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We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal-
amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-temperature
density-functional theory of the one-electron states, (b) exact energy minimization and hence cal-
culation of the exact Hellmann-Feynman forces after each molecular-dynamics step using precon-
ditioned conjugate-gradient techniques, (c) accurate nonlocal pseudopotentials, and (d) Nosé dy-
namics for generating a canonical ensemble. This method gives perfect control of the adiabaticity
of the electron-ion ensemble and allows us to perform simulations over more than 30 ps. The
computer-generated ensemble describes the structural, dynamic, and electronic properties of liquid
and amorphous Ge in very good agreement with experiment. The simulation allows us to study in
detail the changes in the structure-property relationship through the metal-semiconductor transi-
tion. We report a detailed analysis of the local structural properties and their changes induced by
an annealing process. The geometrical, bonding, and spectral properties of defects in the disordered

tetrahedral network are investigated and compared with experiment.

I. INTRODUCTION

Amorphous materials are of interest in materials sci-
ence on both the basic and technological levels. Partic-
ularly challenging are the structural properties of these
materials which have been the subject of numerous ex-
perimental and theoretical studies and controversy.! For
a crystalline structure, the complete set of atomic coordi-
nates may be derived from diffraction experiments. For
liquid and amorphous materials, diffraction experiments
yield only a one-dimensional projection of the real three-
dimensional structure in the form of a pair-correlation
function. Information on three- and many-body correla-
tions from other types of experiments (e.g., extended x-
ray-absorption fine-structure, x-ray-absorption near-edge
structure, etc.) is rather uncertain and incomplete.?
Therefore, to explore the structure of amorphous materi-
als in sufficient detail, the laboratory experiment must be

supplemented with a computer experiment. One may dis-
tinguish three different strategies for the computer mod-
eling of amorphous structures: (a) accretion, i.e., the se-
quential addition of atoms to a growing cluster;® (b) ran-
domization and relaxation: a highly random structure
is created by disordering a regular structure (for amor-
phous Si or Ge, for example, one starts from a diamond
structure and introduces disorder by switching nearest-
neighbor bonds) and relaxing towards a low-energy struc-
ture which is still random;* (c) molecular dynamics. Pro-
cesses (a) and (b) produce results that are strongly bi-
ased by the details of the growth, respectively, random-
ization algorithm and by the interatomic force field used
in the relaxation. Molecular dynamics is recommendable
since the results depend only on the quality of the inter-
atomic potentials. Indeed molecular dynamics has been
applied with much success to the simulation of liquid
and amorphous metals® and salts,® based on potentials
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that are essentially parameter free and derived from first
principles.”

The more difficult case is that of the semiconduct-
ing elements and compounds, especially of those mate-
rials that are semiconducting and fourfold coordinated
in the solid (crystalline or amorphous) phase,® % but
metallic with a higher coordination number (N, > 6)
in the liquid state.}’”'® This is the case for the semi-
conducting elements Si and Ge and for the III-V com-
pounds like Ga-As. Classical molecular dynamics sim-
ulations based on effective pair and volume forces de-
rived from pseudopotential- and linear-response theories”
describe the liquid structure of Si, Ge, and GaAs re-
markably well,'¥71¢ but a simulated quench using these
potentials leads to an overcoordinated amorphous ma-
terial (N, ~ 5) that is still metallic.’* The reason is
that the linear response of the electron gas is unable
to describe the profound modification of the interatomic
forces that accompanies the liquid-metal to amorphous-
semiconductor transition. Since quantum-mechanical
techniques for calculating three- and many-body forces
in covalently bonded materials are still in their infancy,'”
large efforts have been directed towards the construc-
tion of empirical two- and three-body potentials'®2° for
Si and Ge, supported by a large basis of data from ex-
periment and ab initio calculations. The application to
the simulation of liquid and amorphous phases shows
that the transferability of these potentials is limited: for
the liquid phase, the influence of tetrahedral bonding
is overestimated,'®?! but nonetheless the recovery of a
nearly perfectly fourfold-coordinated structure on cooling
appears to be very difficult. A realistic description of the
amorphous fourfold-coordinated network is achieved only
if the strength of the three-body forces is artificially en-
hanced during cooling.2! 724 If this is not done, extremely
low quenching rates are required,?? in spite of the fact
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that the local tetrahedral order is overestimated in the
liquid. Again, these difficulties reflect the configuration
dependence of the interatomic forces.

Hence the challenge is to calculate the full set of quan-
tum mechanical many-body forces for each instantaneous
atomic configuration of the system. This is now possi-
ble using the ab initio molecular dynamics (MD) tech-
niques pioneered by Car and Parrinello.?® The aim of
the ab initio MD approach is to perform a simulation in
which the interatomic forces are derived directly from the
electronic ground state [calculated within density func-
tional theory?® (DFT)] using the Hellmann-Feynman the-
orem. In other words, for a given atomic configuration
R the Born-Oppenheimer (BO) potential energy surface
Epo[R/[] is obtained by minimizing the total-energy func-
tional E[Rj, ;] with respect to the one-electron states
;. The force acting on an atom at the site Ry is then
given as the derivative of Fgo[R ] with respect to R;.
In the original Car-Parrinello (CP) method, instead of
minimizing the total energy at any step of the simula-
tion, the simultaneous time evolution of both the ionic
and the electronic degrees of freedom is determined by

integrating the following coupled equations of motion?®
.. OF
MR((t) = ———
) =~ 55 1)
m/}i(r,t) = —m +2j:Aij’L/Jj(l‘,t)‘ (2)

Equation (1) is just the usual Newtonian equation of mo-
tion (EOM) for the ions with the forces calculated ac-
cording to the Hellmann-Feynman theorem and Eq. (2)
(where the A;; are Lagrange multipliers for the orthonor-
mality constraints to the wave functions and u is a fic-
titious mass for the electronic degrees of freedom) is a
pseudo-Newtonian equation of motion for the electronic
degrees of freedom. The integration of the coupled EOM
is started after the electronic wave functions have been
relaxed to their ground state. The CP equations have
been applied quite successfully to a number of systems,
including the liquid?” and amorphous?®2® forms of Si.
Since the electronic wave functions of DFT are mean-
ingful only if the electrons are in their ground state for
the given ionic configuration, an essential condition for
the practicability of the CP method is that the trans-
fer of energy between the ionic and electronic subsys-
tems is small to prevent the electron state from drifting
away from the adiabatic or BO surface. In insulators or
semiconductors, the width of the electronic band gap di-
vided by the fictitious mass y of the electronic degrees of
freedom defines the separation of the characteristic fre-
quencies of the ionic and electronic motions. In metals
this separation is absent and the essential mechanisms
that drives metallic systems into nonadiabaticity is level
crossing between occupied and empty electron states.3°
The operational solution for this nonadiabaticity prob-
lem is (a) performing periodic energy minimizations to
“bring the system back to the BO surface”?? or (b) at-
taching the electronic subsystem to a Nosé thermostat®!
that prevents the heating up of the electron system. Since
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both the periodic energy minimizations and the thermal-
ization of the electron states break the microcanonical
evolution of the coupled electron-ion system, control of
the temperature of the ions is possible only if the ions are
coupled to a second Nosé thermostat. This is equivalent
to inclusion of additional forces in Egs. (1) and (2) which
describe the coupling to two external heat baths serv-
ing to keep the average ionic temperature constant and
equal to a prescribed value T and to limit the distance
of the electrons from the BO surface.3? It is clear that
the nonadiabaticity problems are relevant to the simu-
lation of liquid-metal-amorphous-semiconductor transi-
tion. In the work of Stich et al. on liquid and amorphous
Si the nonadiabaticity problem was handled by using a
canonical ensemble (with the ionic Nosé thermostat), pe-
riodic electronic energy minimizations, and a large elec-
tronic mass parameter y in the liquid state and during
the quench and annealing phases, and a microcanonical
ensemble, free evolution of the electron states and a small
value of o during equilibration in the amorphous state.?®
Empty electron states were ignored.

