hamiltonian is described in the text. Dashed lines
are the Kohn theorem absorption frequencies corresponding to
N electrons in a perfectly parabolic quantum dot. The height of
the absorption lines is not related to predicted intensities.

coz, co3, the particle number N, etc., either or both of the
two new lines (solid lines in Fig. 1) can be above or below
the corresponding Kohn theorem frequency (dashed line
in Fig. I). This finding of two absorption lines near each
Kohn theorem frequency is actually qualitatively con-
sistent with recent experimental absorption spectra ob-
tained from nearly parabolic quantum dots (e.g. , see Fig.
6 of Ref. 1}.

An interesting case of the above analysis concerns the
infrared optical absorption from fractional quantum Hall
states in quantum dots. The infrared-absorption frequen-
cies of such states in a parabolic quantum dot are, by the
generalized Kohn theorem, identical to those of a nonin-
teracting electron gas and are independent of filling frac-
tion. This will not be the case however in a nonparabolic
dot. Assuming the electrons to be spin polarized for
filling fractions 1ln where n =3,5, . . . , only spatially
antisymmetric states can occur. The partition v becomes
a one-row partition given by v=(nMO) where
Mo= ,'N(N 1), a—nd m —=M=nMo The fre.quencies
of the set of lines near each Kohn theorem absorption
frequency given above, therefore, depend explicitly on n
and hence on the filling fraction I /n.

Since the single absorption lines predicted by the gen-
eralized Kohn theorem only occur for an exactly parabol-
ic potential, satellite peaks are obviously the rule rather
than the exception. For a quantum dot at finite tempera-
ture, the absorption spectrum will consist of all possible
transition lines (i.e., satellite peaks) due to the many
available initial states, weighted by the Boltzmann factor
describing the probability of occupancy of the initial
state.

—(2M —1)fico3+(2v; +N 2i+1)fico4 . —(35)

For b v; ~0 these two lines are also shown schematically
in Fig. 1. Depending on the values of the parameters co&,

B. Transport addition spectra

Transport measurements through quantum dots have
been attracting much attention recently (see, for example,
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Ref. 3). The series of conductance peaks found experi-
mentally as a function of applied gate and source-drain
bias voltages show an extremely rich structure. Deduc-
ing the particular number N of electrons on the dot from
a given set of conductance peaks is proving difficult since
the experiments often operate with N of the order of tens
~hereas theoretical calculations are greatly limited by
numerical complexity to treating N (6.

The previously obtained algebraic expressions for the
electron energies of an N-electron dot allow us to give an-
alytic expressions for the spectrum of conductance peaks
with applied voltage. Consider the tunneling at low
source-drain bias voltage. As the gate voltage is varied,
an extra electron can jurnp on to the N-electron dot when
the chemical potential (i.e., the energy of the incoming
N+1 electron) is equal to bE& z+, =E(N+I) —E(N),
where E(N+1) and E(N) are the ground-state energies
of the N+1 and N-electron dot, respectively. The N
dependence of ATE& ~+, yields the so-called "addition
spectrum. " As an illustration, we consider the case
where the N and N+1 electron dot ground states lie in
the lowest Fock-Darwin level (i.e., m =M, j=0) and also
correspond to definite filling fractions 11'n [i.e., M =nM0,
where Mo= ,'N(N 1—)]. It —can easily be shown from the

energy expressions in Eqs. (27) and (31) that

bE& iv+&=N n fi(co&+co3+co4)+N nA(co&+ ', co&)—

+Nfi[n(co ,'co, —+c—o2 ', co4)+—4—co4] 2fico2 . —

(36)

For a perfect parabolic quantum dot without interactions
(i.e., co&, co3, and co4 all equal to zero) Eq. (36) reduces to
b Eic ~+, =Nnfi(co ,'co, ) as expec—te—d.

Figure 2 shows the resulting addition spectrum
AE~ &+, as a function of N at the one-third filling frac-
tion (i.e., n =3). The cubic dependence of Eq. (36) is in
contrast with the perfect parabolic, noninteracting sys-
tem where AE~ z+, increases linearly with N. Such a
cubic dependence suggests AE& z+& could even have a
maximum as a function of N, which seems to be in con-
tradiction with simple charging ideas ~here the energy to
add an extra electron is always positive. However, we
note that we have not included the full effects of the
electron-electron Coulomb interaction in our N-electron
energies. A (large) classical charging term that increases

40

gE 3O

2S

20
Cz

15

Q+ 10

0

~ ~
~ ~

~ 0 p p p p

p o 'P . . . I

5 10

~ ~
~ ~

o p p

I

15

o
0 p

p o
p o

I

20 25 30

linearly with N could be added to the values AEz ~+, in

Fig. 2, restoring a monotonic N dependence which devi-
ates only slightly from a linear form by the cubic equa-
tion Eq. (36).

VI. CONCLUSIONS

In conclusion, we have presented an analytic approach
to the problem of calculating the many-body energy spec-
trum of N-interacting electrons in a nonparabolic quan-
tum dot. This approach can be used to describe pertur-
bations to the noninteracting N-electron gas in a parabol-
ic confining potential without resorting to computational-
ly intensive perturbation theory or matrix diagonaliza-
tion. Future work will explore both the parameter space
of such algebraic Hamiltonians and higher-order Casimir
terms in a similar way to work carried out in molecular
and nuclear physics, with a view to fitting existing experi-
mental spectra.
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NUMBER OF ELECTRONS ON DOT N

FIG. 2. Theoretical addition spectrum AE» + l

=E(N+1)—E(N) for transport through a quantum dot con-
taining N electrons at filling fraction

3
(i.e., n =3). The quan-

turn dot Hamiltonian is described in the text. Parameters for
the solid circles are Rco2 =2.66 X 10 ' meV, Wm, = —7.07 X 10
meV, and %co~= —1.95 X 10 ' meV. The dot confinement po-
tential %coo=1.00 meV and Ac@, =10.0 meV (i.e., B=6 T for
GaAs). As a comparison, the open circles correspond to the pa-
rameters ~z, m„and co4 being set to zero.
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