
PHYSICAL REVIEW B VOLUME 49, NUMBER 20 15 MAY 1994-II

Macroscopic polarization as a geometric quantum phase:
Many-body formulation

Gerardo Ortiz and Richard M. Martin
Department of Physics, University of Illinois at Urbana Ch-ampaign,

1110 West Green Street, Urbana, I/linois 61801
(Received 5 3anuary 1994)

During past decades, concepts about the electrostatics of in6nite systems have been a challenge for
theoretical physicists. In particular, the question of whether the absolute macroscopic polarization
or the diff'erence between the polarizations of two states of an insulating crystal is a well-defined bulk
property has remained a controversial one. Recently, King-Smith and Vanderbilt, and Resta have
provided an approach in terms of the geometric Berry phase of electronic orbitals in an independent-
particle approximation. Here we extend the derivation of Niu and Thouless for quantized charge
transport to the case where the quantum adiabatic evolution is noncyclic, and we show how this
polarization difference can be written in terms of a Berry phase for a system with many-body
interactions. We also discuss the origin and magnitude of the "quantum uncertainty" that appears
when a path-independent gauge is used to compute those geometric quantum phases. This geometric
viewpoint not only helps us understand the issues raised above but provides a mathematical method
to compute polarizations in a many-body framework.

I. INTRODUCTION

The electric polarization is a quantity which plays a
central role in the dielectric phenomena of matter.
The macroscopic polarization P is the average value of
the polarization density field P(r),'which satisfies the
equation

+ ' ~ (r) = p(r)

where p(r) is the charge density of the system. In a
finite system, if 7 (r) vanishes outside the sample, it is
straightforward to show that P is the dipole moment of

(r)

P = — d r 'P (r) = — d r r p (r)=1 3 =1 3

0 0

Thus P is uniquely determined by p(r) and the condition
'P (r) = 0 outside the volume of the sample A.

In an extended system, however, the interpretation of
this integral suKers from diKculties. In particular, there
has been much debate and discussion ' about whether
or not it is possible to uniquely define a "macroscopic
bulk polarization" which is a property only of the inte-
rior of the material independent of surface termination.
The difBculty originates as a result of the position vector
r in the definition above: a charge distribution on the
boundary of the finite system can lead to a contribution
to the polarization per unit volume P which does not
vanish in the thermodynamic limit in which the finite
system is taken to infinite size. This corresponds to the
fact that the total polarization of a finite sample depends
upon the charge state of the surfaces; therefore it cannot
be a bulk property. Nevertheless, in an insulating sys-
tem one can define the change in polarization AP, e.g. ,
due to a phonon mode or a ferroelectric displacement.

In quantum insulators a charge disturbance confined to
the surface region cannot propagate its eQ'ects into the
bulk region provided the macroscopic electric field E
is kept vanishing (this concept is developed in more detail
in Sec. II where the meaning of bulk and surface regions
is cleared up). Since the surface charge cannot flow in an
insulator, the change AP must be associated only with
the bulk (in null macroscopic electric field E,).

One can attempt to derive expressions for quantities
such as the polarization directly from information on a
single periodic cell in an infinite insulating crystal. Such
attempts have led to much controversy and disagree-
ments. It is easily demonstrated that it is impossible
to derive the polarization strictly Rom the charge density
in the unit cell, since the dipole moment depends upon
the choice of the cell. However, the change in polar-
ization between any two physical states AP is uniquely
given by the change in dipole moment of a unit cell plus
a surface integral which physically is the contribution of
the polarization current which flows through the cell.
This quantity (AP) was shown to be independent of the
choice of cell; however, no prescription for calculating the
surface integral was given.

Another approach is to consider an infinite system with
finite wavelength variations, i.e. , electric fields, currents,
and charge densities which are periodically varying in

space. The properties are well known and can be de-
scribed in terms of longitudinal and transverse electro-
magnetic phenomena. If one carries out perturbation
expansions about a known equilibrium state, the dielec-
tric phenomena can be described in terms of correlation
functions of currents and densities at diferent time and
position. ' In quantum mechanics there are well known

expressions for linear response tensors and it is possible,
in principle, to take into account any order in pertur-
bation theory. In this formalism it is essential to con-
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sider 6nite wavelengths and take the proper limits as the
wavelength is increased to infinity, in order to describe
macroscopic phenomena. '

