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Calculation of the hyyerfine-interaction tensors of the PG, antisite in Gap
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The tight-binding theory of defects by Hjalmarson et al. [Phys. Rev. Lett. 44, 810 (1980)] is used to
calculate the wave function of an electron localized near the PG, antisite in GaP. The effect of the defect
potential is extended to the nearest-neighbor sites, including the effects of lattice relaxation around the
antisite phosphorous. From the calculated wave function, the hyperfine interaction of an electron with a
P or a Ga nucleus near the defect is obtained and compared with electron-spin-resonance data and opti-
cally detected magnetic-resonance data. Good agreement is obtained for antisite phosphorus and
nearest-neighbor atoms. The effects of lattice relaxation on the defect energy level, the wave function,
and the hyper6ne-interaction constants are discussed. The outward relaxation of nearest-neighbor atoms
was determined to be 21% of the bond length.

I. INTRODUCTION

An intrinsic defect believed to be important in III-V
compound semiconductors is the anion antisite defect,
where a group-V atom occupies a group-III atom site,
forming a double donor. ' The first experimental evi-
dence of this defect was for the PG, antisite defect. In
GaP, where via electron-spin resonance ' (ESR) and op-
tically detected magnetic resonance ' (ODMR), the iso-
tropic central-atom phosphorous hyperfine (hf) interac-
tion plus the anisotropic hf interaction of four equivalent
phosphorus atoms were resolved and the energy level of
the PG, antisite defect in GaP was obtained through pho-
toresponse ESR. Similar spectra have subsequently been
reported for GaAs (Refs. 6—8) and InP.

The antisite defects have also been extensively studied
theoretically, using, for example, both tight-binding cal-
culations' ' and self-consistent pseudopotential
Green's-function calculations. ' ' None of these
theories attempted a comparison with the experimental
data for the hf-interaction constants as well as with the
energy level of the antisite defect. The purpose of this
paper will be to provide such a comparison for the PG,
antisite defect in GaP, using the theory of electron-
nuclear-double-resonance (ENDOR) and electron-
paramagnetic-resonance (EPR) spectra of deep impurity
states by Ren et al. and the theory of deep energy levels
by Hjalmarson et al. ,

' extended to allow for the effects
of lattice relaxation. A rigorous treatment of lattice re-
laxation would require a total-energy calculation. How-
ever, such a calculation would destroy the simplicity and
universality of the theory of Hjalmarson et al. Our ap-
proach circumvents this problem by treating lattice relax-
ation phenomenologically. It retains the ability to easily
predict chemical trends by treating the diagonal matrix
elements of the defect potential using the assumption of
Hjalmarson et al. : these matrix elements are proportion-
al to atomic-energy differences. The effects of lattice re-

laxation are included according to Harrison's inverse
bond-length-squared scaling law for off-diagonal tight-
binding matrix elements. Taking the experimental value
of the defect energy level as an input parameter of the ap-
proach, the diagonal matrix elements of the defect poten-
tial on the nearest-neighbor sites are included, the
amount of relaxation of the nearest-neighbor lattice can
be determined by comparing calculated results with ex-
perimental data. In addition, the energy, wave function,
and hf-interaction constant with varying amounts of lat-
tice relaxation are also investigated on the assumption
that the diagonal matrix elements on the nearest-
neighbor sites is a linear function of lattice relaxation.

The remainder of the paper is organized as follows:
Section II describes the method used for the present cal-
culation. Section III gives the formulation of the hf-
interaction tensor. The results will be presented in Sec.
IV, followed by a discussion of their meaning and com-
parison to available experiments. A brief summary of our
conclusions is contained in Sec. V.

