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Electronic structure, thermal, and elastic properties of Al-Li random alloys
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We present the results of the LMTO-CPA-LDA calculations of the electronic structure and ther-
modynamic properties of random Al-Li alloys. In order to take into account the charge-transfer
and local-environment effects, we use a simple and physically transparent model for the Madelung
potential and energy in the single-site coherent-potential approximation. As a result, all calcu-
lated ground-state properties are in good agreement with experimental data. The use of the high-
temperature relation between Poisson's ratio and the Gruneisen constant allows us to calculate the
thermal and elastic properties of random Al-Li alloys without any adjustable parameters on the basis
of the binding-energy curves at 0 K.

I. INTRODUCTION

Despite the fact that both elements aluminum and
lithium are quite normal metals, their alloys mani-
fest rather unusual thermodynamic and electrochemical
properties which have lately prompted a number of
theoretical studies of the Al-Li system. ~5 The most sur-
prising properties among them are the drastic increase of
Young's modulus and the lattice parameter contraction
of aluminum-based Al-Li alloys though Young's modulus
of lithium (5—10 GPa) is almost an order of magnitude
smaller than that of aluminum (66 GPa) and the atomic
radius of lithium (1.55 A) is appreciably greater than
that of aluminum (1.43 A).

To clear up the origin of the anomalous behavior of Al-
rich solid solutions and its connection with the charac-
teristic features of an interatomic interaction, several in-
dependent groups of authors almost simultaneously car-
ried out the 6rst-principles calculations of the electronic
structure and cohesive properties of Al-Li alloys.
Among them only one work deals directly with ran-
dom Al-Li alloys and the others examine various ordered
aluminum-rich Al-Li compounds. In the latter case, con-
temporary band structure xnethods allow one to obtain a
distinct picture of the interatomic interaction and ther-
modynamic properties of elements and compounds with
the use of only the common local-density approximation
(LDA). Nevertheless, the results of Ref. 7 concerning the
Al-Li system are very doubtful because the authors over-
looked the d component in the wave function radial part
expansion inside the lithium atomic sphere and, there-
fore, their results for the bulk modulus and the lattice
parameter contradict the available experimental data. '

In Ref. 12 the electronic structure and thermodynamic
properties of the A13Li compound were calculated by
means of the linear-muffin-tin-orbital (LMTO) method
and on the basis of the analysis of the local and partial
decomposition of the density of electron states the au-
thors caxne to the conclusion that Al and Li atoms form
a covalentlike bond due to the strong hybridization be-
tween their p and 8 electrons. The cause of the latter, in
the authors' opinion, is due to the absence of p and d elec-

tron states in the core of lithium, which allows the states
of this symmetry to form easily in the lithium atomic
sphere. The authors of Ref. 9 came to a similar conclu-
sion on the basis of more elaborate calculations within the
&amework of the more sophisticated full-potential linear
augmented plane wave (FLAPW) method. They showed
that the valence electrons of lithium promote the forma-
tion of more directional Al-Al bonding in the A13Li com-
pound (having L12 structure) in comparison with pure
aluminum.

Another explanation of the shear and Young's moduli
growth in Al-Li alloys was proposed in Ref. 14 on the
basis of the first-principles pseudopotential calculations
of random Al-Li alloys within the virtual crystal approxi-
mation (VCA). According to their results, the alloying of
aluminum by lithium leads to the enhancement of a sin-
gularity in the density of electron states (DOS) which lies
near the Fermi energy and coincides with it at approxi-
mately 5-at. % Li. This proximity of the Fermi energy to
the acute minimum point in the DOS results in the steep
rise of the shear and Young's moduli of Al-Li alloys at
about 5 at. % of Li, at which point both moduli reach
their maximal values. Thus, the authors explain the un-
usual concentration dependencies of the moduli by the
"band structure effects. " Unfortunately, the use of the
VCA makes it impossible to obtain a clearer picture of
the interatomic interaction. Moreover, this approxima-
tion is too crude for the Al-Li system because it actually
does not take into account the effects of charge transfer
which, as will be shown below, are not negligible in this
systexn.