Recently ' there has been a breakthrough in the cal-
culation of polarization in crystalline dielectrics. An ap-
proach has been developed within the context of one-
body theory with a formal structure which relies on
concepts of topology and differential geometry. In any
single-body mean-Beld theory of an infinite periodic crys-
tal, all physical quantities can be written as integrals
over matrix elements as a function of k in the Bril-
louin zone. The authors of Refs. 11 and 12 consider in-
sulators where the integrals over filled bands are over
the complete Brillouin zone and they take advantage
of periodicity in k space. Following them we de6ne

( = ((i, (2, (s) to be the dimensionless reduced k vector.
The electronic contribution to the polarization difference
b,P,i (b,P = b,P,i + AP; „,where EP;

„

is the ionic
contribution) between two states which are connected
through a continuous adiabatic transformation charac-
terized by the parameter (4 (in null macroscopic elec-
tric field E,) can be expressed in terms of a geometric
quantum phase p(C;) (Berry's phasei4)

Bo G; AP &
= 2 e ~e;~a~ f d(~ dt's p(4) .

~(c*) = &(&) d&
C;

(4)

whose nonzero value reflects the fact that the periodic
boundary conditions of the single-particle wave functions
(Bloch condition) induce a nonsimply connected config-
uration space. The connection A ("gauge field" ) is given
by15

&(&) = i) (u-(&) l&~ u-(&)) .
n=l

C, is the contour of the unit square [0,1]x[0,1) in the
plane parallel to ((;;(4) for fixed ((~",(i,). The sum is
performed over the n filled bands, i.e., the lowest single-
particle eigenstates whose periodic parts are given by
u„(().In the periodic gaugeii Eq. (3) can be written
in terms of the initial ((4 ——0) and final ((4 ——1) states
(d ( = d(i d(2 d(s)

The (4",(i, ) double integral is over the unit square
[0,1]x [0,1], G; are reciprocal unit vectors, 00 is the unit
cell volume, e,~I, is the Levi-Civita tensor with indices
running &om 1 to 3 (no summation is assumed), e the
electron charge, and

There are several unsatisfactory aspects of the formu-
las as stated above. One is that they are restricted to
single-body mean-Geld descriptions. A second one is the
fact that the formulas for P are subject to addition of any
integral multiple of the quantum &' R. In a crystal with a
large cell, or if one arbitrarily considers a cell larger than
the primitive one, then the "quantum" is reduced. In
particular, in an amorphous system it becomes infinites-
imal, and the resulting polarization becomes completely
arbitrary.

The purpose of this paper is to give full many-body
expressions for the polarizations which define the polar-
ization change in terms of a Berry's phase with no added
"quantum, " i.e., no uncertainty. The latter expressions
require speci6cation of the path in defining AP. When
an expression is derived involving only the end points
of the path ("two-point" formula), then the "quantum"
arises. This is important in that it shows that the change
in polarization itself is well defined and that it is only the
particular expressions that are problematic. Finally, we
show that the many-body two-point expressions, which
intrinsically involve a large cell to treat particle correla-
tions, have the same "quantum" as that for the primitive
cell. Our many-body approach follows the key ideas of
Niu and Thouless for the quantization of charge trans-
port in an insulator. Our derivation is based on two
main concepts. The first regards the observation that for
a quantum insulator charge cannot fiow between the bulk
and surface of the system, while the second is the theo-
retical technique of averaging over boundary conditions
(i.e., over momentum vectors k). Actually the fact that
for a given observable averaging or picking a particular
(k) boundary condition leads to the same result (in the
thermodynamic liinit) can be considered the condition
for this observable to be a bulk property.

II. GEOMETRIC PHASE APPROACH:
THE MANY-BODY FORMULATION

We start by defining our general model of the infinite
crystal: First consider a 6nite system with a boundary
surface whose macroscopic polarization P is unambigu-
ously given by Eq. (2), with the condition E,= 0 in the
bulk (see Fig. 1); then we perform the thermodynamic
limit. Our finite crystal has a perfectly periodic bulk
region in the interior, and surface regions (see Fig. 2).

n

00 G;-AP ~
——2e i d u Og, u„

n=1

—(4(() I ~~.u.'(&))) (6)

where Og, stands for
&&

. These authors showed that
a two-point formula such as Eq. (6) determines b,P,i to
within a factor of & R, where R is any lattice vector.

