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Calculation of quantum-limit cyclotron-resonance linewidths in Ge and Si
by the isolation-projection technique
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On the basis of the line-shape theory introduced by the isolation-projection technique, we calculate
the cyclotron-resonance half-linewidths for intravalley-deformation-potential scattering in the quantum
limit. For comparison of the theoretical values with the experimental data, the effective deformation-

potential constant (El) is chosen as the fitting parameter, as in the works of Bagguley, Flaxen, and Stra-
dling [Phys. Lett. I, 111 (1962)], Stradling and Zhukov [Proc. Phys. Soc. $7, 263 (1966)], Ito, Kawamura,
and Fukai [Phys. Lett. 13, 26 (1964)), and Murase, Enjouji, and Otsuka [J. Phys. Soc. Jpn. 29, 1248

(1970)]. In the best fitting, we obtain E, = 12.7 eV for Ge and E, =7.90 eV for Si, which are similar to
the values obtained by the other authors. In the quantum limit, the half-linewidths in Ge and Si are in

good agreement with the experimental data of Kobori, Ohyama, and Otsuka [J.Phys. Soc. Jpn. 59, 2141
(1990)],except for the extremely low-temperature region.

I. INTRODUCTION

The study of cyclotron resonance is well known to be a
powerful tool for investigating band structures of solids
and scattering mechanisms of electronic carriers.
Cyclotron-resonance linewidth (CRLW) may give direct
information about the transport behavior of the materi-
als. Recently many theoretical studies have been report-
ed on cyclotron-resonance line shapes for systems of elec-
trons in interaction with phonon and impurity back-
grounds. ' ' To the knowledge of the present authors,
however, agreement of these theories with the available
experiments is limited.

It is well known that acoustic deformation potential
scattering is considered dominant in comparison with
other scatterings below room temperature for pure Ge,
and below 100 K for pure Si. Meyer' indicated that at
low temperatures, the relaxation time for acoustic defor-
mation potential scattering could not be explained in
terms of the classical relaxation time, and obtained the
temperature dependence of the relaxation time using
Fermi's golden rule and the elastic scattering approxima-
tion. Suzuki and co-workers ' " obtained the energy-
dependent relaxation rate approximately in 1ow- and
high-temperature regions, and indicated that in the low-
temperature region electron-phonon inelastic processes
play an important role. Kobori, Ohyama, and Otsuka
obtained theoretical results for the temperature and
magnetic-field dependence of the half-CRLW for various
materials, and compared them with their experimental
data. In these formalisms, the absorption power P(co) for
the incident electromagnetic wave of frequency co is given
by

I (co, k, )
P(co}=J dk, A(co, k,),(1.1}' ' (~—~, )'+[r(~,k, )]' '

where co, is the cyclotron frequency, k, is the z com-
ponent of electron wave vector, and A (ro, k, ) and
r(co, k, ) are proper functions of co and k, . Note that
I'(co, k, ) is the energy-dependent relaxation rate and not
the linewidth. The linewidth y can be obtained if P(to)
can be plotted. Since the shape is not symmetric with
respect to co in general, we suggest obtaining y as follows.
First, we define the left halfwidth yL and the right
halfwidth yR as

P(ro,„—yL, ) =P(co,„+y~ ) =(—,
' }P(co,„), (1.2)

where co,„ is the frequency at the maximum absorption.
Then we may have

PL +FR (1.3)

as our linewidth. However, in the works of Suzuki and
co-workers and Kobori, Ohyama, and Otsuka, 1/y is cal-
culated approximately by the Boltzmann average of
1/I'(co, k, ) at to=co, . This way of calculation is con-
sidered to be the second-best method that can be utilized
when no other methods are available.

In a previous paper' ' ' we introduced a theory of
cyclotron-resonance line shape for electron-phonon sys-
tems on a quantum-statistical basis, which is valid at the
resonance peak. The line-shape function, however, was
given in the general form of the electron-phonan-
interaction matrix element. Thus, for further calculation,
specification of the interaction is required. In this paper,
we will calculate the line-shape function further by as-
suming that the interaction is isotropic. The purpose of
this paper is to complete the theory in such a way that
the line-shape formula is written in a tangible form, and
to obtain theoretical CRLW's through the above-
mentioned plotting method. In Sec. II, the line-shape
formula reported above will be expressed in terms of the
so-called EC matrices, which can be calculated easily if the
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scattering mechanism is specified. In Sec. III, the
energy-dependent relaxation rate for intra valley
acoustic-phonon scatterings will be derived. In Sec. IV,
CRLW's for pure Ge and Si will be calculated in the
quantum limit and compared with the experimental data
of Kobori, Ohyama, and Otsuka. " Finally Sec. V is de-
voted to summary and discussions.