II. WAVE FUNCTION OF THE PG,
ANTISITE DEFECT IN GsP

The ESR and ODMR spectra of the PG, antisite defect
in GaP show that the antisite phosphorus atom is sur-
rounded by a tetrahedron of four equivalent phosphorus
atoms and is in an s-like state, with the breathing model
relaxation. From group theory, the defect state ~g) is
one transforming according to the irreducible representa-
tion A, of the Td point group. Hence

~ 1b ) is expanded in
a set of bases function

~
A &Rm ),

~@)=g~ A, Rm ) ( A, Rm (@),
Rm

where
~ A, Rm ) are orthogonal symmetric combinations

of sp hybrid orbitals round the antisite atom. R indexes
the Rth shell around the antisite-atom site, e.g., R =0 for
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where G(E)=1/(E HQ) —is the Green's function of the
host crystal, with matrix elements

&A]Rm~nk&&nk~A]R m )

nk E —E

Here E„„and ~nk) are the eigenvalues and the eigenvec-
tors of the host Hamiltonian, which is described by an
empirical tight-binding Hamiltonian Ho, and the sum-

&nation on wave vector k in the Brillouin zone is per-
formed with use of the special k-point method of Chadi
and Cohen.

In the present study, both the diagonal matrix elements
of V on the nearest neighbors of the antisite atom and the
off-diagonal matrix elements of V, which couple the
antisite atom to its nearest neighbors, are included.
Thus the potential parameters being introduced are

following: VQQ= & A]01I VI A]01& = &Sl VIS &,

VQ]
=

& A]011 VIA, 11 &, V,Q=& A, ll IVI A]01&, and

V» =
& A, 11

~
V~ A, 11 ) . The solution of Eq. (2) reduces

to

& A, Rm~p&=& A]Rm~G~A]01) VQQ& A]01~$)

+ & A ]Rm
~
G ( A ]01 ) V'Q] & A ] 1 1 ) g )

+& A]RmlGIA]ii&v„& A]oill(&

+& A]Rm ~G~A, 11)V»& A]11~$), (4)

because the defect potential V is only extended up to the
atoms of the R =1 shell. A set of linear homogeneous
equations for & A ]01

~ p ) and & A, 11
~ 1( ) may be obtained

from Eq. (4),

&A, oily&=(G v +G„v,o)&A oily&

+ ( 6QQ V]], +G Q] V] ] ) & A ] 11
~ g ),

& A, 1 1
I f) =(6 o V +G „V, ) & A, 01

l y)

+(G]Q VQ] +G]]V], )& A] 11~1(), (5)

where G; is the abbreviation of the Green's-function
matrix elements, i.e., GQQ

=
& A, 01~ G~ A, 01),

GQ] =
& A, 01IGI A]11&, G]Q= & A]11IGI A, ol), and

G]] =
& A]11IGI A, ll &.

The bound-state energies E of the defect satisfy the
determinantal equation

the antisite atom and R =1 for the shell of the nearest
neighbors, and m marks the mth basis function of the
Rth shell transforming according to the 3

&
irreducible

representation. For example, the s orbital of the antisite
phosphorus atom forms the basis function

~ A, 01)= ~S ).
The A, combination of four inward-directed hybrids cen-
tered at the nearest-neighbor sites constructs

~ A, 11 ),
and so on.

The defect electron state
~ 1( ) bound by the short-range

potential Vsatisfies the following equation:

(2)

dGo,—2(C, +C3)(C2+C4) =1, (7)

where C] =
VQQ& A]01~$), C2= V]Q& A]01~1(j),

C3 =
VQ, & A ] 11 g), and C4 = V» & A, 1 1 ~]j'j).

With regard to the matrix elements of V, the diagonal
element Voo used is the same as given by Hjalmarson
et al. for the strain-free theory, '

V~ =Ps [~s(P)—~s(Ga) ], (8)

where cps(P) and ~s(Ga) are the s-orbital atomic energies
for the antisite atom and host atom Ga, respectively.
Following Ref. 25, and for the same reason, Ps = 1 is used
here.

The off-diagonal matrix elements are written as

VQ] = V]Q
= IV[(di )

—(dH ) ],
where dH and dI are the bond lengths of the antisite (im-

purity) containing and the perfect crystal, respectively.
Wis a proportionality constant, W= Vzz + Vgp, which
can be obtained from the parameters of Harrison.

The combination of one of the two equations in (5)
with Eq. (7) gives the wave functions & A]01~$) and

& A]11~$) as a function of the bond length di. Then the

& A, Rm
~ P) for each shell can be obtained from Eq. (4).