In this paper, we present the results of more accurate
calculations of the electronic structure and thermody-
namic properties of random Al-Li alloys which have been
obtained by the recently elaborated LMTO xnethod in
the coherent potential approximation (LMTO-CPA). e'

The most doubtful approximation, especially for the Al-
Li system, in our calculations is the single-site coher-
ent potential approximation. It does not allow one to
take into proper account the local-environxnent effects,
because in this case only a single scatterer is treated ex-
actly. Moreover, the single-site CPA leads to ambiguity
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in describing charge-transfer efFects in alloys. Neverthe-
less, as will be shown in this paper, good agreement of
the calculated results with experimental data can be ob-
tained by a suitable choice of the Madelung potential of
the alloy's components. In Sec. III, we describe the de-
tails of our electronic structure calculations for random
Al-Li alloys. The calculated electronic structure and the
cohesive properies of Al-Li alloys are discussed in Sec. IV.
In Sec. V, we present the technique and the results of our
calculations of the thermal and elastic properies of Al-Li
alloys. Some concluding remarks are made in Sec. Vl.
In the Appendix, we substantiate the high-temperature
relation between the Gruneisen constant and Poisson's
ratio for an isotropic solid which we use for thermal prop-
erty calculations.

II. THE MADELUNG POTENTIAL AND
ENERGY' OF A COMPLETELY RANDOM

ALLOY IN THE SINGLE-SITE CPA

Usually it is accepted that the Madelung potential and
energy of a random alloy in the single-site CPA have no
additional terms connected with the charge-transfer ef-
fects between atoms of diferent types. This is one of
the most doubtful features of the CPA, which as a rule
is substantiated by the electroneutrality of a single-site
effective medium whose atoms are regarded as equal to
one another. However, in a real random alloy any atomic
con6guration is possible in the underlaying lattice, and
consequently, atoms of the same type may have different
local atomic environments. In this case, it is obvious that
their electronic states and particularly their net charges
will also differ. Such fluctuations of the net charge should
lead to an additional contribution to the Madelung en-

ergy.
Recently, Zunger and co-workersis z have examined

this problem with the help of a cluster expansion of elec-
trostatic lattice energy. In their model, the net charge of
an atom is proportional to the number of atoms of the
unlike type at the first coordination shell. As a conse-
quence, they found that the Madelung energy for binary
random alloy was nonzero and it could be written as

EM'« —c(1 —c)A /R .

Here c is the concentration of one of the components,
B is the nearest-neighbor bond length, and A is a scaling
constant determining the maximum charge transfer when
all the nearest-neighboring atoms are of an unlike type.

On the basis of these results, the authors of Ref. 20
have drawn the conclusion that it is impossible to give
a correct description of the thermodynamic properties of
random alloys with a nonzero charge transfer within the
single-site CPA, since the value of EM'& has the same
order of magnitude as the Madelung energy of ordered
phases.

In this section we are going to show that in fact the
zero Madelung energy in the single-site CPA is not an
artifact of the theory but rather a consequence of the
model of the Madelung potential of alloy components in
the efFective medium. The choice of a difFerent model
leads to a result analogous to (1) even in the mean-field

approximation. For the sake of simplicity, we shall con-
sider a simple model of a completely random alloy in the
atomic sphere approximation.