II. LINK-SHAPE FUNCTION

For the Faraday configuration with a static magnetic
field 8 along the z direction, the absorption power density

for the electromagnetic radiation of angular frequency co,

which is circularly polarized in the xy plane, is given
b 14(d)

O fa fa+1 Ja
2fico i(co c—o, )+I (co)

(2.1)

in the parabolic band approximation, where Eo is the am-

plitude of the electric field, Re means "the real part of,"
and I' (co) is the line-shape function which is given, in
the weak scattering approximation, by

1+N —f„N +f„ifr.(~)=y y c'.„„(c„.„—c„j /j ) +

1+N- N ++~ ~ C (C —C j+/'+) " +
fico {+—fico fico —{' ftco-

q @&a CO a+1 p COq CO a+1 CO

(2.2)

where the line shift due to the self-energy [Eq. (3.28) in Ref. 14(d)] and the extra term in the line-shape function [the last
term of Eq. (3.29) in Ref. 14(d}]have been neglected because their contribution is very small in the weak scattering case.
Note that N

q
=Nq and co =coq, since the phonon energy depends only on the magnitude of the momentum (lql). In

Eq. (2.2), however, co
q

and N are left as they are, without being changed into co and N, respectively, for the reason
that the present forms are more convenient for further calculation, as will be seen soon. Here
N+ =[exp(Pfico+ ) —1] ' is the Bose-Einstein distribution function for phonons with energy fico+, where P=(ks T)
for the temperature T, co =co i ri(rt—~o—+ in the final stage), and +q = (s, +q), s being the polarization index and q being
the wave vector. fa= fN k =[—exp[p({a +Bc—8F)]+1] ' is the Fermi-Dirac distribution function for electronsa' za

with energy 8 =(N + ,')fico, +fi k, /2m—inthe state la}:—lN, k } where N is the Landau index, k =(k,k, ) the

electron wave vector, co, =eB/m the —cyclotron frequency, 6', the minimum energy of the conduction band, and 8F the
Fermi energy. la+I):—lN +I,ka), { „—:{ —8„, X:—(a+llXla), and j+—:j,+ij» for one-electron current
operator j. C „=Vq(alexp(iq r)l{Lc) is the electron-phonon-interaction matrix element, where V is the coupling fac-
tor which depends on the mode of the phonons and r is the electron position vector. {{cuba+1 in the first summation in

Eq. (2.2} means that the terms (N„,k„}=(N + l, k ) are excluded, and )Lc@a in the second summation in Eq. (2.2) has
the same meaning. So far we have introduced the line-shape function for electron-phonon systems obtained by the
present authors. We will now change these expressions into more convenient form.

Using the explicit form of the electron state function a} given by Eq. (2.6) in Ref. 14(d), we can calculate the
electron-phonon-interaction matrix elements C „ in Eq. (2.2) in the isotropic interaction approximation. Then, after
some manipulation, we have' "

ifr.(~)=y y lv, l'K(N. ,N„;t)
q @Ca+1

+g g I Vql K(N N 't)

1+N —f„ N +f„
5k, k -q + '

6k,k+q
%co —8 fico "' ' " 1)—tco —8 + ficop, a q p, a q

1+N f„—N +f„
~k, k —

q ~k, k +q
fico {a +gco )' a»z gco @ fico )' a»z

a+1,p q a+1,p q

(2.3)

where 5k k +q —=5k k +q 6k k +q, and the K matrices are defined as
p' a qyz yp' ya qy zp' za qz

N N+1
' t" exp( —t)L' "'(t)L' " "(t) (N &N')

K(N, N', t)= '

N 1N + 1exp ( t )L {N —N '
)

( t )L {N N ' + 1 )
( t ) (N )N I)—

(N+1)1 N' N'

(2.4)

Here t =fiq) /2m co„qi —=(q„+q )', and L„' '(t) is the associated Laguerre polynominal. In Eq. (2.3), the Kronecker's
5's and the energy denominators yield the momentum and energy conservation in the transitions, respectively.