III. HYPERFINE-INTERACTION TENSOR

In order to use the symmetric wave function

& A ]Rm
~ g ) to calculate the hf-interaction tensor, we

now expand the electronic state
~ P ) in terms of the atom-

ic orbitals

ly& =y[C,slqS &+CjxliX&+C,rjlI'&+CjzljZ &],

(10)

where ljS&, Ijr), ~jY), and j~Z) are the nS and nP
atomic orbitals of the host or antisite at the jth site, re-

sPectively. Cs= & jS'l0), Cjx =&jP~IP&, Cr=& jPrlg),
and Cjz =

& jpz~g) can be evaluated using the calculated

& A]Rm ~1().
As usual, the probability of the unpaired electron on

the jth atom is represented by

C 5+ CD+ C @ +Cjz

and the percentage s and p character of the wave function
by

2 —C2 j 2

Because of the restriction of Eq. (6), only one of the
two equations in (5) is independent. The normalization
condition &P~g) =1 gives another independent equation
for & A]olll(') or & A, ill&&,

dGoo dG ( )—(C, +C3) —(C2+C4)

Goo Voo+ Goi V&o
—1

Gio Voo+G» Vio

Goo Voi+Goi V» =0.
Gio Voi+G» V» —1 a +P =1.

J J

(12)
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A — Ayx AyyAyz

Azx Azz Azz

(13)

As is commonly adopted, only the atomic orbitals cen-
tered on the jth atom contribute to A and the contribu-
tions from the other atomic orbitals are neglected. Under
this assumption, the hf-interaction tensor arising from
the wave function of the gap state alone is an asymmetric
tensor. Then we can obtain the following relationships
among all components of A and the coefficients Cz,
Cqx, C~z, and Cqz

Ax» =Cs Af +(2C» —Cq —Cz)Bf

Ax~= A~x=3CxC~Bf,

Ayy=cs Ay+(2cr —Cz —C»)By,

A yz Azq =3CyCzB

Azz =Cs Ay +(2Cz —C» —Cy )By,

Azx = Axz =3CzCxBf

with

A y=(16m/3)(p /I )psIf„s(0)I

Bjf=4/5(py/IJ )ps(r„p )i .

(14)

(15)

All subscripts j are dropped in Eqs. (13) and (14). In Eq.
(15), JMs is the Bohr magneton and p and I are the nu-
clear magneton and nuclear spin of the jth atom, respec-
tively. Ig„s(0)I and (r„~ ) are the probability density
of the nS orbital of the jth atom at its nucleus site and the
expectation value of r weighted over the nP orbital of
the jth atom, respectively. For 'P, its natural abundance
is 100%, I =

—,', @=1.1316 nm, I$3s(0)I =41.6X10
cm, (r3r ) =24.2X10 cm (these values are taken
from Ref. 26). The free-ion values for Ga were taken as
A =2477X10 cm ', B =49X10 cmf f

In ESR, ODMR, and ENDOR experiments, each hf-
interaction tensor is usually reduced to diagonal form by
a coordinate transformation to its principal axes. The
largest principal value is taken as A &, the second largest
and the smallest are taken as A2 and A3, respectively.
Thus (13) becomes a diagonal matrix and new parameters
a, b, and c are determined by

Ai

A2

a+2b
a —b+c

a —b —c

(16)

Here a =1/3TrA represents the isotropic part of the hf
interaction, b gives the purely axially symmetric part of
the hf-interaction tensor, and c takes account of the devi-
ation from axially symmetry. Generally, the hf tensor is

The hf-interaction tensor can be represented in the fol-
lowing form:

Axx Axe Axz

2 2 2 2
Jii if' i i i if' (18)

The hf-interaction tensor is purely axially symmetric
and the axial direction is determined by the direction
cosines. The direction cosines of the first-principal axis
of the hf-interaction tensor, on which the hf-interaction
tensor has the largest principal values, are

1=ex/(Cx+C r+Cz)
m =Cjr/(Ci~x+ Cqr+ Cjz )'

n =Cjz /( Ci2»+ CJr +C,z )
'

(19)