The alternative is to perform the minimization of the
DFT functional for the electronic energy at any time step
of the MD simulation, so that the problem of nonadia-
baticity does not arise at all. For the level-crossing prob-
lem, it is clear that instabilities in the evolution of the
electron states can be avoided by allowing for variable
fractional occupation numbers. Fractional occupancy
of electron states appears very naturally in the finite-
temperature version of DFT.33

In the present paper we report ab initio MD simula-
tions of the liquid and amorphous phases of Ge based
on (a) finite-temperature density-functional theory, (b)
energy minimization after each MD step using a effi-
cient iterative matrix-diagonalization scheme based on
conjugate-gradient methods, (c) accurate nonlocal pseu-
dopotentials evaluated in real space, and (d) a canonical
ensemble in the Nosé formulation. In Sec. II we outline
the basic ingredients of our technique and demonstrate
that even from the point of view of computational ef-
ficiency, the method is at least comparable to the CP
algorithm. Details of the simulation of the liquid phase
and of the preparation of an amorphous sample using a
simulated quench, as well of the subsequent annealing
treatment are given in Sec. III. The structural and elec-
tronic properties of the liquid, supercooled liquid, and
amorphous phases are discussed in Sec. IV, including a
detailed comparison with experiment. Some preliminary
results on liquid Ge have been published recently in two
short communications.?4:3% The dynamical properties are
described in Sec. V. Section VI analyzes the character-
istic coordination and spectral defects in the quenched
and annealed amorphous sample.

The main results of our study are as follows.

(a) We demonstrate the feasibility of fully dynami-
cal simulations for liquid metals and of the simulation
of quench condensation using ab initio MD techniques
based on direct energy minimization. (b) Structural, dy-
namic, and electronic properties of the liquid and amor-
phous phases are in very good agreement with experi-
ment. (c) Contrary to simulations using empirical many-
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body forces,?! 723 the use of accurate quantum many-
body forces allows us to prepare a realistic model struc-
ture for the amorphous semiconductor using a very rapid
quench.

II. THEORY: ab initio MD
USING DIRECT ENERGY MINIMIZATION

Our ab initio MD routine is based on the following
principles.

(1) We use the finite-temperature version of the
DFT developed by Mermin.33 Exchange correlation is
described by the local-density functional of Ceperley
and Alder.?® At finite temperature the free energy
F[n(r), fi, #] depending on the electron density n(r), the
Fermi-Dirac occupa.tion probability f; of the one-electron
states ¥;(r) [n(r) = X, fi|¥i(r)|?] and the chemical po-
tential u is the proper variational functional. The ground
state may be found by minimizing F[n(r), f;, u] with re-
spect to n(r), f; and p. It has been shown that even
at finite temperature, the proper DFT force is equal to
the Hellmann-Feynman force.37:3® Instead of the Fermi-
Dirac broadening of the one-electron energies it may be
computationally convenient to use a Gaussian broaden-
ing instead (see below).

(2) The minimization of the total energy (respectively,
the total free energy) is performed using an efficient
matrix diagonalization scheme based on a variant of
the conjugate-gradient techniques developed by Payne
and co-workers3® 2 and used in self-consistent electronic
structure calculations by Bylander, Kleinman, and Lee.*3
The method is a doubly iterative one: in the inner loop
the wave functions and eigenvalues for each k point in
the Brillouin zone and for each band are improved for
a fized potential V(r) by a preconditioned conjugate-
gradient method*® until the change in the eigenvalue
has dropped below a fixed threshold, i.e., the conjugate-
gradient method is used as a tool for iterative calculation
of the lowest eigenvalues (< 10% of all eigenvalues) of the
large Hamilton matrix. After running over all bands (in-
cluding some empty bands), a subspace diagonalization
is performed, the Fermi energy and new partial occupan-
cies are calculated, and the charge density n(r) and the
potential V(r) are updated.

(3) The atomic motion is described using Nosé dynam-
ics generating a canonical ensemble.

(4) After moving the atoms, the new wave functions are
estimated using the subspace alignment scheme proposed
by Arias et al4!

(5) The calculation has been performed using an
optimized nonlocal pseudopotential?*44® in Kleinman-
Bylander factorization using the real-space projection
scheme.%0

A. Finite-temperature density-functional theory

At finite temperature, the proper variational functional
is the free energy of the electrons, subject to the con-
straints of the orthonormality of the wave functions and
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of a constant number N of electrons, i.e. (for simplicity
we restrict the formulation to a single k point)

F4i(r), fi, Aij, 1]
= E[d’z l‘) fz] - USel[fz] + ﬂ(Zfz e])

+ 30 ([ v owo e -5;).
i,j
o =kpTe (3)

where the first two terms contain the internal energy
E[4;(r), fi] and entropy S[f;] of the electrons and the
third and fourth terms express the constraints with the
Lagrange-multiplicators A;; and p. In the ground state,
the variation of F[¢;(r), fi, Aij, p] with respect to all
four parameters must vanish: For nondegenerate states
the matrix of Lagrange multipliers A;; must be diago-
nal A;; = é;j¢;, and variation with respect to the wave
functions ; leads to the Kohn-Sham DFT eigenvalue
equation

Hspi) = (T + V)[¢hs) = eilehi), (4)

with the self-consistent one-electron potential V*¢. Mini-
mization with respect to f; determines the relation to be
satisfied by the fractional occupation numbers f;,

dSe[fi] _ &G —p
5 - o (5)

The entropy in Eq. (3) corresponds to noninteracting
fermions,

Salfd ==Y (filnfi+ (1= fi)In(1 - 1) (6)

with a Fermi-Dirac occupation probability of the one-
electron states,

(] o

The property of being stationary with respect to f; makes
the gradient of the free energy F equal to the Hellmann-
Feynman forces,

F1=——————Ef,<¢1

since the additional terms in the gradient of F' depend-
ing on the variation of the occupation numbers and of
the entropy term with the atomic displacement cancel
exactly.37:38

To obtain a smooth variation of the f; it is necessary to
use an electron temperature that is significantly higher
than the ionic temperature (depending on the level spac-
ing and hence on the size of the system). In most cases we
found it more convenient to use Gaussian broadening of
the one-electron levels: it allows us to achieve a smooth
variation of the occupation numbers around the Fermi
level, but for higher excitation energies the occupation
numbers converge more rapidly to zero. This improved

8H( V R,)

¢,> ®)
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convergence allows one to reduce the necessary number
of bands and hence the computational effort. The form
of the entropy related to the Gaussian broadening is*®

€— ;1,)2
9
2\/_ xp [ ( o ] ’ (9)
where the occupation function f; and the eigenvalues ¢;
are related through

pes (o))

with o equal to the width of the Gaussians.

B. Iterative matrix diagonalization based on
conjugate-gradient minimization

Methods for determining the DFT-ground state via di-
rect energy minimization have been developed by several
groups.39:42:43,47,48 We closely follow Bylander et al.43 in
using the conjugate-gradient method for improving the
expectation value of the Hamiltonian

(| H i) /(i) (11)

for all bands sequentially and then diagonalizing the
Hamiltonian in the subspace of the improved eigenfunc-
tions to obtain the starting states for the next iteration
which begins after the potential has been updated.

The simplest strategy for minimization is the steep-
est descent approach, i.e., to change the approximate
wave function v; in the direction of the gradient g; in
the Hilbert space of the basis functions (plane waves in
our case) from which ¢; is constructed. If the Hamil-
tonian is diagonal in the subspace spanned by the trial
wave functions, i.e.,

(Vi |H ;) = dijei (12)
the gradient is simply
g; = (H—Ei) ;. (13)

The steepest-descent approach may be improved in two
ways. (a) The conjugate gradient approach3® changes
the search direction from the direction of the steepest
descent to one which points more nearly to the minimum
by retaining information from previous search steps. (b)
Preconditioning of the steepest descent accounts for the
fact that due to the presence of the kinetic energy oper-
ator in H plane waves with the largest momentum will
have the largest coefficients in g;. Preconditioning?? in-
volves multiplying the coefficient of each plane wave in
g; by a factor which is close to unity for plane waves
whose kinetic energy does not exceed the average kinetic
energy of g; and decreases strongly for the higher plane-
wave components. In our work we used the precondi-
tioning functions of Ref. 39. After the preconditioning
a reorthogonalization of the conditioned gradient to all
bands is necessary.