So far we have derived the cyclotron-resonance line-shape function for the isotropic electron-phonon interactions.
We have seen that the function can be expressed in terms of the K matrices as in some other theories. ' ' ' "' "'
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III. RELAXATION RATE FOR ACOUSTIC-PHONON INTERACTION

14 303

In the quantum liinit (fico, »ks T), we assume that conduction electrons are mostly populated in the lowest Landau
level and are then transferred to a higher-energy state by absorbing or emitting an acoustic phonon. Therefore we shall
consider transitions between the nearest-neighboring Landau levels. In the following notations, we shall abbreviate k,
and N„ to k, and N, respectively, for brevity. When iI is taken to be zero, the absorption power in Eq. (2.1) is given by

co (fo, k fl, k )r(~ ~, k. )

P(co) ~ Re[o+ (co)]= f dk, (3.1)'
(co —co, )'+y(co, co, ;k, )'

Here the energy-dependent relaxation rate y(co, co, . k, ) is the real part of Eq. (2.3), or

r(~, ~, ;k, )=r.'b '+r'.b '+y', "+r! ',
where

(3.2)

00 00 0
y,'b'=(I/2qrft) g f dq~ f dq, q~~V ~

E(O, N;t) +N Sf~ k + 5(%co CNk—+ +80k +fico )
N=0, 1

(3.3)

and

00 00 0
y,* =(I/2qriii) g f dqz f dq qj~ V ~~K(O, N;t) +N +fN k + 5(fico —8i k Cb, k +q +Acoq) .

N=0, 1

(3.4)

Considering the energy conservation in the 5 functions
and the electron and phonon distribution functions
y,b(y, ) is due to the absorption (emission) of photons,
and the + ( —) sign of the superscript represents the ab-
sorption (emission) of phonons.

In the resonance absorption, the electron absorbing an
incident photon makes a transition to an excited state,
and later the excited electron emits a photon as it decays
to a state of lower energy. The emitted photon is un-
correlated with the incident photon. In solids, these pro-
cesses are accompanied by absorption or emission of pho-
nons. The relaxation rate given in Eqs. (3.3) and (3.4) is
composed of four types of scattering processes due to the
absorption and emission of a photon accompanied by the
absorption or emission of a phonon. In detail, each of the
processes can be divided into inter- and intra-Landau-
level transitions. Therefore there are eight types of
scattering processes. These processes make up cyclic
processes in which the absorption or emission of phonons
affects the line broadening. However, Meyer' adopted
only the intra-Landau-level scattering, and Suzuki and
Dunn' the intra-Landau-level scatterings. More
rigorously, Kobori, Ohyama, and Otsuka "calculated
the relaxation rate by combining the inter- and intra-
Landau-level scatterings.

If the coupling factor V is given explicitly, we can cal-
culate the relaxation rate, the spectrum of the absorption
power, and the linewidth. For demonstration, we consid-
er the acoustic-phonon scattering via deformation-
potential coupling. Then V is of the form

V =iE, (Aq /2p v, )'~ (3.5)

+
(+) g Y+ 1 K

a&

a+
+ zYgb OsKzs z

3

(3.6)

and

a+

, d, Y,* O, K, ,
as

a~
+f dQ, I;*(I,IC„Q, )

a7
(3.7)

where

where E1 is the deformation potential constant, p the
mass density of the bulk, and v, the sound speed which is
related to the phonon energy through %co =U, q.

Let us introduce the dimensionless variables as follows:
E,=k, lk„Q~ =

qi lk„Q—, =q, /k„Q—:%co/0„
II, —:fico, /@„and e=ks T/8„where k, =mv, /k —and
g, —:mv,2/2. Then performing the integrations over Q~
in Eqs. (3.3) and (3.4), the results are given by
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A =Elm s/ ~pm~

Y,q(,~)(N, K, Q, ) =(Qab(, ~) +Q, )K(O, N; Qab(, ~) /0, )
0

+N(Q.'b(em) Qz)+f(»K. +Qz }

(3.8)

(3.9)

N(Qi, Q, )= [exp[2(Q) +Q, )' /8] —1]

f(N, K,+Q, )=(exp[[(N+1/2)Q, +(K,+Q, ) +(6,—( F)/(, ]/8]+1)

Q,b =(1/2)[[Q —NQ, —(Q, +2K, Q, )] —4Q2])i~,

(3.10)

(3.11)

(3.12)

and

Q,
+— =(1/2)[[(1—N)Q, —0

(Q2+2K Q )]2 4Q2] )/2 (3.13)

the effective masses of the heavy and light holes, respec-
tively. For high-purity semiconductors, experimental re-
sults show that the temperature dependence of the band
gap, 8 ( T), can be expressed approximately by a function
given by

In Eqs. (3.6) and (3.7), the limits (a,+—
) of the Q, integra-

tions are determined by the energy and momentum con-
servations for each process. The first parts of Eqs. (3.6)
and (3.7) represent the intersubband transitions between
the nearest-neighboring Landau levels, and the second
parts the intrasubband transitions. To obtain the absorp-
tion power, we performed Qi integration. However, the
integrands of Q, and K, integrations are very complex.
Therefore the numerical solutions of the Q, and K, in-

tegrations are obtained through computer work.