Let us assume that charge-transfer effects in a binary
random alloy A Bq, are formed by the nearest-neighbor
interaction between atoms, i.e. , the value of a charge com-

ing from atom a to atom P, q B, is equal to zero when
these atoms are not nearest neighbors. Then the value of
the average net charges of the A and B atoms are written
as

Then the Madelung potential of the A and B atoms keeps
only a term &om the 6rst shell and after being averaged
in the mean-field approximation it will have the form

VM s —— e /RZ—(c[hqz(Z —1)/Z+ q ]

+(1 —c)hqB(Z —1)/Z+ q" )j
Aq~e /R- ,

VM s = AqBe'/R . (4)

In order to get expression (4) the condition of electroneu-
trality: cb,q~ + (1 —c)AqB = 0 has been taken into ac-
count. Thus, in the single-site CPA, by neglecting the
interaction of nearest-neighboring atoms between each
other, we can write the Madelung energy of an alloy as

EM« = cVM«Aq& + (1 —c)VM«AqB

= —c(1 —c)e (Aqg —b,qB)'/R . (5)

Expression (5) is very close to result (1), and it can
be shown that (5) differs &om (1) by a constant factor
which, for example, for fcc lattice is equal to 1.521, and
it mainly takes into account just the interaction between
the nearest neighbors of the impurity.

It is easy to demonstrate that a difFerent choice of
the model for the q

~ leads to a similar result for the
Madelung potential and energy. We get zero Madelung
potential and energy only if we assume that q ~ does not
depend on the distance between n and P atoms.

Since the potentials of all but the impurity atom it-
self are excluded &om the scheme of the single-site LDA
self-consistency, the charge distribution in the efFective
medium around an impurity atom cannot be ascertained
in the single-site CPA. If we assume that the net charge
of the alloy components are completely screened by their
closest environment, the Madelung potential of the alloy
components and the Madelung energy of the alloy are de-
fined by Eqs. (4) and (5). Whereas, the zero Madelung
potential and energy in the CPA is true of all atoms of
an alloy equally perturbed by any given atom regardless
of the distance to it.

Sq~ = [cq""+ (1 —c)q"B]Z,
AqB = [cq

"+ (1 —c)q ]Z,
where Z is a coordination number of the erst shell.

We can also determine the average net charge of the A
and B atoms which are next to the A atom:

aq„" = aq~(Z —1)/Z + q""
EqB = b,qB(Z —1)/Z+ q
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From the mathematical point of view, all these models
are on an equal footing. Therefore, the choice of a con-
crete model should be decided after a further physical
analysis based on a comparison of the results obtained
in these inodels with the experiinental data and/or with
the results obtained by more sophisticated methods.

Since this problem originates from the single-site ap-
proximation, the best way to solve it is to consider the
impurity atom and its environment in a matrix which
corresponds to the dilute limit of the alloy. It is obvious
that the answer to the problem depends on the nature of
the matrix, but for a metal matrix numerous calculations
show that the charge density perturbation is small be-
yond the impurity nearest-neighbor shell and practically
the whole net charge of the impurity is compensated for
by the net charges of its nearest neighbors. ' It is clear
&om the physical point of view because the screening ra-
dius in metals is about 1—1.5 A which corresponds to
the nearest-neighboring distance between atoms. Thus,
taking into account these results and our experience in
the calculation of the thermodynamic properties of dis-
ordered alloys2 ' we can conclude that the model of
screening by the nearest neighbors is the most adequate
for metallic systems in the single-site approximation, and
we use it in our LMTO-CPA-LDA calculations in this
work.

III. COMPUTATIONAL DETAILS

culations the Perdew-Zunger formula for the exchange-
correlation potential and energy in the local-density ap-
proximation was taken.

IV. ELECTRONIC STRUCTURE
AND CHARGE TRANSFER

In Fig. 1 we display total and local DOS in a num-
ber of random fcc Al-Li solid solutions and in the AlqLi
compound. is'i4 In contrast to the DOS of Al-rich alloys
there are several sharp peaks in the DOS of the A13Li
compound. By comparing the angular momentum and
site-projected DOS in Fig. 2 it is evident that these
peaks are caused by strong hybridization. (It is neces-
sary to note that in Ref. 9 the Li-projected DOS turned
out to be very small and showed no distinctive features.
But we assume that the authors confused the units in
determining the Li DOS curve. ) For instance, the first
peak near —0.6 Ry appears due to the 8-p hybridization
between Al s and Li p states. The second and the third
peaks at —0.4 Ry and —0.3 Ry are correspondingly a con-
sequence of hybridization between Al s and p electrons
and p electrons of Li. The group of peaks near the Fermi
energy that correspond to Al and Li p states evidently
have a difFerent nature. Their proximity to the Fermi en-
ergy and the similarity of the Li and Al p-states DOS in