The iterative improvement of a state is stopped af-
ter the change in the energy eigenvalue is smaller than
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107% eV (or less than 30% of the change in the first
steepest-descent step) and the calculation moves to the
next band. After running over all bands (including some
empty bands) the Hamiltonian matrix

(Y5 |Hlbs) = Hij (14)

is diagonalized in the subspace spanned by the improved
trial wave functions and the new Fermi energy and
new occupation numbers are determined using Gaussian
broadening. Using the new occupation numbers charge
density and potential are updated. To prevent charge
sloshing, the mixing scheme of Kerker*® has been used:

2

G
nN+Y(G) =l (G)+AG2+G§ [

ni\{xt(G) - n‘N(G)] ;

(15)

for our calculations of liquid and amorphous germanium
we found fast convergence for A = 1.0, Go = 1.5 A~L.
The electronic energy minimization is terminated after
the change in the total energy per atom becomes smaller
than 1 x 107 eV/atom. Our approach differs from
the band-by-band conjugate-gradient minimization used
by Teter et al.3® In their approach the preconditioned
conjugate-gradient method is used to minimize the to-
tal energy; charge density and potential are recalculated
after each update of a band. For insulators and semicon-
ductors where the occupation numbers do not change,
this is a stable procedure. For metals the subspace di-
agonalization necessary for the calculation of the new
occupation numbers leads to strong charge sloshing and
the procedure might be unstable.

C. Nosé dynamics

The Nosé thermostat is a method for simulating a
canonical ensemble at a prefixed temperature. The dy-
namics of the ions is described by the EOM

OF st
M - M; Rl(t) ﬁ ’ (16)

where s(t) is an additional variable that obeys the EOM

~—

MR;(t) = —

o) 15(1))

7 ZMllRI(t |“ — gkBT (17)

and describes the coupling of the physical system to a
heat bath. Here @ is a mass parameter for the Nosé
thermostat and g = 3(N — 1) counts the number of ionic
degrees of freedom. The parameter @ determines the
response of the heat bath to fluctuations of the ionic sys-
tem. Q must be sufficiently small to allow the system to
approach equilibrium fast enough, and sufficiently large
to yield correct values for the energy fluctuations of the
ionic system.’® According to Nosé,’! the characteristic
frequency of the thermostat is

2 2ngT

wp = —Q— . (18)
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Equilibration between ions and thermostat is most ef-
fective if wr is of the same order of magnitude as the
characteristic vibrational frequencies of the system since
this leads to a strong coupling of both subsystems. In the
present work we chose @ so that the period of the ther-

mostat is equal to about 150 time steps (wr = 13.6 ps~1),

we found very good agreement between Eq. (18) and the
actual frequency of the temperature fluctuations.

The ionic equations of motion are integrated using a
fourth-order predictor-corrector algorithm5%!4 which al-
lows the use of time steps as large as At =3 x 10715 5
with good energy conservation (note that this time step
is about a factor of 10 larger than the time step in com-
parable CP simulations?7).

In a microcanonical ensemble, the conserved quantity
in a finite-temperature DF-MD is the sum of the kinetic
energy Ty of the ions, of the internal energy E of the
electron-ion system, and of the electronic entropy term

—Tsel’
ch = TI +E [RIa "/)i,fi] - TSel[fi] . (19)

In the Nosé approach, the total energy of the electron-
ion system is allowed to fluctuate, the conserved quantity
is the expectation value of the extended system (ions +
electrons + thermostat), i.e.,

Q =Ty + E[Ry, s, fi]| — TSalfi] (20)
+%Q(§)2+ngTlns. (21)

Here the terms in the second line stand for the kinetic
and potential energies of the extra degree of freedom s.

To speed up the calculations, the simulation of the lig-
uid phase was started in the classical molecular dynamics
mode with interatomic pair forces calculated using pseu-
dopotential perturbation theory and an empty core pseu-
dopotential (EC-PP) (R, = 1.03 a.u.).”* For the liquid
metal Ge, this leads to a rather accurate description of
the atomic and electronic structure.'41%:35 After switch-
ing to the ab initio MD, the system reaches equilibrium
within a small number of MD steps (less than 0.5 ps).
This combination of classical and ab initio MD leads to
an appreciable economy in computer time.

D. Subspace alignment

The initial wave functions for the starting configura-
tion are generated by diagonalizing the Hamiltonian cor-
responding to a charge density of overlapping atoms in a
basis of 200 plane waves.

After moving the ions, one needs a reasonable estimate
of the electronic wave functions and the charge density
n;, for the new configuration—the wave functions of the
old configuration would give a bad starting point for the
energy minimization. The charge density may be esti-
mated by extrapolating the charge density calculated at
times t,,tn—1,... to t,41, i€,

N(tns1) = n(tn) + [n(tn) = ntnr)] (22)

to lowest order, and similarly for higher-order extrapola-
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tions. A corresponding extrapolation may be performed
for the wave functions. However, one has to consider
that as a consequence of the subspace diagonalization
the wave functions are rotated in Hilbert space. Arias et
al.! propose to transform the two sets of wave functions
such that their distance D,

D= Z w; [|9 (¢') — ¥; (@)l (23)

is minimal (w; is some weighting function), and where
P(t) =UB(t), ¢'(t) =Up(t) (24)

are the transformed wave functions, U, U’ are unitary
matrices. After performing both transformations, the
overlap of the two sets of wave functions is

(5 () |9i(2)) = 8i; cos O (25)

i.e., both subspaces are perfectly aligned. To first order,
the extrapolation of the wave functions is trivial:

"/’(tn+1) = 2Un"/’(tn) - Urlz¢(tn—1) . (26)

Here U, and U] are the unitary transformations that
align the subspaces spanned by the wave functions at
times t, and t,_;. Extensions to higher-order extrapo-
lations are discussed in Ref. 53.

In simulations for metallic systems, empty states have
to be considered. This helps to predict wave functions
close to the Fermi energy because the wave functions at
time ¢, are to first order a linear combination of wave
functions at ¢,

‘¢i(tn+1)) = Z
x[9;(tn)) » (27)

i.e., predominantly wave functions out of a small inter-
val around ¢; are mixed. Our results show that even for
liquid Ge the prediction of the wave functions leads to a
state whose energy does not differ from the ground state
energy by more than 5 x 107° eV /atom. On this ba-
sis, the relaxation to the ground state is usually possible
within two conjugate-gradient iterations each requiring
two evaluations of the Hamiltonian acting onto all wave
functions.

For an ensemble of 64 Ge atoms, in the metallic liquid
phase at T ~ 1250 K, the change of the conserved energy
Q [see Eq. (16)] was smaller than 5 meV per atom over
a run of 3 ps [i.e., ~ 1000 steps with At =3 x 107 s,
see Fig. 1(a)]. This corresponds to less than 0.1% of the
cohesive energy. For amorphous Ge at T ~ 300 K, the
change in the total energy is smaller than 1 meV/Atom
over a run of 6 ps [see Fig. 1(b)].

W’j (tn)I[H(tn+l) _ H(tn)]ld’i(tn))

€ — €5

E. Nonlocal pseudopotentials in real-space
projection
In our calculations we used a nonlocal Vanderbilt%4
pseudopotential with a cutoff radius of R, = 1.5 a.u,,
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FIG. 1. Time evolution of the canonical constant of motion
Q [see Eq. (16), upper curve| and of the potential energy E
(lower curve) under isothermal conditions in the liquid phase
at T = 1250 K (a) and in the amorphous phase at T' = 300 K

(b).

generated from a scalar-relativistic all-electron calcula-
tion. The choice of the pseudopotential is the result of an
extensive study of the optimization of the accuracy and
plane-wave convergence of various norm-conserving pseu-
dopotentials (NCPP) (Refs. 44, 45, and 54-56). This
potential offers a compromise between computational ef-
ficiency, accuracy, transferability, and plane wave conver-
gence. Energy cutoffs of 12 Ry and 25 Ry are necessary to
converge the total energy of germanium to within 1 mRy
and 0.1 mRy, respectively. The cutoff energy cannot be
lowered substantially by, e.g., optimization of the kinetic
energy.>®

With this pseudopotential we calculate the lattice con-
stant of Ge at T'= 0 K in the diamond structure within
1.3% (see Table I) of the experimental value and a rea-
sonable pressure for the « — [ (diamond structure —
white-tin structure) transition (P. = 75 kbar, expt. P.
= 100 kbar), see Fig. 2. Lattice constant, bulk modulus,
and cohesive energy are in very good agreement with re-
cent NCPP calculations of Garcia et al.,37 the agreement
with older calculations of Yin and Cohen®® is worse, prob-
ably due to insufficient number of plane waves and due to
the use of the Wigner exchange-correlation functional®®
in Ref. 58.