FIG. 1. Schematic of bulk plus surface regions for a general
sample shape. The macroscopic electric 6eld E, is kept zero
in the interior of the sample by external means.
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Pb„~kof the finite crystal in a different way. The essential
step is to realize that in an insulator one can make a sep-
aration of the charge density into bulk and surface parts
uniquely. This is then sufIicient to derive a unique bulk
polarization Pb„~k. The crux of the proof is that charge
cannot flow between the "bulk" and "surface" parts T. his
is the idea used by Kallin and Halperin to show that
piezoelectricity is a bulk effect; this division is also used
in the derivations of King-Smith and Vanderbilt.

For the finite crystal the bulk density can be defined
as

Integral Number of Cells

FIG. 2. 1D crystal (or parallel geometry) showing a pos-
sible partition (by imaginary dash-dotted lines) of the total
charge into surface and bulk regions. In this case, from the
density alone it is impossible to de6ne an intrinsic bulk po-
larization.

Note that we do not make any assumptions about the
surfaces; the only hypothesis is that the bulk region is
insulating and has periodic density p(r). Contrary to
what happens in metals, the magnitude of E, inside a
dielectric is not in general zero; we impose this condition
because we want the electrostatic potential to be periodic
in the bulk. This is accomplished either grounding the
surfaces (metallic surface) or adding external charges on
the surfaces.

Suppose that we separate the surface from the bulk re-
gion by imaginary lines (as in Fig. 2). For the sake of clar-
ity we illustrate the concepts with a one-dimensional (1D)
crystal of linear dimension L and such that I dr p(r) = 0
(the dipolar moment of p is origin independent). Then
if one attempts to divide the total density into bulk and
surface parts,

where S'„are localized Wannier functions centered at
ja (the sum over n extends over the occupied bands),
and p;,„(r)represents the density of positive charges
necessary to neutralize the electronic bulk charges

[jdr pb„tk(r) = 0 ]. The surfaces are described by func-
tions which are not periodic. They can be arbitrarily
complex, but since the bulk is insulating, each surface
region (denoted 8, 7Z in Fig. 3) has wave functions which
are localized (exponentially) to one surface region. This
can be proven to be the case based only upon the insu-
lating character of the bulk. Therefore the total charge
density is defined to be p(r) = pc(r) + pb„u,(r) + p~(r)
(see Fig. 3). Now, for the finite crystal each distribution
has well-de6ned dipole moments.

The generalization of the previous arguments to 3D
is straightforward: in the following we will use the 3D
notation. Once we have performed the aforementioned
charge partition, we can find the polarization difference
APb„~k between two crystal states in the following way

) d'r r IK(r) I' —I~.'(r) I'
0

+ — d r r p; „(r)—p;,„(r), (10)
Op

P(r) = Pc(r) + Pb-»(r) + P~(r) where superscripts 1 and 0 label each of the crystal states.
The statements concerning charge partitioning are gen-

1 1P = — dr r p(r) = Dc + — dr r pb„ig(r) + D~,L L
2

where Dr ~ is the left (right) surface region contribution
of charge density pr ~(r) to the dipolar moment. It is
clear that both surface and bulk contributions to P de-
pend upon the arbitrary definition of the boundaries so
that neither is invariant. With this prescription for the
partition, it is impossible to define an intrinsic bulk polar-
ization from the density alone (pb„u,) as shown before. '

As can be easily realized, this argument also holds for
differences AP, since a change in P cannot be uniquely
related to the bulk or surface terms. Of course, AP is
definitely defined for the finite crystal, but additional ar-
guments are needed to specify the change in AP as a
bulk property.

For an insulator we can define the bulk polarization
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FIG. 3. Same geometry as in Fig. 2 but now the partition
of the charge density is different. The charge cannot How

from the bulk to the surface regions. Under this assumption
it is possible to define an intrinsic bulk polarization (up to a
"quantum").
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o +bulk 3
Qb ik

/

where jb„~k is the bulk current density, and whose solu-
tion is

jbulk
+bulk + 'I7 A Mb~u

Ot

Mb„~k is the bulk magnetization vector which is a peri-
odic function of the vector position r. Then, the total
integrated current per unit cell volume transported dur-
ing the time T is given by

%bulk

T
dt d Pjb

T T
dt + — dt d r V'AMb~)k.OP buaer 1 3

p a ~p p n.