IV. CYCLOTRON-RESONANCE HALF-LINEWIDTH
FOR Ge AND Si

1/m, =cos 9/m, +sin 8/m, m), (4.1)

where m, and m„respectively, are the longitudinal and
transverse effective masses of the electron. For the intra-
valley acoustic scattering in our isotropic approximation,
the effective mass m in Eq. (3.8) should be replaced by the
density-of-states effective mass [m d,

= ( m, m ) )
'

] of the
electron. By the best-fitting technique with this mass

(md, ), we can obtain E, . E, obtained in this approxima-
tion shall be called the effective deformation-potential
constant. Scattering by optical phonons and intervalley
scattering may be neglected except at the high-
temperature range. Then the constant parameter for
the relaxation rate in Eq. (3.8) is rewritten as
A =E)md, v, /4vrR p . In Eq. (3.11), the Fermi energy
for the intrinsic semiconductor is given by

Nc —(oF(T)= (o (T)I2 ( —,
' )ks Tln(md„lmd—,), (4.2}

where mdh is the density-of-states effective mass of the
hole given by mdh =(mhh +m)„},mhh and m)h being3/2 3/2 2/3

Ge and Si conduction bands have many ellipsoidal en-

ergy surfaces in the first Brillouin zone. When the static
magnetic field is applied to the semiconductors the cyclo-
tron resonance frequency is given by (v, =eB/m„where
m, is the cyclotron effective mass of the conduction elec-
tron. When the static magnetic field makes an angle 0
with the longitudinal axis of the energy surface, the
effective mass determining the cyclotron frequency is
given by

v (T)=(' (0) ~T l—(T+g), (4.3)

where x and g are constants which have different values
for different semiconducting materials.

A. Half-CRLW of Ge

The Ge conduction band has four ellipsoidal energy
surfaces along the (111) axes at the L point in the first
Brillouin zone. When we take the direction (z axis) of the
magnetic field along the [111] direction, the values of
physical parameters for Ge are given as
mi =1.58mo, m, =0.082mo, md, =0.22mo,

0 34mo mph =0.043mo mdh =0 35mo p =5.36
g/cm, v, =5.94X10 cm/s, 6 (0)=0.744 eV,
ir=4. 77X10 eV/K, and (=235 K, where mo is the
free-electron mass.

In order to compare our theoretical result with the ex-
perirnental data of Kobori, Ohyama, and Otsuka, "we
take the wavelength A, of the electromagnetic wave to be
1 19 pm In the papers published So far 22( b ), 2 ( a ), 25( b ), 25( c )

the deformation-potential constant E j was determined by
the best fitting of the theoretical values with respect to
the experimental data. Bagguley, Flaxen, and
Stradling, ' ' Ito, Kawarnura, and Fukai, "and Mu-
rase, Enjouji, and Otsuka ' ' obtained the shear deforma-
tion potential and the dilation deformation potential by
means of the cyclotron-resonance intensity measurements
under the application of uniaxial stress. Using the equa-
tion of Herring and Vogt for the classical condition
k~TIA(v) 1, they obtained the perpendicular deforma-
tion potentials E, i between 13.5 and 14.4 eV, and the
longitudinal deformation potentials E,

l~

between 9.36
and 10.6 eV. Using the density-of-states effective-mass
approximation, we obtain the effective deformation po-
tential constant E, =12.7 eV, which is similar to the
above results.

The absorption power curves for the static magnetic
field are shown in Fig. 1 for a few temperatures. The
shapes of the absorption power curves are nearly
Lorentzian and have peaks at the cyclotron-resonance
frequencies. From these curves, we obtain the tempera-
ture dependence of the half-CRLW's as shown in Fig. 2
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FIG. 1. Absorption power of cyclotron resonance at 40, 70,
and 100 K in pure Ge for a wavelength of 119pm.

in the quantum limit, i.e., T((%co,/ks(=121 K for
A, = 119pm). Our theoretical results in the quantum limit
correspond to the experimental data of Kobori, Ohyama,
and Otsuka

The temperatures above 121 K are in the classical re-
gion for the wavelength of 119 pm. It is well known by
the theoretical prediction of Bardeen-Shockley and the
experimental result of Bagguley, Stradling, and
Whiting "that the half-CRLW's in Ge and Si are ap-

proximately proportional to T in the classical region.
In the classical region, acoustic-phonon scattering is elas-
tic since the maximum energy of phonon is so much
smaller than the electron energy. Also, optical-phonon
scatterings and intervalley phonon scatterings may con-
tribute partially to the scattering processes. Therefore
these may induce the disagreement between our results
and the experimental data in the classical region.