The Vanderbilt pseudopotential is nonlocal, we used
a Kleinman-Bylander®® factorization decomposing the
nonlocal potential into a sum of diagonal operators for
the individual angular momentum components,
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TABLE I. Lattice constant ao, equilibrium volume Vo, bulk
modulus By, and cohesive energy E. for cubic diamond Ge
(spin correction for atoms were included in the present calcu-
lation).

PP® Garcia et al® Yin et al.° Experiment
E. (eV) 4.55 4.79 4.26 3.85
Vo (A%) 21.61 21.36 22.60 22.64
ao (A) 5.57 5.55 5.66 5.66
By (Mbar) 75 78 73 76.8

®Present work, Ceperley-Alder exchange-correlation func-
tional.

PReference 57, Ceperley-Alder exchange-correlation func-
tional.

“Reference 58, Wigner interpolation for exchange-correlation
functional.

|®D° AVy)(AV, 3P |
2
V= VIOC+Z RN AR (28)

where the ®}° are the pseudoatom wave functions and
AVy = V; — Vipc is the nonlocal part of the pseudopo-
tential. For Ge we chose the p component as the local
component and considered s and d nonlocality.

The nonlocality of the pseudopotentials extends only
over the region occupied by the core of the atom. Hence
it is possible to deal efficiently with the nonlocality of the
potential by working in real space. For this specific pseu-
dopotential we found that optimization of the real-space
projection operators (see King-Smith et al.%?) is not nec-
essary, because the Fourier components of the projection
states ®}° AV, decay rather rapidly to zero.
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0 \\\
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FIG. 2. Energy E and pressure P vs volume V for solid Ge
in different crystal structures, calculated with the pseudopo-
tential used in the ab initio MD simulation: cubic diamond
(CD), B-Sn, face-centered cubic (fcc), body-centered cubic
(bcc) and simple cubic (sc).
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III. SIMULATION OF THE LIQUID METAL-
AMORPHOUS-SEMICONDUCTOR
TRANSITION

Our simulations for liquid and amorphous Ge have
been performed for an ensemble of 64 atoms in a cubic
cell. For this ensemble, we calculated the wave functions
for 138 bands, i.e., 10 bands more than necessary to ac-
commodate the 256 valence electrons. A Gaussian broad-
ening of the one-electron energies with 0 = 0.2 eV was
used. The wave functions at the I' point were expanded
in a basis of 7000 plane waves with a cutoff energy of
12 Ry. For the real- and reciprocal-space representation
of the charge density and potential a 32 x 32 x 32 mesh
was used.

The simulation was started in the liquid phase at a
temperature of 7' = 1250 K and a density of n = 0.04385
A-3. A starting configuration for the ab initio MD was
generated by classical MD using effective pair potentials
generated via second-order perturbation theory and an
empty core pseudopotential with R, = 1.03 a.u. If a
pseudopotential optimized for the convergence of the per-
turbation series is used,*® the classical simulation already
leads to very accurate pair correlation functions!4 1635
(for a detailed comparison of classical and quantum MD,
see Ref. 35). After switching to the ab initio MD, the
system converges very rapidly to the new ground state.
Altogether we performed a 4.5 ps run (1500 time steps)
at T = 1250 K (the thermal history of the ensemble is
documented in Fig. 3 and Table II), averages are taken
over 2.7 ps.

In the next step, the system was quenched at con-
stant density from T = 1250 K to 750 K in 3 ps (1000
steps), i.e., at a quench rate of T = 1.67 x 104 Ks1,
from T' = 750 K to T = 450 K in 4.5 ps (1500 steps,
T = 0.67 x 10* Ks~!) and finally from T = 450 K to
T = 300 K in 0.9 ps (300 steps, T = 1.67 x 10 Ks~1).
Subsequently the system was equilibrated at 7' = 300 K
for 200 steps, followed by a production run. The overall
thermal treatment took 15 ps.

In previous MD runs we had noticed that the most
important structural changes occur in the temperature
range 750 — 450 K. At higher temperatures the system is
still in the metallic phase, hence the changes in the local
geometry are small. At lower temperatures, the atomic
mobility [as monitored by the mean-spare displacements,
see (Fig. 4)] is very low. This is the rationale for quench-
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FIG. 3. Time evolution of the instantaneous temperature
T (a) and of the potential energy (b) during the MD run.

ing the system rather rapidly at higher and lower tem-
peratures.

Our assumption that the densities of liquid Ge at
T = 1250 K and of amorphous Ge at T' = 300 K are equal
is admittedly somewhat arbitrary. It is equivalent to the
assumption that the density of amorphous Ge is about
1% lower than the experimental equilibrium density of
crystalline Ge. However, we have to remember that
the local-density approximation (LDA) overestimates the
density by about 4.5% (see the data for crystalline Ge in
Table I). Hence our assumption for the density of amor-
phous Ge is equivalent to assuming a density deficit of
nearly 6% (relative to the LDA-equilibrium density of
a-Ge). Experimental estimates of the density of thin
vapor-condensed amorphous films of Ge®%! claim den-
sity deficits of up to 10%; for electrolytic a-Ge a density
deficit of 5 % has been found. Most continuous-random
network models®*62765 predict a density change between

TABLE II. History of quench and annealing cycle.

Time steps Tetart Tena T (Ks™)
4.5 ps 1500 1250 liquid
3 ps 1000 1250 750 1.67 x 10'* cooling
4.5 ps 1500 750 450 0.67 x 10*
0.9 ps 300 450 300 1.67 x 104
2.1 ps 700 300 as-quenched amorphous
0.3 ps 100 300 600 heating
3.0 ps 1000 600 annealing
1.8 ps 600 600 300 1.67 x 10** cooling
7.5 ps 2500 300 annealed amorphous
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FIG. 4. Mean-square displacement (r?(t)) of the Ge atoms
at different temperatures in the liquid and undercooled liquid
regime.

+1% and —4% with the exception of the Steinhardt®®
model predicting a decrease by —10%. It seems to be
fair to conclude that the experimentally estimated den-
sity deficit arises to a large extent from microscopic voids
at length scales outside the range of our model. In princi-
ple, the equilibrium atomic volume could be calculated in
the ab initio MD simulation. However, this would result
in a further increase of the already large computational
effort. In our simulation we have verified that the inter-
nal pressure is small at the assumed atomic volume of
the amorphous phase (p = —4 kbar at T' = 300 K, after
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a correction of p = —22 kbar due to Pulay stress®7).

The first quench results in a structure with a rela-
tive large number of geometrical defects. Therefore, we
have made an attempt to improve the model by a simu-
lated annealing: the temperature was first raised in about
0.3 ps to 600 K and the system was equilibrated at this
temperature for about 3 ps. After a quench to T = 300 K,
the system was reequilibrated for 4.5 ps (see Fig. 3 and
Table II); a production run of 3.0 ps followed.