We can transform the volume integral of the last term
to a surface integral over the cell boundary OOp which
vanishes (given the periodicity condition on Mbuik)

T

Ot

1+ Ck dS [ii A Mb ik],
p p 80p

(14)

where n is outward surface-normal unit vector. Then,

OP 1

q ~p d
bulk

dp
bulk

Ot p l9A

eral and not restricted to single-body theory. In a mile-
stone paper, Kohn developed a characterization of the
insulating state of matter kom a many-body point of
view. The essential property of its wave function is that
it can be written as a sum of functions which are local-
ized in disconnected regions of the multiparticle configu-
ration space and have vanishing overlap. This is exactly
the property needed to make a consistent generalization
of the previous arguments to the many-body case.

Now we want to show, using elementary arguments
&om macroscopic electrostatics, that the change in bulk
polarization due to a transformation performed in an in-
sulating crystal is identical to the integrated bulk current.
The starting point is the continuity equation which, be-
cause charge cannot flow between surface and bulk re-
gions, is satisfied for each domain separately (with the
condition that E, is kept zero). After Eq. (1), the
continuity equation for the bulk domain reads

ditions (zero P and M outside the sample) and assumes
that the system remains insulating during the evolution
(otherwise we cannot uniquely disentangle bulk &om sur-
face charges). We note that it is possible to define the
change in polarization needed in Eq. (15) in terms of the
dipolar moment of the charge inside a cell plus a contri-
bution which represents the charge transferred across the
cell boundary

APb„~k —— — dt d r r-
np p „, a

T
dt dS r n

p 80p
(16)

Although it was shown in Ref. 5 that this is formally a
bulk property independent of the choice of cell, no ex-
plicit expressions were given and no calculations have
been attempted using this formalism to our knowledge.

At this point it is clear the close connection between
the problem of adiabatic charge transport addressed by
Thouless and the issue of the change in polarization be-
tween two states of the same crystal connected through
an adiabatic transformation. This connection is a funda-
mental one independent of the quantum mechanical for-
mulation, that is, whether it is a single-body or a many-
body theory. To be more precise, Thouless focused on
cyclic adiabatic changes of the insulating system, that is,
changes such that the Hamiltonian returns to itself in a
period of time T. He found that the bulk contribution to
the integrated current Qb„ik (equal to APbuik) across a
boundary is quantized after such a cyclic quantum adi-
abatic evolution. Niu and Thouless 6 have generalized
this result to the case where substrate disorder and par-
ticle interactions are present. Although Niu and Thouless
considered only 1D cases, their quantum is readily gen-
eralized to be the same as that defined by King-Smith
and Vanderbilt, and Resta. In the present case, un-
like Niu and Thouless, we are interested not only in the
quantum but also in noncyclic adiabatic changes of the
Hamiltonian operator which induce a polarization differ-
ence between two states that do not belong to the same
ray. However, because of Eq. (15), APb„ik is exactly
equal to the integrated current whether or not the evo-
lution is adiabatic and/or cyclic. Hence we can readily
extend Niu and Thouless's many-body derivation for
Qb„ik to the case where the quantum adiabatic evolu-
tion is noncyclic. This scheme provides the many-body
generalization of the geometric phase approach ' to
macroscopic polarization.

Let us start by writing the N-body Hamiltonian which
describes our electron system

where in the last equality we assume that during time T
our system has continuously evolved from a state charac-
terized by A(Q) =Q to a different (in principle) state with
A(T) =1, A(t) being a scalar which parametrizes a path in
the space of Hamiltonians. The previous relation is quite
general provided one chooses carefully the boundary con-

1(i&j(N

where V,„q((x;),A) is the "external" potential which
changes adiabatically as a function of A and v(r) denotes
the repulsive interacting potential. We consider only non-
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relativistic Hamiltonians which do not include spin-orbit
interactions. The approach of Niu and Thouless is to
de6ne a modi6ed Hamiltonian 0, which corresponds to
enforcing modi6ed boundary conditions in the original
real Hamiltonian. We can study the ground state of 0,
in which I%. is an additional parameter. 40 is the ground
state solution of the snapshot Schrodinger equation with
the many-electron Hamiltonian

C)p(k, A) = exp i O(k, A) + G) z; 4p(k+ G, A),

is, p(C) = p(C). In that sense AP, ) is an observable
(modulo "nothing").