The self-consistent LMTO-ASA-CPA method was ap-
plied to calculate the electronic structure and volume-
and concentration-dependent total energies of random
Al-Li alloys. The method was previously described in
Ref. 16 and 17. The integration of the Green's function
over the energy to evaluate moments of the density of
electronic states was carried out along the semicircular
contour comprising 12 points in the complex plane. The
Brillouin zone integration was performed by employing
the Weyl uniform k-point distribution which enabled
us to solve the CPA equations simultaneously with inte-
gration. To achieve the necessary convergence of the in-
tegral at real values of energy we had to take 1500 points
in the irreducible wedge of the Brillouin zone.

The chosen radii of the aluminum and lithium atomic
spheres were equal. Angular-momentum truncation was
performed at l „=2, i.e., we took 8, p, and d states
into account in our calculations. In order to estimate
the thermodynamic properties of alloys, we performed
six LDA self-consistent calculations with different lattice
parameter values for 12 concentrations of the alloys un-
der investigation. The total energies of the pure elements
were obtained by the extrapolation of the local Al (Li)
total energy contribution to the zero (unity) of the Li
concentration. The results of this procedure were veri-
fied by the direct total-energy LMTO atomic-sphere ap-
proximation (ASA) calculations for pure Al and Li. To
eliminate the errors caused by the linear tetrahedron in-
tegration method, we extrapolated the LMTO-ASA to-
tal energies to the infinitely large number of k points in
the coordinates Et t vs n ~ . The total energies ob-
tained in both ways difFer less than 0.1 mRy. In all cal-
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FIG. 1. Density of states for the ordered A13Li phase
(Llq structure) and random fcc Al-Li solid solutions. In
(a), (h), (c), (e), and (f) are shown the densities of states
for Alg6Lip4, AlssLiq2, A175Li25, A15pLi5p, and AlgsLi75 ran-
dom alloys, respectively, and in (d) for AlsLi ordered phase.
The dashed line designates the Fermi energy of an alloy.
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this rather wide region indicate that most probably this
part of p states in the Li sphere comes &om suitable Al
states that dangle into the Li sphere. This is also true
of most of the states of Li d character. It is notewor-
thy that despite the fact that the radius of the Li atomic
sphere decreases in Al-rich alloys the number of p and. d
states in it increases singificantly as is seen from Table
I, and they reach their maximum values in the ordered
A13Li phase where each Li atom is surrounded only by
Al atoms.

All distinctive features of the A13Li DOS disappear in
the DOS of Al-rich random alloys and it is impossible to
see any hybridization efFects on the partial Al- and Li-
projected DOS (Fig. 2). The main factor in this case that

FIG. 2. Partial decomposition of the local densities of
states of the ordered A13Li phase and disordered Alq5Li25 al-

loy. In (a) and (c) are shown the local DOS projected onto Al
sites in AisLi and A175Lizs, respectively, and in (b) and (d)
the local DOS projected onto Li sites. The partial 8 DOS is
shown by a solid line, the partial p DOS by a dotted line, and
the partial d DOS by a dashed line.

leads to the disappearance of the peaks of the DOS is the
random character of the alloys. Besides, the single-site
CPA can result in the inaccuracy of the description of the
hybridization effects. However, the absence of distinctive
features in the DOS itself does not mean that there are
no hybridization effects.

The DOS of the Li-rich alloys are divided into two
distinctive parts. The low-energy part corresponds to
the Al 38 states which part kom the Li valence band
when there is Al impurity in the Li matrix.