The analysis of the time evolution of local geomet-
rical defects in the amorphous phase shows that even
the small thermal fluctuations at room temperature can
cause the generation and annihilation of local defects (see
also the recent study of the finite-temperature proper-
ties of amorphous Si by Drabold et al.%8). To investi-
gate the inherent (i.e., temperature-independent) defects
of a-Ge, we have performed a projection of an instan-
taneous room-temperature configuration on the nearest
potential-energy minimum using a quasi-Newton quench
(see, e.g., Ref. 69). It has been shown’®"! that the pro-
jection on potential-energy minima emphasizes the char-
acteristic features of liquid and amorphous structures. In
addition to the slow quench from 600 K to 300 K we also
performed one fast quench (0.3 ps) to 300 K. After equili-
bration for 3 ps a second T' = 0 configuration was created
using quasi-Newton relaxation to the instantaneous ionic
ground state. The configuration we obtained from this
quench was—probably by accident—energetically more
stable (AE = 0.4 eV) than the first 7 = 0 configuration.
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FIG. 5. Pair correlation function g(R) (a), static structure factor S(Q) (b), bond-angle distribution function ¢®(®, R,,) (c),
and electronic density of states n(E) (d) for liquid Ge at T' = 1250 K. Full lines—ab initio MD; squares—experiment [neutron
diffraction—Ref. 12 for g(R) and S(Q), photoemission—Ref. 75 for n(E)].
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FIG. 7. Same as Fig. 5, but for as-quenched amorphous Ge at T = 300 K. The experimental data are from Ref. 8 [g(R) and
5(Q), neutron diffraction] and Ref. 79 [n(E), photoemission].
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IV. ATOMIC AND ELECTRONIC STRUCTURE

In this section we discuss the atomic and electronic
structure of our Ge sample in the liquid and amorphous
states and the changes that occur during quenching and
annealing. Figures 5-8 show the pair-correlation func-
tion g(R), the static structure factor S(Q), the bond-
angle distribution function ¢®)(©,R,,) (i.e., the an-
gles formed by nearest-neighbor bonds with a maximum
length R,, around a central atom), and the electronic
density of states n(E) for liquid Ge at T = 1250 K, for a
supercooled liquid Ge in the temperature range 750—650
K (the information has been sampled during a continu-
ous cooling run), and for as-quenched and annealed amor-
phous Ge at T' = 300 K. The static structure factor S(Q),

S(Q) = <%Z e’“’“‘“““’> (29)

£,m

has been calculated by performing in (29) the sum over
all atom pairs for the Q vectors compatible with the
periodic boundary conditions. Calculation of S(Q) by
Fourier transforming g(R) can lead to results that are
seriously affected by truncation errors. The electronic
density of states (DOS) has been obtained by a Gaussian
broadening (o = 0.4 eV) of the 150 lowest eigenvalues at
a 6 x 6 x 6 Monkhorst-Pack grid”? using one typical con-
figuration. We found that a smooth and realistic DOS
can be obtained using only the ten special points in the
irreducible wedge of the simple cubic Brillouin zone gen-
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erated from this state. The usual practice to consider the
one-electron states at the I point only is sufficiently accu-
rate for the calculation of the interatomic forces and pres-
sure (this was tested by calculating the pair-correlation
function and pressure for [-Ge using the off-symmetry k
point [(0.25,0.25,0.25)7 /L] instead of the I" point), but
leads to spurious structures in the DOS that disappear
after a more extended k-space sampling.

A. Liquid Ge

Our present simulation yields a very accurate descrip-
tion of the structure of liquid Ge. Figure 5 shows g(R)
and S(Q) together with the experimental neutron diffrac-
tion datal®>—agreement between theory and experiment
is indeed very good. The atomic arrangement in liquid
Ge is very different from that in normal liquid metals.
The coordination number N, obtained by integrating
the radial distribution function RDF(R) = 4w R%ng(R)
up to the first minimum at R,, = 3.2 A(3.4 A) is
N, = 5.8 (6.9), i.e., considerably lower than the value
N. ~ 10 — 12 characteristic for normal simple metals,
but in good agreement with experiment!! (N. = 6.8),
see also Table III. Besides the first peak, there are only
weak oscillations in g(R) that are well reproduced by the
ab initio simulations. The characteristic feature of S(Q)
is the low amplitude of the main peak and the shoulder
at Q = 2kp = 3.46 A~! corresponding to the diame-
ter of the free-electron Fermi sphere. The bond-angle
distribution function g® (@, R,,,) is just the radial inte-
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FIG. 8. Same is Fig. 5, but for annealed amorphous Ge at 7" = 300 K. The experimental data are the same as in Fig. 7.
The dashed lines show for comparison the DOS of crystalline Ge (cf. text).
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TABLE III. Average nearest-neighbor distance d;, coordination number N., and bond angle ©
and their root-mean-square derivations in liquid and amorphous Ge (calculated at different maximal

bond lengths R..).

Rm (8) di(Ad) Adi(A) N. ©(deg) AO (deg)
IGe, T= 1250 K
ab initio MD 3.2 2.75 0.24 5.8 99.4 31.7
ab initio MD 3.4 2.84 0.29 6.9 98.3 32.8
classical MD* 3.4 2.72 7.3 100.5
exp.? 2.75 6.8
sl-Ge, T = 750-650 K 3.0 2.63 0.17 4.63 103.1 26.8
a-Ge, T = 300 K, as-quenched 2.8 2.48 0.10 4.04 107.7 17.9
a-Ge, T = 300 K, annealed 2.8 2.49 0.10 4.05 107.7 16.9
a-Ge, T = 0 configuration 1 2.8 2.48 0.08 4.06 107.7 16.2
a-Ge, T = 0 configuration 2 2.8 2.46 0.06 3.97 108.5 14.9
Exp.© 2.463 0.047 3.68 108.5
Exp.¢ 2.46 0.085 3.88  108.0
CRN*® 2.46 4 108.5 12.5
c-Ge 2.45 4 109.3

2Calculated using effective pair forces based on EC-PP (R. = 1.03 a.u.), see Ref. 14.

bReference 11.
°Reference 8.

d Average over nine sets of experiments reviewed in Ref. 8.
*Wooten-Winer-Weaire continuous random-network model, Ref. 4.

gral over the triplet-correlation function g(® (@, Ry, R;)
for Ry,R; < R,,. Figure 5(c) shows that except for
excluded-volume effects the distribution of the bond an-
gles is almost random, with only a very flat maximum
close to the tetrahedral bond angle of ® = 109° for short
bonds, and a preference for the formation of isosceles
triplets (© ~ 60°) for longer bonds. This corresponds
to the very broad distribution of coordination numbers
ranging from N, = 3 to N, = 8 (see Table IV).

The predictions of ab initio MD are very similar
to those of classical MD with effective pair and vol-
ume forces calculated using pseudopotential and linear-
response forces:'*716:35 g(R) and S(Q) are almost iden-
tical, only at the level of the triplet-correlation func-
tions we find that the quantum-mechanical many-body
forces induce a slight preference of tetrahedral bond an-
gles over close-packed configurations. In a similar way,
the ab initio simulations of Stich et al2” have confirmed
the pair-potential results for ¢-Si.!5 This is important

since it demonstrates that the real-space interpretation
of the structures of I-Si and [-Ge in terms of a pack-
ing of soft spheres modulated by the Friedel oscillations
in the interatomic forces (wavelength Ap = 2m/2kp) is
correct.'*716:73 In momentum space, the signature of the
modulation of g(R) is the shoulder in S(Q) at Q = 2kp.

For {-Si, the calculated electronic DOS conforms
with the nearly-free-electron (NFE) interpretation of the
structure-force relationship: the calculated n(FE) is very
close to a free-electron parabola.?” The calculated DOS
of liquid Ge shows a remarkable pseudogap at a binding
energy of 4.5 eV. This makes the electronic DOS very
different from any of the crystalline phases: it has nei-
ther the characteristic signature of the sp® hybridization
of the semiconducting a and the metallic 8 phases, nor
the free-electron character of the metallic high-pressure
phases.™ The calculated DOS is in very good agreement
with high resolution photoemission data’ and with ear-
lier supercell-linear-muffin-tin-orbital (LMTO) calcula-

TABLE IV. Distribution of the number of nearest neighbors in liquid and amorphous Ge.