One can extend the analysis and realize that the pe-
riodic boundary conditions determine a global topology
such that

(22)

(18)

which satisfies strict periodic boundary conditions over
the supercell of linear dimension L, i.e., 4p(zi, . . . , z, +

. . .
o ziv) = C)p (zi, . . . , z, , . . . , zN) (Ref. 24) and de-

pends parametrically upon k and A [from now on we will
denote this dependence by C'p(k, A)].

For a 1D N-fermion system enclosed in a box of di-
mension I the electronic contribution to APb„~g turns
out to be given (in the thermodynamic limit) by

2'—AP, )
—— lim

N, Lmoo
N/L ~ const

with a geometric phase (k = ~r/L)

(20)

which after applying Stokes's theorem reads [( = (~, A)]

C

This is the many-body generalization of Eqs. (4) and (5).
In the expression above for the connection A we have

assumed that the ground state C0 is nondegenerate

((C)plop) = 1). The line integral is performed along the
closed path C defined as the contour of the rectangle

[
—1, 1]x[0,1] in the plane v, A. Notice that if one can

choose Op(k, A) to be always real, then p(C) = 0 (assum-
ing C does not encircle a degeneracy); in other words, the

Hermitian Hamiltonian H must be complex in order to
have a nontrivial p(C). Since the external potential V,„t
is real, this complex character is induced by the bound-
ary conditions through the k-dependent kinetic energy
operator in Eq. 18.

Berry's phase p(C) depends on the path and not on
the rate at which it is transversed. Moreover, p(C) is in-

dependent of the choice of phases for @p (i.e. , gauge inde-

pendent): Suppose that one makes a different choice, say

@p M C'p = exp[i O(k, A)] C)p. Then, from Eq. (20) and
noticing that the normalization condition (4'plop)
implies that (4'pl%'t@p) = —(7'tC)plOp), it is straightfor-
ward to prove that the geometric phase is invariant, that

where 8(k, A), which fixes the gauge, is an arbitrary func-
tion of k and A and G = L n is a "supercell" reciprocal
vector (n is any integer). If one insists on working in a
path independent gauge (0 is a function of k only), 2s it
is simple to show that

m/L

n/L
dkf(@p(k 1) l

oloC p(k, 1))

—(I) (k, 0)l (91,C) (k, 0))), (23)

which would mean that p(C) depends only upon the ini-
tial and final states; the proof of this relation goes along
the same lines as Ref. 11. However, because Berry's
phase p(C) is intrinsically a function of the path, a path-
independent expression such as Eq. (23) turns out to
be defined modulo "something. " This is precisely the
indeterminacy of the quantum which is related to the
lack of history in Eq. (23). In order to show what is
the minimum uncertainty one has to deal with in using
Eq. (23) we consider a cyclic evolution. In this case
the final state can differ at most by a phase: @p(k, 1) =
exp[ —ip), ] C)p(k, 0). Under such circumstances and recall-
ing that we work in a path independent gauge, simple al-
gebraic manipulations show that exp[ipq] = exp[i'~+(-],
which implies that py = Py + P i k n, L (with (tl, pe-
riodic in k and n, L an arbitrary supercell vector) and

therefore p(C) = 2' P, i n, . In this case AP, ) will be
determined modulo (e). This result is basically the same
as that of Refs. 11 and 12; however, we have clari6ed that
it is a gauge independent result in the sense that it is due
to the "lack of history" in any two-point formula.

So far we have been discussing the 1D crystal. One can
easily generalize the many-body formulation of macro-
scopic polarization to 3D. In this case, our system con-
sists of K fermions enclosed in a box whose symmetry
is consistent with the symmetry of the crystal (that is,
of the external potential). For the sake of clarity, let us

assume that the crystal is cubic, in which case we can
choose as supercelI, a cube of side L without loss of gener-
ality. Then, the change in polarization along a Cartesian
direction o. is given by