If a point defect in diamond or zinc-blende structure
semiconductors has a mirror plane, two of the quantities
IC»I, C, rI, and ICizI, when the coordinate directions
are along the cubic axes, should be equal to each other
for an atom located in the mirror plane. In the case of
the PG, antisite defect in GaP, the wave function belongs
to the A& representation of Td point group, so the
nearest-neighbor P atom and the next-nearest-neighbor
Ga atoms are all in a mirror plane. Thus, the direction of
the first principal axis of the hf-interaction tensor is in
the mirror plane, and it can be represented by an angle 0
between it and the

I 011] direction. Assuming
I C,x I

&
I c,r I

=
I ciz I, 8 can be given by

Ic, Ie=tan '
I&wc, I

(20)

The relationship of the hf constant A to the direction
of the externally applied magnetic field is given by

(A2n2+A2n2+ A2n2)1/2 (21)

where A &, A2, A3 are the principal values of the hf tensor
A and n &, n2, n3 are the direction cosines of the
magnetic-field direction with respect to the 1,2,3 princi-
pal axes of the A tensor.

IV. RESULTS AND DISCUSSION

To make an improvement for calculating the defect
wave function, the formulations described in Secs. II and
III include two parameters to be determined after the Voo
is specified; one is V», the diagonal matrix elements of
the defect potential at the nearest-neighbor sites, and
another is d~/dH, the ratio of the nearest-neighbor dis-
tances in the impurity and host clusters. How do we
determine the proper values of the two parameters and
further calculate the wave function?

First of all, it should be noted that Eq. (6) may be re-
garded as an implicit function of the arguments E, V»,

a nearly axially symmetric tensor, i.e., c ((b.
It has been found in ESR experiments that the hf-

interaction tensor of the PG, antisite defect in GaP is an
axially symmetric one along the p-orbital axis, c =0 and
the principal values can then be parametrized as

( A
~~

).=a +2b. , ( A~) =ai bi—,

where the hf-interaction parameters a and b are given

by
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TABLE I. The probabilities g of the unpaired electron, the s-character percentage a and p-
character percentage P of the wave functions on antisite phosphorus, the nearest-neighbor and the
next-nearest-neighbor atoms in GaP, and the hf interactions A

~~,
A „a,and 6 (in 10 cm '), the direc-

tion angle 8 (in degrees) of the first principal axis of the hf tensor in the mirror plane from the [011]
direction. The corresponding experimental results are taken from Refs. 2—5. The deep energy level is
at E, +1.25 eV', where E, denotes the top of the valence band. The outward relaxation of the nearest
neighbor is at 21% of the bond length.

Atom A(( a'(%) P'(%) g'(%) Ref.

PG,,

P4

Gal2

105
105
0.7

60
62
0.3

966+13
996+3
988+15

982.8
75
76
0.4

0
0
0
0
15
14

0.15

100
100
100
100
11.8
13.0
5.4

0
0
0
0

88.2
87.0
94.6

26
26.4
15.7
15.8
0.3

35.3

2

4
5

this work
3

this work
this work

0
and dildH (dH=2. 36 A), which is a surface in the
geometric interpretation. Assuming that the E that ap-
pears in Eq. (6} is equal to the experimental defect energy
level, thus it follows from F(E, V~ &,dl /dH ) =0 and
E =1.25 eV that the cut line describes the functional re-
lation between V&& and dildH. That is to say, under the
condition of fixed E, Eq. (6) gives an infinite set of pairs
( V», di!dH). Thus, for each given dildH, the Vp, ( V,p)
can be evaluated from Eq. (9), the V» can be obtained by
virtue of Eq. (6};and then we obtain, on substitution into
one of Eqs. (5) and (9), the wave function and theoretical
values of the g, a, and 2, A~~, and A~ for PG, and P4
can be calculated from Eqs. (11), (12), and (18) in an or-
derly way. Compared with their experimental values, the
optimum theoretical results are obtained when dildH is
about 1.21. By this time V» = —2. 82 eV.

The calculations show that ( 3 &01~)t/i) and ( A, 1 1 ~/)
are of opposite sign, e.g. , when dildH=1. 21. They are
equal to —0.514 and +0.786, which just highlights the
antibonding character of the PG, defect electron wave
function. The corresponding other physical quantities
are listed in Table I. The experimental values from Refs.
2 —5 are also summarized in the table for comparison.