Percentage of nearest neighbors with N. =

R,. (A) 3 4 5 6 7 8
1-Ge, T = 1250K 3.2 1.2 11.2 29.3 31.4 19.7 7.2
sl-Ge, T = 750-650 K 3.0 4.8 43.5 374 14.3
a-Ge, T = 300 K, as-quenched 2.8 4.9 86.8 7.8 0.5
a-Ge, T = 300 K, annealed 2.8 4.6 85.0 10.3
a-Ge, T = 0 configuration 1 2.8 4.7 84.4 10.9
a-Ge, T = 0 configuration 2 2.8 6.3 90.6 3.1
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tions for the classical-MD models of £-Ge.1%:7¢ The com-
parison with the LMTO calculations is helpful since these
calculations show that the pseudogap in n(E) separates
s and p states (the lower part of the valence band ac-
commodates exactly 2s electrons per Ge atom). The ex-
istence of the pseudogap is characteristic for the heavier
liquid group IV elements (Ge,Sn,Pb), due to an increas-
ing s-p splitting arising from realistic effects. In Ge the
splitting is enhanced by a partial penetration of the 4s
electrons in the 3d core leading to a stronger s component
of the electron-ion pseudopotential.

In the past, various structural models for describ-
ing the short-range order ¢-Si and ¢-Ge have been pro-
posed. They either assume the presence of two kinds of
atoms (fourfold coordinated semiconducting or highly-
coordinated metallic)!1:® or assume a similarity with
the 3-Sn or simple cubic structures (both sixfold coor-
dinated and metallic).”” Our results for -Ge (as well as
the results of Stich et al.2” for ¢-Si) indicate a broad, ho-
mogeneous distribution of local bonding configurations
and indicate that both classes of models are unrealis-
tic. The ab initio MD also demonstrates that for the
liquid-metallic phase of Si and Ge, the effective pair and
volume forces derived from pseudopotential perturbation
theory!#716 are much more realistic than the empirical
pair and triplet forces!® 2° leading to unrealistic bond-
angle distributions.

B. Supercooled liquid Ge

Continuous rapid quenching of /-Ge from 1250 K (just
above the melting point) to temperatures of ~ 750 K
leads to the formation of a metallic supercooled liquid:
the first and second peaks in g(R) grow in amplitude and
become more symmetric (Fig. 6). The average coordina-
tion number decreases to N, = 4.63 (Table III), the anal-
ysis of the local coordinations shows that higher coordi-
nations (V. > 6) with longer bonds are strongly reduced
(Table IV). In the bond-angle distributions tetrahedral
angles are now dominant, but there is still an appreciable
number of close packed (® ~ 60°) and a small number
of collinear (© < 180°) configurations [Fig. 6(c)]. In the
static structure factor the peak close to Q@ ~ 2kp has
the largest amplitude, the first peak has been damped
and shifted to smaller momentum transfers. The only
change in the electronic DOS is a slight decrease at the
Fermi energy [Fig. 6(d)]. This state is clearly liquid and
metallic, although the diffusion coefficient has decreased
by a factor of ~ 4 compared to the melting point (see
also Fig. 4). This supercooled state is still rather well de-
scribed by classical MD simulations with pseudopotential
derived forces,!* although the increase of the local tetra-
hedral order with decreasing temperature is certainly un-
derestimated.

More pronounced structural changes occur only at
temperatures below T, ~ 750 K. Note that the reduced
value of this “amorphization temperature” T,/T,, =
750/1250 = 0.6 is about the same as for Si.2” The per-
sistence of fluidity and metallicity down to these rela-
tively low temperatures is explained by the mechanism
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of the metal-semiconductor transformation: above T,, a
small number bonds has a covalent character [~ 13%,
counting the threefold- and fourfold-coordinated sites,
or ~ 25%, counting the nearest-neighbor bonds shorter
than the covalent bond length of Ge (2R.oy = 2.45 A)
for which tetrahedral angles prevail]. These bonds are
also characterized by a bond charge (i.e., a charge accu-
mulation at midbond position in excess to a superposi-
tion of spherical free-atom charges). As the local con-
figurations fluctuate at the time scale of the diffusive
motion, the covalent bonds are rapidly destroyed and
reformed. Only at a reduced atomic mobility covalent
bonds that have once been formed survive and the metal-
semiconductor transition occurs rather quickly. Experi-
mentally the “glass transition” observed in laser-glazing
experiments’® is rather sharp. However, any significant
observation of the character of the transition is prohib-
ited by the large fluctuations in our small samples.

C. Amorphous Ge

Our results for the structural and electronic proper-
ties of as-quenched amorphous Ge are given in Fig. 7.
The agreement of the calculated g(R) and S(Q) with the
neutron-diffraction is good, the main difference is that
the separation of the first two peaks in g(R) [and to some
extent also in S(Q)] is less pronounced in the computer
experiment. The computer-generated amorphous sample
is slightly overcoordinated (N. = 4.04), indicating that
fivefold coordinated defects are somewhat more frequent
than threefold-coordinated sites (see Tables III and IV).
The DOS in the gap at the Fermi level is strongly re-
duced, the overall shape of the DOS represents the pho-
toemission intensities”®8° rather well.

Annealing leads to a distinct improvement of the agree-
ment between simulation and experiment (see Fig. 8),
but no reduction of the number of defects. This concerns,
in particular, the medium-range order as represented by
the higher-order oscillations in g(R). The model is still
slightly overcoordinated (N. = 4.05), fivefold defects
dominate over threefold-coordinated sites. That some
experiments give lower coordination numbers is almost
entirely due to the underestimate of the microscopic den-
sity by nearly 10% (see above). The width of the bond-
angle distribution (A® ~ 17°) is slightly larger than in
the best continuous random network models adjusted to
the experimental diffraction data (see Table III).

The calculated DOS at the Fermi level is reduced by
annealing, the calculated n(E) is in very good agreement
with the photoemission data.”®8° Compared to the liquid
state, the pseudogap at Eg ~ —4.5 eV persists, a second
gap develops at the Fermi level, a shallow DOS mini-
mum appears at —7 eV. The three regions of the DOS
below —7 eV, between —7 eV and —4.5 eV, and between
—4.5 eV and the Fermi level correspond rather well to the
three sp® subbands of the crystalline tetrahedral semi-
conductors (the S, M, and P parts of the valence band
according to the conventional nomenclature8!). This in-
dicates an sp® hybridization of the valence band similar
to the crystal and in contrast to the metallic liquid.



49 AB INITIO MOLECULAR-DYNAMICS SIMULATION OF THE . . .

The DOS in the gap at the Fermi level remains fi-
nite, independently of the k-space sampling and the level
broadening. An analysis of the charge distribution of the
states in the gap shows that these states tend to be lo-
calized (see also Sec. VI).

V. ATOMIC DYNAMICS

The MD-generated trajectories allow us to investigate
atomic transport and dynamics.

A. Single-particle dynamics and atomic transport

The simplest way to investigate atomic transport in
liquids is to derive the self-diffusion coefficient D from
the time dependence of the mean-square displacement®?

(r*(t))= ([R1(t) — R1(0)]*)
=6Dt+c fort— oo,

(30)
(31)

where D is the self-diffusion coefficient and c is a con-
stant. The average in (23) has to be taken over the
ensemble and over different starting points along the
trajectory. (r2(t)) for various temperatures is shown
in Fig. 4, the diffusion constant as a function of tem-
perature is given Fig. 9. The value close to the melt-
ing point (D = 1.0 x 107* cm?s™!) is of the same or-
der of magnitude as for liquld Si near the melting point
[D =2.0x10"* cm?s™! (Ref. 47)]; no data for ¢-Ge are
available (but see Note added in proof). At the tempera-
ture where the metal-semiconductor transition is thought
to begin, the diffusibility has dropped to about 6% of its
value at the melting point.

An alternative access to the diffusion coefficient is via
the velocity autocorrelation function 1(t) defined by®2

(Re(t) - Rs(0

j 21(0))
(R1(0) - R£(0))

Again, the average is over the ensemble and over differ-
ent starting points along the equilibrium part of the MD

Y(t) = (32)
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FIG. 9. Diffusion coefficient for liquid and supercooled lig-
uid Ge as a function of temperature: o as derived from the
mean-square displacements, O calculated from the integral
over the velocity-autocorrelation function v(t).
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trajectory. The diffusion coefficient D is then given by

kBT / ¥(t)

The results are given in Fig. 9 and are in good agreement
with the values derived from the mean-square displace-
ments.