(2ir)' (&P.))- = l~-(s~l dk~ p(C ),
(24)

where Berry's phase p(C ) is formally given by Eq. (20)
with v replaced by x . Again, no summation is assumed
over the indices of the Levi-Civita tensor e p~.
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At this point, it is appropriate to ask what the size of
the quantum is if one uses the path independent formula
for p [Eq. 23]. To answer this question we study again a
cyclic evolution. Following the same arguments as in 10
we arrive to the conclusion that pg = Pg + P; ) k . L;,
w'here L; = (n), n2, ns)L. Hence (AP, )) will be de-
termined modulo ( &, ). Qualitatively, one needs only to
move one electron charge e per supercell area in order
to go back to the original system Hamiltonian, and this
is the quantum uncertainty. It is clear that the path
independent formula is unsuitable whenever the physi-
cal change in polarization is larger than the quantum.
The reason for the failure is the assumptions that led to
the path-independent form Eq. (23): p does depend on
the path (history), as the system evolves p changes in
a deterministic manner and Eq. (20) is the appropriate
expression giving (b,P,~) uniquely.

Since many-body calculations intrinsically involve
large cells, this may appear to be a problem in the many-
body formulation which was not present in the single-
body one. However, this is not the case. First, if the
single-body formulation Eq. (6) is applied directly to a
supercell the same shortcomings show up (i.e., the un-
certainty is e/I ). Of course, in the noninteracting case,
if the underlying periodicity of the system (i.e., of the
external potential) is smaller than the one of the super-
cell, one can cure this problem by using single-particle
states which display this property. That is, the quan-
tum is larger and equal to e/L&~& (2e/Lo if there is spin
degeneracy), where L2o is the area of the primitive cell
(small unit cell). Similar requirements on the wave func-
tion can be used in actual many-body calculations for
interacting electrons. In fact, there already exists an ex-
plicit way to overcome the problem for a system with
a smaller underlying periodicity. The first important
thing to remark is that, apart &om single-particle trans-
lations over the supercell [t;(L) C)o(rq, . . . , r;, . . . , r~) =
C)o(rq, . . . , r;+L, . . . , r~) = 4o(rq, . . . , r;, . . . , rN)], there
is the center of mass symmetry which leaves the Hamil-
tonian of the system invariant

T(Lp) C)0((r })= Op((r; + Lp}) = Op((r }), (25)

where 0 is the volume of the supercell. Suppose we make
the following coordinate transformation: rq ——g,. z r;;
r~ = r~ (j = 2, . . . , %). Then, the domain of integration
in Eq. (26) changes to

~+&i+ - +&nr

dF2 . . dFN
0 0 —

2 +&2+"-+&pr

dr) 40((r;}) )91,.
x @o((r'})

but because of the periodicity of the integrand with re-

where T(Lo) = Q,. ~ t, (LO) is the center of mass trans-
lation operator. The relevant matrix elements involved
in the computation of (AP, ~) are of the form

(4p~ ))p Op) = f drp .f drpr @pHr;)) ))p 4 p()r;))

(26)

spect to the center of mass coordinate the last expression
reduces to

+rg+".+rg
N„~~ dr2 - - - drN

0 0 —~2+&g+ "+&pr

"oI.@o((r*})
(28)

where N„~~ ——
& is the number of elementary cells of

volume 00 contained in the supercell. One can go back
to the original coordinate system and write the matrix
element as

N p&& dr) dr2 ' ' ' dr& 4o((r'}) Bp 4p((r })
Ap 0 0

(29)

III. SIMPLE APPLICATION:
THE HUBBARD DIMER

In this section we apply previous ideas to compute
the electric dipole moment (polarization) of a diatomic
molecule with a Hubbard on-site interaction. This Hub-
bard dimer is a very simple model which displays the
essential features we wish to emphasize here, i.e., it is
a system with many-body interactions and an analytic
solution. Its second quantized Hamiltonian is

IH = e~ ) c c + Es ) cs cg
~=t,4 cr =t,$

~t ) (c.'.c,.+ c,'.c..)~=t 4

+U n ~n ~+Ubnb~nb~, (3o)

where et is a fermion operator which creates an elec-
tron in the atomic state Q (of energy c ) with spin cr,
t is the hopping matrix element between atoms a and b,
and U ~b~ is the on-site Coulomb repulsion. The number
operator n = c c