B. Half-CRLW of Si

The half-CRLW's of Si can be calculated in the same
way as in the case of Ge. In silicon, the conduction-band
edges are six ellipsoidal energy surfaces oriented along
the equivalent (100) directions in the Brillouin zone.
When we take the direction of the magnetic field along
the [100] direction, the values of physical parameters for
Si are given as " m&=0. 98mp, m, =0. 9mp,
mde =0.33mp mhh =0.52mp, m&& =0.16mp, mdh
=0.58mo, p =2.34 g/cm, v, =9.03 X 10 cm/s,
4' (0)= l. 17 eV, a =4.73 X 10 eV/K, and g= 636 K.

For A, =513 pm, the temperature dependence of the
half-CRLW's in the present theory is shown in Fig. 3. In
our best fitting, we obtain E1=7.90 eV, which is similar
to other results " "' ' ' (E& 1=8.31—9.02 eV and

t

E& I
=7.40-8.44 eV). In the quantum limit region be-

tween 7 and 30 K, the agreement between the present re-
sult of the half-CRLW and the experimental data of Ko-
bori, Ohyama, and Otsuka "' is good.

The present results for extremely low temperatures and
quite high temperatures, however, appear to be unsatis-
factory for the following reasons. In the extremely low-
temperature region [ksT((md, v, %co, /2)' ], or below 7
K, the phonon emission is less probable than the phonon
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FIG. 2. Temperature dependence of half-CRLW in pure Ge
for a wavelength of 119pm. The open circles and the solid line
denote the theoretical results. The open squares show the ex-
perimental data of Kobori, Ohyama, and Otsuka.
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FIG. 3. Temperature dependence of half-CRLW in pure Si
for a wavelength of 513 pm. The open circles and the solid line
denote the theoretical results. The open squares show the ex-
perimental data of Kobori, Ohyama, and Otsuka.
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absorption since the electron group velocity should
exceed the sound speed of the acoustic phonon for pho-
non emission. ' ' However, as we took into considera-
tion these two processes with the same probability, the
present theoretical result of the half-CRLW's turned out
to be somewhat larger than the experimental data. As
mentioned earlier, the temperature region of T ~ 30 K
for A, =513 JMm is the classical region. Thus in Fig. 3, due
to the same reasons as for Ge, we find disagreement be-
tween our results and the experimental data above 30 K.

V. CONCLUDING REMARKS

Starting with the general formula introduced in the
previous paper, ' ' ' we expressed the cyclotron-resonance
line-shape function in terms of K matrices as in some
other theories. ' ' ' """ Performing analytical in-
tegration and computational works, we obtained
CRLW's which are different from those of other
theories. " ' " First, our result for the energy-
dependent relaxation rate contains all possible scattering
processes in the quantum limit, i.e., eight types of interac-
tion processes. Second, we adopted a more rigorous
definition of the CRLW which was derived from the ab-
sorption power curves for the static magnetic field.

In order to compare theoretical results with experi-
menta1 data, the effective deformation-potential constant
E, was used as the fitting parameter. From the best-

fitting procedure, we obtained E, =12.7 eV for Ge and
E, =7.90 eV for Si, which are similar to other
results. ' ' " In the quantum limit, the half-CRLW's
for pure Ge and Si are in good agreement with the experi-
mental data of Kobori, Ohyama, and Otsuka, ' ' as
shown in Figs. 2 and 3, except for the extremely low-
temperature regions.

As pointed out earlier, in the extremely low-
temperature region the phonon-absorption process is
dominant. Thus if we take this fact into account proper-
ly, we may obtain better results. This part is now under
study, and shall be reported in the future. In the classical
region, if elastic acoustic-phonon scatterings, optical-
phonon scatterings, and intervalley phonon scatterings
are considered, the result will be improved. This part is
left for a future study. Applications of the present theory
to optical-phonon, "' piezoelectric, ' and impuri-
ty ' scatterings are also left for a future study.
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