(33)

B. Collective dynamics

The velocity autocorrelation functions shown in Fig. 10
also carry information on the collective dynamics of
the system. For a purely Brownian motion (t) is
monotonously decreasing. For ¢-Ge the monotonic (dif-
fusive) part is superposed by an oscillation of a period of
about 0.2 ps, but the first few oscillations remain positive.
This distinguishes £-Ge from £-Ar or ¢-Na, where 1(t) be-
comes negative already at the first oscillation. The neg-
ative values of v¥(t) show the importance of the caging
effect of the neighboring atoms over the purely diffusive
motion, the long-range oscillations are characteristic for
metallic bonding as compared to van der Waals bonding
in the rare-gas fluids.32 Our results show that in /-Ge the
metallic bonding effects are clearly visible, but due to the
rather loose packing the diffusive motion dominates over
the caging effect. The Fourier transform of v (t) defines
the spectrum of the autocorrelation function,

b(w) = /0 " p(t) cos(wt) dt (34)
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FIG. 10. Velocity-autocorrelation function for liquid (a)
and annealed (b) amorphous Ge.
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¥(w) is shown in Fig. 11. Besides the low-frequency
diffusive modes one identifies an inelastic side peak at
hw ~ 30 meV, which is clearly related to the longitudinal
acoustic modes in amorphous and crystalline Ge (see also
below). The identification of these modes with longitudi-
nal density fluctuations is in the spirit of the “diffusion-
Umklapp model” for the dynamics of liquid and amor-
phous materials®38* and is certainly more realistic than
their assignment to transverse optic vibrations (note that
the stiffness of the bond angles is greatly reduced in the
metallic liquid and that shear modes are more strongly
damped than collective density fluctuations).

Figure 10(b) shows the velocity autocorrelation func-
tion for amorphous Ge. The diffusive background has
disappeared, the complex time dependence of v (t) arises
from the superposition of several characteristic eigenfre-
quencies. After correction for the phonon-occupation
function n(w), the spectrum of the velocity autocorre-
lation function may be compared with the vibrational
DOS G(w) determined from neutron-inelastic scattering
experiments®®8¢ [G(w) = ¢(w);(—“—)1)—+-1] . Figure 12 shows
the result of the ab initio MD simulation for annealed
amorphous Ge, compared with experimental data® on
highly ordered and disordered a-Ge. The four peaks and
shoulders in the calculated spectrum correspond (in the
sequence of increasing energies) to the TA, LA, LO, and
TO eigenmodes of polycrystalline Ge. The spectrum is
in really good agreement with experiment.

We have also investigated the effect of the local or-
der on the vibrational DOS. If the average for v (t) is
performed only over the subensemble of the fourfold co-
ordinated sites, the changes in G(w) correspond exactly
to the differences observed between the disordered and
the highly-ordered samples. Compared to the vibrational
spectrum of amorphous metals,®” the vibrational DOS of
a-Ge shows much more distinctive features reminiscent of
the crystal. This reflects the higher degree of local order.

VI. DEFECTS

The characteristic defects in a-Si and a-Ge are be-
lieved to be undercoordinated atoms,®® usually referred
to as “dangling bonds.” The view is based on the in-
terpretation of the electron paramagnetic resonance sig-
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FIG. 11. Spectrum of the velocity autocorrelation function
¥(w) for liquid Ge at T' = 1250 K.
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FIG. 12. Vibrational density of states G(w) for annealed
amorphous Ge. The solid line represents the ab initio MD re-
sult, the dashed line the DOS for the subensemble of the four-
fold coordinated sites (cf. text). The squares and circles show
the experimental results for disordered and highly-ordered
samples (after Ref. 85).

nal (EPR). Recently, this view has been challenged and
it has been suggested®® that the EPR-active center can
also be a fivefold coordinated site with an electron state
described as a “floating bond.” Computer experiments
based on classical many-body forces show that, depend-
ing on the way the amorphous sample is prepared, three-
fold and fivefold coordinated defects are found in varying
concentrations.?1:22:24.90 I the most recent ab initio MD
simulations of a-Si, only fivefold (T5) defects have been
found,?® but in earlier runs®! threefold (73) defects were
detected as well.

In our study, we found that a purely geometrical defini-
tion of a defect is insufficient, but bonding and spectral
properties must be considered as well. Due to fluctua-
tion of the local defects already discussed in Sec. III,
we found it most convenient to do the defect analysis for
T = 0 configurations. Two different configurations where
generated by slow and fast quenching after annealing (see
Sec. III), the pair-correlation functions for both configu-
rations are shown in Fig. 13. Overall the agreement be-
tween both configurations is rather good, the number of
defects is definitely larger for the first configuration (pre-
pared by a slow quench), but this configuration shows
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FIG. 13. Pair correlation function g(R) for two a-Ge mod-
els at T = 0 K generated by quasi-Newton quenches, full
line—configuration 1, dashed line—7" = 0 configuration 2.
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better agreement with experiment for g(R) at large dis-
tances. Interestingly a number of atoms are for both
configurations located in the minimum between the first
and second peak of the pair-correlation function.

A. Geometrical defects

To characterize geometrical or coordination defects,
one has to define the maximum length R,, of a nearest-
neighbor bond. Because the minimum in g(R) is not
sharply defined for our a-Ge models (cf. Figs. 8 and 13),
even a small change of R,, may fundamentally change
the results of the analysis. This is demonstrated in Table
V for both a-Ge models generated by the quasi-Newton
quench. If the bond length is fixed at R,, = 2.8 A, we
find three T5 and seven T defects after the slow quench,
and four T3 and two Ts defects after the fast quench.
If R,, is increased to 3.0 A there are no Tj sites and
we count 14 T defects after the slow quench, and two
T; and eight Ts after the fast quench. Atom number 18
that has first been described as T3, is now considered to
be Ts. It is significant that the bond angles around both
types of defects are reduced and have a broader distribu-
tion. For T3 sites the average bond angle is © = 100.8,
i.e., considerably smaller than the tetrahedral bond angle
and only slightly larger than the bond angle in threefold-
coordinated As (@ = 97.2°).

B. Bonding defects

Evidently, a purely geometrical characterization of de-
fects is insufficient. The tetrahedral sp® bond of the
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crystalline semiconductors is characterized by the bond
charges placed in the midbond position. The bond charge
may be visualized by plotting the electron density. Fig-
ure 14(a) shows the electron density for a slightly dis-
torted tetrahedral configuration. The bond charges along
the four bonds are clearly visible. Figure 14(b) shows the
charge distribution around atom No. 55 in configuration
2, i.e., one of the two genuine T3 sites. The atoms are
arranged in the form of a trigonal prism with well-defined
bond to the three neighbors of the central atom. A diffuse
charge accumulation in the direction of the back bonds is
all that can be seen of a “dangling bond.” Figures 14(c),
14(d), and 14(e) show three T sites (atoms No. 20, 36,
and 63). T sites tend to have 3 or 4 “strong” and 2 or
1 “weak” bonds: if an additional atom is squeezed into
the tetrahedral configuration the distortion weakens the
bonds closest to the added atom. Only exceptionally we
find a T site with five equally strong bonds [Fig. 14(e)].
The existence of a bond charge depends very critically on
the length of the bond: for d; > 2.85 A no bond charges
have been found. Therefore, R,, = 2.8 A for the maxi-
mum bond length leads to a physically more meaningful
definition of defects than the pure geometrical definition
in terms of the position of the minimum in g(R). The
small hump in the minimum of g(R) contains most of
the weak bonds of the Ts defects. A particularly inter-
esting feature is found in the charge distribution around
atom No. 18 [see Fig. 14(f)]. The site is described as
T5 or Ts, depending on the assumption on the maximum
length of a nearest-neighbor bond. The bonds to the
two more distant neighbors are very weak and the three
remaining bonds are nearly coplanar, i.e., the bond an-
gles are considerably strained. Only two of the bonds

TABLE V. Structural characteristics of tetrahedrally coordinated (T3) and of defect (T3, Ts)
sites in two a-Ge models generated by quasi-Newton quenches.