Now we will go over to the charge-transfer effects in the
Al-Li alloys and we will show that they play an impor-
tant role in the formation of ground-state and thermo-
dynamic properties. Let us return to Table I and Fig. 3.
According to the values of the net charges of the Al and
Li atomic spheres there is a significant charge transfer
from Al to Li atoms in the whole concentration range.
Besides, the concentration dependence of the net charges
in the atomic spheres is very strong. But as has been
shown in Ref. 17 the suitable quantity for the definition
of charge transfer in the ASA is an effective charge trans-
fer: q' = Aq~ —Aq~. This quantity also appears in
expression (5) for the Madelung energy of a random al-

loy and, therefore, has a transparent physical meaning.
For instance, in the linear model for the atomic sphere
charges, 2 used for the cluster expansion of Madelung en-

ergy, q' is equal to 24%, i.e., the maximal charge of the
atomic sphere that is surrounded by atoms of an unlike
type. If the value of q* in an alloy does not depend on
the concentration, as, for example, in the Ni-Al system,
the value of the atomic sphere charge is proportional to
the number of the nearest-neighbor atoms of the unlike

type, and such a system can be described by the linear
model ""

In Fig. 3, the values of the net charges and the effective
charges are presented as a function of the alloy concen-
tration. It is obvious that the effective charges deviate
greatly from the constant value, thus the linear model is
unacceptable for the Al-Li system. In Fig. 4, we show the
Madelung contribution to the total energy of the random
Al-Li alloys. As the Madelung energy is proportional to
the square of q*, it has a correspondingly asymmetri-
cal form. But the Madelung energy contributes directly

TABLE I. Total and partial occupation numbers of valence electrons in the atomic spheres of
random Al-Li alloys, pure fcc Al and Li, and the A13Li ordered phase (Llg).

Alloy

Al
A196Lip4
A188Lly2
A175Li25

A13Li
A15pLi5p

A125LiYg

Alg2Li88
Alp4Li96

Li

Total

3.0
2.981
2.943
2.886
2.824
2.801
2.767
2.774
2.826

1.079
1.074
1.089
1.110
1.102
1.158
1.222
1.253
1.305

1.495
1.492
1.478
1.458
1.454
1.429
1.421
1.435
1.45?

0.426
0.415
0.367
0.318
0.268
0.214
0.124
0.086
0.064

Total

1.467
1.416
1.342
1.530
1.199
1.078
1.031
1.007
1.0

Li

0.424
0.422
0.419
0.429
0.416
0.446
0.471
0.497
0.504

0.811
0.785
0.747
0.849
0.663
0.561
0.510
0.473
0.464

0.232
0.209
0.176
0.252
0.120
0.071
0.050
0.037
0.032

&ivs (a.u. )

2.95
2.95
2.95
2.95
2.95
2.99
3.07
3.11
3.21
3.25
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FIG. 3. Atomic sphere net charges (a) and charge transfer

(b) in Al-Li alloys. In (a) the net charge of the Al atomic
sphere is shown by closed circles and the net charge of the Li
atomic sphere by open circles. In (b) open squares show the
effective charge transfer qQCD obtained in the OCD model and
closed squares show the effective charge transfer qzc after self-
consistent LDA calculation. "True" charge transfer, which
can be de6ned as their difference Aq = qsz —qQCD) is shown

by open triangles.

to the mixing enthalpy, and therefore, as is seen in Fig.
4, the mixing enthalpy curve has a form analogous to
the curve of the Madelung energy. The mixing enthalpy
is negative and its value is in agreement with the en-
thalpies of the formation of the ordered A13Li and LiA1
compounds.