On the other hand, the Hamiltonian of a lattice of Hub-
bard dimers is given by

In this way we exploited the additional symmetry and, if
we now consider a cyclic evolution, it is not diKcult to
realize that the uncertainty turns out to be e/Le2. There-
fore, we arrive at the conclusion that the quantum un-
certainty is related to the center of mass translational
symmetry and, independent of whether the system is in-
teracting or noninteracting, it is given by e/Lo

In the case of a system where the minimum cell must be
very large (e.g. a disordered system) there appears to be
a problem. However, this is at least in principle solvable
by specifying the path. If one specifies that the final state
is arrived at by a series of steps i in which Ap; is smaller
than the quantum, then the sum P,. b,P; = b.P can be
arbitrarily large. In other words, the specification of the
path leads to a unique answer, not limited by the quan-
tum, which must be possible since the path-dependent
phase [Eq. (21)] is well defined as shown previously.
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IHe = ) IH(j) + & ) [c (j + I) cb (j)

+cb (j) c (g + 1)) (31)

where j is the dimer index and t is the hopping matrix
element connecting neighboring dimers. The isolated-
dimer limit is recovered by letting t ~ 0.

In order to implement the geometric approach, we will
assume that the system evolves adiabatically from the
state where the two constituent atoms are equal (zero
dipole) to the situation where they are different, keeping
the internuclear separation b fixed. Instead of working
with the real Hamiltonian of Eq. (31), we introduce the
modified complex Hamiltonian, which is a lattice version
of Eq. (18), in the gauge where all the phase change is in
the hopping matrix element t

(32)

e
AP, ~

—— lim i—
N, L-+oo vr/L

dk (C P(k) ] Bk 4 P(k))

(33)

Its spectrum and ground state @o(k) depend explic-
itly on k, the momentum label of the generalized Bloch
functions. Lo is the linear size of the primitive cell
which holds a single dimer.

Following the analysis of the preceding section and
applying the "two-point" expression Eq. (23), we arrive
at the conclusion that the electronic contribution to the
change in polarization is given (up to a quantum) as the
limit of Berry's phase

. e. LO
d = lim i

Lp mao 27[

~/Lp

n/Lp
dk (CP(k)] Bb4P(k)) . (35)

Notice that we have multiplied Eq. (35) by Lo because
the relevant observable is the "total polarization" (elec-
tric dipole moment); otherwise d would vanish in the
limit Lo ~ oo (N is finite). By explicit construction
of the ground states 40 and @0 we will show that both
expressions, Eqs. (34) and (35), give the same answer.

We study the simplest dimer, i.e. , the homonuclear
neutral molecule (Z = Zb = ]e~ nuclear charge) with
N=2 electrons (in the sector of total spin S=O) for certain
values of the Hamiltonian parameters. The ground state
of the two-particle system (@o, @o) will be given by a
symmetric function of the particle coordinates x, (the

x = g, i x, (here N is the number of electrons which
compose the dimer). The comparison of both approaches
(which, of course, give the same answer) will let us ap-
preciate the essence and origin of Berry's phase in this
class of problems. It is important to stress that, since the
system is finite, there will be no quantum uncertainty if
a two-point formula is applied (the center of mass is un-

ambiguously defined). So, not only the dipole moment
difFerence but the absolute dipole of the dimer are well

defined (modulo nothing). We show that Berry's phase,
which turns out to be the dipole moment in this con-
text, appears as a consequence of using a topologically
difFerent configuration space than the one of the original
problem [Eq. (30)].

The geometric phase procedure consists in changing
the original simply connected space to a multiply con-
nected one (1D torus or ring). This procedure seems
artificial when applied to a finite system, but in fact this
is nothing else than a restatement of the Bloch condition
in the infinite system (lattice). The modified complex
Hamiltonian of the dimer is the one written in Eq. (32)
but specialized to a single cell (see Fig. 4). The isolated-
dimer limit is characterized by letting t m 0 (as the ring
linear dimension Lo —i oo). Then, following the same
analysis which led to Eq. (33), the electric dipole mo-
ment is given by

d=e Co xylo (34)

where 4'0 is the ground state of the Hamiltonian 1H which

satisfies free boundary conditions ((iso]ko) = 1) and

where Co(k) = exp[ —ik P,. i z, ] ilro((z, })and @o is the

ground state solution of IHe ((~IIo]@o) = 1), which satis-
fies the generalized Bloch condition on the boundary.
The full solution of the Hubbard dimer lattice is beyond
the scope of this paper. However, we can illustrate the
solution of the many-body problem in the isolated dimer
case where there is a simple analytic solution.