These values show that both the theory and experiment
agree very well. The direction angle 0 for each of the
four phosphorus atoms in the mirror plane from the [011]
direction is calculated to be 35.26'. This shows that the
first-principal axis remains in [111]direction.

The calculated results of the hf-interaction tensor are
listed in Table II. As seen from this table, the hf-
interaction tensor of PG, is isotropic; those of the four
nearest-neighbors P4 are symmetric, and their first
principal-axis direction is in a different [111]direction.
The angular dependence of the P4 lines has been obtained
from Eq. (21), and is shown in Fig. 1. It reveals the
characteristic four-line (two of them are coincident) spec-
trurn of the four P4, each with a different [111]axis of
symmetry.

It is worth noticing that the dildH=1. 21 means that
the relaxation direction of P4 is outward and the amount
is about 21%%uo of the host bond length. This result shows
that the defect GaP:PG, may be another example of out-
ward relaxation caused by substituting a smaller atom for
a larger one. Li and Myles and Morgan have predict-
ed a similar trend for 0 in GaP:Op, in which the nearest-
neighbor Ga atoms move away from the 0 impurity by

TABLE II. Parameters (in 10 cm ') and orientations of hf tensors of "P atoms of P&, in GaP.

Atom

PG,
(000)

P(1)
(1 1 1)

P(2)
(111)

P(3)
(111)

P(4)
(111)

983
0
0

77
14
14
77
14

—14
77

—14
14
77

—14
—14

983
0

14
77
14
14
77

—14
—14

77
—14
—14

77
14

0
0

983
14
14
77

—14
—14

77
14

—14
77

—14
14
77

983
983
983
105
62
62

105
62
62

105
62
62

105
62
62

(I,m, n)

(1.000,0.000,0.000)
(0.000, 1.000,0.000)
(0.000,0.000,1.000)

( —0.577,—0.577,—0.577)
(0.071,—0.740,0.669)
( —0.813,0.346,0.468)
(0.577,0.577, —0.577)
( —0.071,0.740,0.669)

( —0.813,0.346,—0.468)
(0.577, —0.577,0.577)

(0.071,0.740,0.669)
( —0.813,—0.346,0.468)

( —0.577,0.577,0.577)
(—0.071,—0.740,0.669)

( —0.813,—0.346,—0.468)
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FIG. 1. The angular dependence lines [B in (011)plane].

0.42 A, or about 18% of the GaP bond length. ' Fol-
lowing Li and Myles, the simple interpretation is that,
partially due to the fact that PG,

+ is much more elec-
tronegative than the P and Ga atoms, and partially due
to the smaller radii of the PG,

+ orbitals in comparison
with those for Ga, which causes a smaller overlap be-
tween the antisite PG,

+ and P orbitals, the PG, +-P
bond is much weaker than the Ga-P bond, so that the
nearest-neighbor P atoms relax away from the antisite

4+
PG,

Now we investigate the efFect of lattice relaxation on
defect energy level, wave function, and hf interactions.
For this end, we need to know the function V& &

as the ar-
gument di/dH. This problem is so difficult that no one
can give the expression as yet. As a rough approxima-
tion, we assume that V» is independent of E and depends
only on dildH linearly. Thus, this may be done by re-
quiring that V&, =0, when di /dH = 1 (the nearest-
neighbor atom has no relaxation), and V„=—2. 82 eV,
when di /dH = l.21 (as has been determined above). Then
the equation of a straight line passing through two points
(1,0) and (1.21, —2.82) in the V» -dildH plane has the
form

Vii =k (dr/dH (22)

where k= —13.4, is the slope of the straight line. The
validity of Eq. (22} will be illustrated by the following
theoretical results and discussions.