Madelung energy also strongly infIuences the ground-
state properties because the value of the efFective charge
transfer q* is very sensitive to the Wigner-Seitz radius
S, and the smaller the S, the greater the q*. Hence,
the Madelung contribution to the total energy must lead
to the shortening of the equilibrium lattice parameter.
Therefore, the obtained decrease of the charge transfer
in the Li-rich part corresponds to a strong increase of the
equilibrium lattice parameter of alloys containing more
than 50 at. % of lithium (Fig. 5). It is noteworthy that
our calculations, carried out within the standard scheme
without regard to the Madelung contribution to the one-
electron potential and total energy, result in producing
positive values of the mixing enthalpies in the whole con-
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-20
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Atomic fraction of Li.
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FIG. 4. The Madelung energy (a) and the mixing energy
(b) of the random fcc Al-Li alloys. Closed squares in (b) show
the results of the calculation for random alloys and open di-
amonds designate the enthalpies of formation of AlsLi (Llg)
and AILi (B32) ordered phases obtained in the FLAPW cal-
culations (Ref. 9).
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FIG. 5. Calculated concentration dependence of the lat-
tice parameter of Al-Li random alloys at 0 K.

centration range and conform to Vegard's law for the
lattice parameters.

As a matter of fact, q' cannot be regarded as a quan-
tity that really describes the charge transfer, caused by
the distinction of the electronegativities of the difFerent
atoms. For example, the division of the crystal into
atomic spheres is an artificial procedure, and the value of
q' greatly depends on the choice of the ratio of the radii
of atomic spheres. To de6ne a "true" charge transfer it is
necessary to choose a reference state in order to compare
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the value of q* after an LDA self-consistent calculation
and q* in a state when the chemical interaction of ele-
ments is not taken into account. Such a state can be
determined by the overlapping charge densities (OCD)
model. In this way we can define the charge transfer

q = qsc qocD where qsc and qocD
tive charge transfers, obtained, respectively, within the
LDA self-consistent calculations and the OCD model.
The concentration dependencies of the qocD qsc and
Aq are also shown in Fig. 3. The absolute value of Aq
turns out to be smaller than that of q', and its sign is the
opposite of the sign q*, which corresponds to the charge
transfer kom Li to Al atoms in accordance to their elec-
tronegativities.

V. THERMAL AND ELASTIC PROPERTIES

The thermal and elastic properties of Al-Li alloys are
of great interest. Actually, the direct first-principle cal-
culations of both of these properties are impossible in
the atomic sphere approximation, which does not allow
one to obtain the correct values of the energy of any
anisotropic deformation of solids. However, Moruzzi et
al. have shown that the thermal properties of most
cubic metals can be estimated in the Debye-Gruneisen
model with good accuracy only f'rom the binding curves,
i.e., without calculations of anisotropic deformations. In
this section, we introduce a simple ansatz which for
isotropic solids in the high-temperature limit makes the
model described in Ref. 28 more accurate and enables
one to calculate their elastic properties only on the basis
of binding curve data as well.

Two parameters are suKcient to evalute the vibra-
tional contribution to the Helmholtz kee energy in the
Debye-Gruneisen model: a characteristic Debye temper-
ature O~ and a Gruneisen constant p. Moruzzi et. al.
suggested the following simple expressions for their de-
termination:

(I/&) =

2. 1

2.0 a.

7 1.9

1.8

1.7

NI

I I
I I

0.34 //

(&/B) = (»)1+ 0. 2(l + 0)
'

Thus, it follows that to calculate the thermal properties it
is necessary to know either the relation between L and G
or Poisson's ratio. As both these parameters are almost
constant for a number of pure cubic metals, Moruzzi et
al. suggested that Poisson's ratio is constant and ap-
proximately equal to I/O.