R, =284 % di (A) Adi (A) © (deg) AO (deg)
Model 1 (slow quench)

T3 4.7 2.52 0.12 100.2 19.8
Ty 84.4 2.47 0.06 108.8 13.5
Ts 10.9 2.56 0.11 103.5 24.4
Model 2 (fast quench)

T3 6.3 2.44 0.04 107.2 18.1
Ty 90.6 2.45 0.06 108.7 13.9
Ts 3.1 2.57 0.07 105.7 26.2
T3 : Atom Nos. 1, 18, 39, 55

Ts : Atom Nos. 61, 63

R, =304 % di(A) Adi(A) © (deg) AO (deg)
Model 1 (slow quench)

T3 0

T, 78.1 2.46 0.07 108.9 13.0
Ts 21.9 2.59 0.15 104.1 25.3
Model 2 (fast quench)

T3 3.1 2.44 0.03 100.3 16.6
Ty 84.4 2.45 0.06 108.6 13.6
Ts 12.5 2.58 0.14 103.7 25.7

T3 : Atom Nos. 39, 55
Ts : Atom Nos. 15, 18, 20, 36, 40, 52, 61, 63
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have well-defined bond charges, the third bond is rather
asymmetric, with most of the charge concentrated on the
central atom. We shall see in a moment, that this defect
has peculiar spectral properties.

C. Spectral defects

Of greatest importance for the electronic properties of
amorphous semiconductors are the spectral defects, i.e.

(a)
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the defects giving rise to states in the gap. The recent
work of Drabold et al.® has shown that a geometrical
defect is neither a necessary nor a sufficient condition
for the existence of a spectral defect. We have analyzed
the one-electron states in the gap by analyzing their elec-
tron density distributions and localization properties. To
study localization we have subdivided the MD cell into a
grid of M = m?3 small cubes. The localization parameter
L is defined as

(b)

(c)

(d)

FIG. 14. Analysis of de-
fects in a-Ge in terms of elec-
tron density plots. The ge-
ometry of the nearest-neighbor
group of atoms is shown by a
ball-and-stick model, the elec-
tron density is represented by
a contor plot with the light
blue areas having the high-
est electron density. Only the
charge distribution along near-
est-neighbor bonds is shown,
the rest has been clipped. (a)
Slightly distorted tetrahedral
T4 site; (b) threefold coordi-
nated T3 defect; (c), (d) and (e)
two characteristic Ts sites, (f)
atom No. 18, T3, or T5 depend-
ing on cutoff distance.
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(b)

M
E din
L= =1

= =L ,
MY d,
=1

where g; , is the charge contained in the ¢th cell for
the nth band. If the charges are normalized according
to Y..qin = 1, L = 1 characterizes a completely ex-
tended state, and L ~ 1/M a state localized within a
single small cube. An analysis with m = 8,16, 32 for the
quenched configuration 2 shows that the highest occu-
pied state (n = 128) is distinctly more localized than all
other states (occupied or empty). Indeed the charge den-
sity corresponding to this state is concentrated in a single
charge density maximum close to atom No. 18. This is
shown in Fig. 15. Part (b) shows the total electron den-
sity in the vicinity of this site: it is evident that atom 18
together with its two neighbors forming long bonds forms
an isosceles triplet and that this “metallic configuration”
is characterized by the absence of covalent bond charges.
Part (a) of the figure shows the electron density for band
No. 128 only: the charge is concentrated in the direction
of the third weak bond of atom 18 [the “asymmetric”
bond of Fig. 14(f)].

This shows that while we have a relatively large num-
ber of geometrical defects in this configuration, they cre-
ate only a single localized state. This state is associated
with a strong local perturbation of tetrahedral bonding,
not only a coordination defect, but in addition, a very
strong strain on nearly all bond angles.

However, we have to remember that even small fluctu-
ations in the atomic geometry can induce relatively large
changes in the spectrum, especially in the states situated
in the energy gap.®® This is illustrated in Fig. 16 where
we show the time evolution (at T' = 300 K) of the elec-
tronic eigenvalues close to the gap. It is evident that the
states in the gap show the largest fluctuation and these
fluctuations are associated with formation and decay of
localized states.

The ab initio MD simulation offers the possibility of
investigating these important phenomena. Here we have

(35)
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FIG. 15. (a) Electron den-
sity of band 128 in the vincin-
ity of atom No. 18 (yellow ball).
(b) Total electron density in the
vincinity of atom No. 18; see
text.

merely touched the problem and shown that it has be-
come tractable. Future work will be needed in order to
assess the local defects that are really characteristic for
amorphous semiconductors and their spectral properties.

VII. SUMMARY AND CONCLUSIONS

We have presented an ab initio study of the liquid-
metal-amorphous-semiconductor transition in Ge. Our
calculation is based on a mnovel variant of density-
functional molecular dynamics that allows us to per-
form simulations for metallic systems with perfect control
of adiabaticity while correctly describing occupied and
empty states on both sides of the Fermi level. Our ap-
proach is based on finite-temperature local-density func-
tional theory, direct energy minimization using a pre-
conditioned conjugate gradient technique, very accurate
pseudopotentials, and on Nosé dynamics for simulating
a canonical ensemble. Although we perform an exact
energy minimization after each MD step, our technique
is at least as efficient as CP calculations: the time step
is larger than a typical CP-time step by a factor of 10

(eV)
(en]
o
T
gﬁ% 4

t (ps)

FIG. 16. Fluctuations of the one-electron energies ¢; in the
vicinity of the Fermi level (¢ = 0) as a function of time at
T = 300 K.
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— 20, each energy-minimization requires an average two
to three conjugate-gradient steps (one CG step requiring
about two times the CPU-time of one CP step). Hence
there is a gain in computational efficiency by a factor of
1.5-2. To be specific, a 1 ps run for liquid Ge took about
16 h CPU on an SNI-Fujitsu S100.

The efficiency of our code allows us to perform rela-
tively extended simulations. The overall length of our
MD run (including the second cooling run) was 30 ps.
This is sufficient to obtain an accurate description of the
structural, dynamic, and electronic properties of liquid
and amorphous Ge: our computer-generated data are in
good agreement with neutron diffraction, inelastic neu-
tron scattering, and photoemission data. Beyond the ex-
amination of properties accessible also to laboratory ex-
periments, our computer experiments serve to investigate
many-atom correlations, the geometrical bonding, and
spectral properties of defects in the amorphous network.
Our analysis shows that the computer-generated model
contains both undercoordinated (T3) or “dangling-bond”
and overcoordinated (T5) or “weak-bond” defects. We
also find that a purely geometrical definition of a defect
is not always meaningful—the analysis of the bonding
and spectral properties gives a physically more meaning-
ful picture.
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Finally, we want to come back to the technical merit
of our work. Based on developments published in a se-
ries of different papers, our technique assembles all the
ingredients necessary for making ab initio MD calcula-
tions for metals as straightforward and reliable as CP
calculations for semiconductors. The challenge is now to
extend the approach to transition metals. We have re-
cently completed a version of the code based on the use
of ultrasoft pseudopotential making ab initio MD simu-
lations for transition metals feasible.®?

Note added in proof. We recently became aware that
the self-diffusion coefficient of liquid Ge has been mea-
sured by P. V. Pavlov and E. V. Dobrokhotov [Sov. Phys.
Solid State 12, 225 (1970)], using two different meth-
ods. The experimental values quoted by these authors
are D=1.21x10"% cm?s—1 and D=0.78x10"% cm2s~!
close to the melting point, in reasonable agreement with
Decalc=1.0x10"% au?s~!. J. H. thanks Dr. I. L. Gavzéu
for bringing this reference to his attention.
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FIG. 14. Analysis of de-
fects in a-Ge in terms of elec-
tron density plots. The ge-
ometry of the nearest-neighbor
group of atoms is shown by a
ball-and-stick model, the elec-
tron density is represented by
a contor plot with the light
blue areas having the high-
est electron density. Only the
charge distribution along near-
est-neighbor bonds is shown,
the rest has been clipped. (a)
Slightly distorted tetrahedral
Ty site; (b) threefold coordi-
nated T3 defect; (c), (d) and (e)
two characteristic Ty sites, (f)
atom No. 18, T3, or Ts depend-
ing on cutoff distance.



(b)

FIG. 15. (a) Electron den-
sity of band 128 in the vincin-
ity of atom No. 18 (yellow ball).
(b) Total electron density in the
vincinity of atom No. 18; see
text.