Now, we want to compute the electric dipole moment
of the isolated molecule d using both the direct method
(dipolar moment of the charge distribution) and the geo-
metric phase approach. In the direct method the physical
quantity d is

a «b

FIG. 4. Schematic plot of a Hubbard dimer on a ring (ID
torus) of perimeter Lo In the picture we d. isplay the two

atoms (a and b) and the hopping matrix elements which enter

in the modified complex Hamiltonian H(k). Notice that the
time-reversal symmetry is broken.
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pling (U (,) /t » 1), and intermediate valence limits. The
physical picture that emerges from this toy model is clear:
Whenever the on-site two-body interaction is turned off
(single-body approximation), y, is a monotonically de-
creasing function of A. As soon as the repulsive Hubbard
interaction is turned on, more interesting situations arise.
In the intermediate valence regime (U = 0; U~/t 1) y,
is large whenever 4 Ug, while in the strong-coupling
limit (U (,)/t » 1) the system hardly responds (Heisen-
berg limit) up to the moment 4 ~ Us where a resonance
starts to develop. In the case of the Hubbard lattice
[Eq. (31)] we would expect a similar physical behavior in
y, for small t.

0.0 2 3 4
IV. CONCLUSIONS

FIG. 5. Charge susceptibility y as a function of the atomic
energy difFerence A = e —e& for three difFerent physi-
cal regimes. The solid line in the main 6gure corresponds
to the single-body approximation (U = Uz = 0). The
dash-dotted line mimics the intermediate valence situation
(Uo = 0; Uq/t 1). The curve in the inset corresponds to the
strong-coupling limit (U ~ql/t )) 1).

complete antisymmetry is restored by the spin part of the
wave functionz ). Under these assumptions, the ground
state @0(k) will be given by

(36)

where the functions ai„P~,p~ depend parametrically
upon k and the Hamiltonian parameters. The atomic
states g (s) are defined on a closed manifold satisfying
strict periodic boundary conditions, i.e., g (s) (z+ L0) =
@ (b)(z) (single-valued functions on the ring). After
Eq. (35)

I ~/I 0

d&[(@0[(*1+*2)@0)
Lo moo

It is very simple to prove (assuining that the orbital states

(s) are orthogonal) that the first term of Eq. (37) in

the limit L0 ~ oo is indeed equal to e (ili0~ x @0), while
the second vanishes provided that t goes to zero faster
than 1/I,

In Fig. 5 we plot the charge susceptibility y„aresult
which has been obtained using the previous calculation
for the dipolar moment d. Specifically, y, is defined as

In this paper we have developed full many-body ex-
pressions for the change in bulk polarization Apb„~g be-
tween two quantum insulating states in terms of a Berry
phase. Our derivation is based upon two main concepts:
The 6rst regards the observation that for a quantum insu-
lator charge cannot flow between the bulk and surface of
the system, where the division between bulk and surface
is discussed in the text (illustrated in Fig. 3) and fol-
lows the work of Kallin and Halperin. The second is the
method of averaging over boundary conditions (i.e. , over
momentum vectors k) following the approach of Niu and
Thouless. The geometric phase formulas depend on the
path which connects the two states and it turns out that
Apb„~k de6ned in this way is a well-de6ned bulk prop-
erty. If one attempts to consider only the dependence
of EPb„u,upon the initial and final configurations (two-
point formula), then a quantum of uncertainty arises. We
showed that this uncertainty is related to the center of
mass translational symmetry and the quantum is the one
that corresponds to the primitive cell. This geometric
viewpoint provides a mathematical method to compute
macroscopic polarizations in a many-body framework.

We have illustrated such concepts using a simple model
with an analytic solution: a neutral Hubbard dimer.
Since this is a 6nite system, both the electric dipole dif-
ference and the absolute dipole are well-de6ned quanti-
ties (modulo nothing). However, this simple toy model
let us emphasize the origin of Berry's phase in the con-
text of polarization: Since the original Hamiltonian of
the system is a real symmetric operator, the nontrivial
geometric quantum phase is due to the D-dimensional
torus topology of the manifold induced by the periodic
boundary conditions.
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