Although both aluminum and lithium are good met-
als, unfortunately this approximation cannot be used
for Al-Li alloys because experiment and pseudopoten-
tial calculations show that Poisson's ratio of the Al-Li
solid solutions vary with the Li concentration. Therefore,
to analyze the concentration dependencies of the thermal
properties of Al-Li random alloys one should take the cor-
responding concentration dependence of Poisson's ratio
into account. For this purpose we utilize the following
high-temperature relation for isotropic elastic medium
between Poisson's ratio and the Griineisen constant (its
derivation is given in the Appendix):

0
6p+ 3

(II)

The calculated concentration dependencies of p, 0., and
(O~)o for the Al-rich alloys are shown in Fig. 6. It is

V BsE/OVs

28E/BV ' (6) 0.32

- Z/3

OD = h/k~ v)4~0

0.30

0.28

NI
RgM

where E is the total energy of a solid, h and ka are
Planck's and Boltzmann's constants, V is its atomic vol-

ume, and v is the mean sound velocity in the solid. The
latter can be expressed in the form ~ 450

g

C.
~ —~~ saI~

8=C
-~- 1/2

where p is the density of a solid, B is the bulk modulus,
and C is the dimensionless coeKcient

Here L and G are longitudinal and shear moduli, which
can be expressed via bulk modulus and Poisson's ratio 0.

as

350 I I I I

0.0 0.1 0.2
Atomic fraction of Li

FIG. 6. The Griineisen constant (a), Poisson's ratio (b),
and Debye temperature (c) of Al-rich Al-Li alloys. Closed
squares are the results of the calculation and open squares
show experimental data for Poisson's ratio (Ref. 2). In (c),
open triangles show the Debye temperature calculated by
means of the formulas suggested in Ref. 28.
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noteworthy, that our estimation of Poisson's ratio yields
its value and concentration dependence in good agree-
ment with the experimental ones. In contrast to our re-
sults, the Debye temperature obtained by means of the
formulas of work decreases with the Li addition. How-
ever, the Debye temperature experimental measurements
for Li-contained alloys show a growth of OD with the Li
addition. In this connection we believe that our method
of Debye temperature estimation is more reliable in re-
gard to alloys.

The simple relation between p and cr enables us to es-
timate the values of the room-temperature Young's mod-
ulus E and shear modulus G for the alloys under consid-
eration on the basis of binding energy curves data alone
(see the Appendix). Figures 7 and 8 present the cal-
culated and experimental room-temperature properties
of the Al-rich alloys as functions of alloy concentrations.
It is obvious that the increase of E and G values at a
small concentration of Li is connected with the decrease
of the Gruneisen constant and, respectively, Poisson s ra-
tio. When the concentration of Li in an alloy exceeds
4—8 at. %, the Gruneisen constant becomes a weak con-
centration dependent, and the values of E and G moduli
are mostly determined by the bulk modulus decrease.
This anomaly may be related to the topological phase
transition, but in the present work we do not analyze
the thermal property trends in the vicinity of possible
topological phase transition points in any detail. Our

og
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FIG. S. The room-temperature lattice parameter (a) and
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alloys. The calculated results are shovrn by closed squares
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calculations also predict the decrease of the lattice pa-
rameter and bulk modulus for the Al-rich alloys with Li
addition. Unfortunately, we can compare these proper-
ties with experimental dataz s only for small concentra-
tions of Li (& 4 at. %) which are true of homogeneous
solid solutions. But in this region the agreement between
our results and the experimental data is very good.

In the Helmholtz free energy calculations we followed
Refs. 17 and 28 in which the details of such calcula-
tions were described. The calculated concentration de-
pendence of the room-temperature thermal expansion co-
efficient (TEC) of Al-Li random alloys is also shown in
Fig. 8. Our calculations predict the decrease of the TEC
value at small concentrations of Li. Unfortunately, we
do not know of any reliable experiments in regard to
the influence of Li alloying on the thermal expansion of
aluminum-based alloys.

VI. SUMMARY

25

20 '

0.0 0.1 0.2
Atomic fraction of Li.

FIG. 7. The room-temperature bulk (a), Young's (b), and
shear (c) moduli of Al-rich Ai-Li alloys. Closed squares show
the calculated results and open squares correspond to exper-
imental data (Ref. 2).