The efFect of lattice relaxation on the A& level of the
GaP:Po„obtained from Eq. (6), is shown in Fig. 2. This
curve indicates that the energy level moves closer to the
conduction-band edge for inward relaxation, while it
moves deeper into the band gap for outward relaxation.
We note that a similar trend has been predicted for vari-
ous Ga- and P-site impurities in GaP and S, Se, and Te in
Si by Li and Myles, for N in GaP by Shen, Ren, and
Dow, and for P~„As~„and SbG, in GaAs by Caldas
et al. '

We have also calculated the trends of the ( A, Rm
~ P )

with relative lattice relaxation di/d~. Shown in Figs. 3(a}
and 3(b) are the curves for vP and a2 vs dildH for the

FIG. 2. Energy level of A& symmetry produced by PG, in

GaP. The abscissa is the ratio of di /dH between the antisite im-

purity and the host bond length. The ordinate is the band-gap

energy with the zero of energy equal to the top of the valence

band. Since di/dH is a measure of the nearest-neighbor lattice
relaxation around the antisite, this figure gives the dependence
of the deep levels of the antisite on this relaxation. The dot cor-
responds to E =E„+1.25 eV and d&/dH =1.21.

P&„P4, and Ga&2. From the curves for g, it can be seen
that the g of Pz, increases almost linearly for outward
relaxation and decreases for inward relaxation. But the
7P of P„(each of four P atoms on the R =1 shell) is oppo-
site to the g of the PG, . This then led to a conclusion
that because of the antibonding character of the A, state
of GaP:PG, an increase in the bond length causes an in-
crease in localization of its wave function, which is iden-
tical to the result of density-functional-theory calcula-
tions for P, As, and Sb in GaAs and InP, by Caldas
et al."

From Fig. 3(b), it is clear that the a of P4 decreases
rapidly with an increase in dr/de. Such a trend is similar
to the argument proposed by Watkins and Corbett.
For Po„ its a remains unaltered and equal to 100%.
This means that in the process of the breathing model re-
laxation, the Pz, will not be polarized and the P4 will be
polarized highly, so that a portion of the s character of
the wave function on P4 is transformed to the p charac-
ter.

The changes of the hf-interaction constant vs drld&
are shown in Fig. 3(c). The A of Po, is monotonically in-

creasing, while the A~~ and A~ of P4 are monotonically
decreasing. In addition, the calculated results for Ga
atoms on the R =2 shell are also shown in Fig. 3. From
the curves of Ga, 2, its g and a are smaller than those of
PG, or P4. Especially, its a and b are several orders of
magnitude smaller than the A of P~„which has not been
measured by experiment. Because of this, a simple
molecular model can be used to estimate A.

V. CONCLUSIONS

The theory of the ENDOR and EPR spectra of deep
impurity states has been extended to include the effects of
lattice relaxation and applied to investigate the electronic
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FIG. 3. Wave functions and hf interactions of A
&

symmetry produced by PG, in GaP. The abscissa is the ratio of di /dH between
the antisite and the host bond lengths. The ordinates are (a) the probabilities (g ) of the unpaired electron and (b) s-character percen-
tage (a ) of the wave functions on antisite phosphorus (PG,), nearest-neighbor phosphorus (P4), and next-nearest-neighbor Ga (Ga»)
atoms, and (c) the hf interactions A of antisite phosphorus, A~~ and A& for each of four equivalent phosphorus atoms, a and b for
each of the 12 atoms in the nearest Ga shell surround the substitutional PG, antisite. Since dl/d& is a measure of the nearest-
neighbor lattice relaxation around the antisite, this figure gives the dependence of the wave functions and the hf interactions of the
antisite on this relaxation. The dots are the experimental data taken from Refs. 3 and 5, and the lines are theoretical curves.

structure of the antisite defect GaP:PG, . By comparison
of the theoretical results with experiments, satisfactory
results are obtained, when the amount of the relaxation is
determined to be about 21% of the host bond length. We
have reproduced the angular dependence of the P4 lines.
The trend of the defect energy level E with the lattice re-
laxation has been discussed. The trends of the wave func-
tion and the hf interaction with varying amounts of lat-
tice relaxation also have been systematically explored. So

our calculation is successful. We also have applied this
approach to the antisite defect GaAs:Aso, . The theoreti-
cal results, which are in good agreement with EPR and
ENDOR experiments, will be published elsewhere.
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