This paper reports the implementation of a self-
consistent coherent potential technique to calculate the
electronic structure, thermodynamic, and thermal prop-
erties of random Al-Li alloys. In order to overcome the
ambiguity induced by the single-site CPA in the de6ni-
tion of the Madelung potential and energy, we propose
a simple physical approach. Our approach leads to a
signi6cant contribution to the one-electron potential of
the alloy components and correspondingly to the total
energy of the alloy when the net charges of its compo-
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nents dier from each other. We show that the screening
model for the Madelung potential and energy plays an
important role by obtaining the correct thermodynamic
and ground-state properties of an alloy. For example,
we managed to obtain reasonable values of the mixing
enthalpies and a strong negative deviation of the lattice
parameters &om Vegard's law only due to the screening
Madelung potential.

In order to compare the calculated thermodynamic
properties with the experimental ones at finite tempera-
tures, we took into account the phonon contribution to
the free energy of an alloy in the Debye-Griineisen model.
To make this model kee of empirical parameters we de-
rived and employed a heuristic formula connecting the
Griineisen constant with Poisson's ratio. As a result we
obtained bulk, Young's and shear moduli, and the coeffi-
cients of thermal expansion at room temperature which
are in good agreement with available experimental data.
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'

(Al) can be rewritten as:

PV = (A4)

Here P is the internal pressure, caused by thermal vibra-
tions, C~ and C~ are heat capacities at constant pressure
and volume, respectively. According to the virial theo-
rem, we can write P as P = 3' and, consequently,

3C~
2PV

(A5)

pV = (I +2—Go) =B t'2 —30.l
3 i, 1+tr) (A6)

Here L, G, and B are adiabatic longitudinal, transver-
sal, and bulk elastic moduli, respectively, and 0. is the
Poisson's ratio.

By equating the right sides of (A5) and (A6) and taking
into account the definition of the Griineisen constant,

PB V
(A7)

Regarding the thermal vibrations as a superposition of
standing waves and in the classical limit we can give

APPENDIX: HIGH- TEMPERATURE RELATION
BETWEEN THE GRUNEISEN CONSTANT

AND POISSON'S RATIO

we obtain

4p —3

6p+ 3
(AS)

dT+
/ /

dv= 0.
BT) v

Using the well-known thermodynamic identities

'BU)
&~T) v

( clU & (l'0

(A1)

(A2)

together with the following definition of the bulk thermal
expansion coefficient:

The main idea of the following derivation belongs to
Leontyev. Let us consider an elastically isotropic solid
with volume V at temperature T. Temperature T is as-
sumed not to be lower than the characteristic Debye tem-
perature e~ of the actual solid (the classical limit).

These assumptions allow us to express the kinetic en-

ergy density of thermal vibrations in terms of weight den-

sity p and the mean-square velocity of atomic displace-
ments v . The internal energy U of the isolated solid,
evoked by thermal vibrations, is a total differential with
respect to variables T and V:

Now we will illustrate how relation (AS) works in real
systems. Let us consider cubic crystals with central and
pairwise interatomic forces. In this case the Cauchi rela-
tion ci2 ——c44 is fulfilled, and hence taking into account
that

0' 3 1 —20
ci2 =3 B, c44 =— B,1+0 2 1+0

it follows that for such a crystal at high temperature,
Poisson's ratio must be equal to 0.25, and the Griineisen
constant, p = 1.5, in accordance with (AS). Indeed, the
room-temperature Gruneisen constants of alkaline-haloid
crystals, e.g. , NaCl, KCl, KBr, KI, and LiF, whose strong
electrostatic interatomic interaction can be considered as
pairwise and central, is very close to the above mentioned
value. Formula (AS) leads to quite reasonable results
for such systems whose anisotropic coefficient does not
appreciably differ from 1. We can also use Eq. (A5) to
estimate the Griineisen constant for an incompressible
metal having Poisson's ratio close to 1/S: it is close to 2,
as is true of pure Al. As to aluminum and Al-rich Al-Li
alloys, they are almost elastically isotropic, and there is
no doubt of the applicability of Eq. (AS) in this case.
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