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We have formulated a microscopic approach to the Landau theory of Fermi liquids. The method is

based on the integration-over-the-coupling-constant algorithm and involves the use of suitable generali-
zations of Hubbard s many-body local field. Our investigation clearly demonstrates the crucial role
played in the theory by the often neglected antiparallel spin correlations. A point we also emphasize is
that in order to correctly employ this procedure it is necessary to make use of the expression for the
charge susceptibility as appropriate to the case of an infinitesimally polarized system. As an

exemplification, we present a fully self-consistent calculation of the effective mass and the anomalous g
factor for the quasi-two-dimensional electron liquid occurring in Si inversion layers. It is shown that the
present development solves some serious problems plaguing earlier theories.

I. INTRODUCTION

The Fermi liquid theory as developed by Landau, ' Si-
lin and later by Nozieres and Luttinger, ' has been
quite successful in providing a practical paradigm for the
description of the physical properties of interacting Fer-
mi systems when Luttinger theorem applies. In particu-
lar, this theory has lead to several attempts aimed at a
quantitative understanding of the transport properties of
interacting electrons at metallic densities.

From an experimental viewpoint the quasi-two-
dimensional (2D) electronic liquid (EL) realized in Si in-
version layers has to date provided the most fruitful and
interesting arena in which such theoretical framework
can be put to work in practice. The most interesting
feature of such systems is the possibility of being able to
sweep, within the same sample, a reasonably wide range
of electronic densities. As a consequence these systems
are particularly suitable for the study of the many-body
effects associated with the Coulomb interaction. In par-
ticular, Smith and Stiles and Abstreiter et al. have
determined the density dependence of the cyclotron mass
while Fang and Stiles and Neugebauer et al. have ob-
tained the density dependence of the anomalous Lande
factor g* in such systems.

In his work Rice' presented a theory and a systematic
analysis of the density dependence of a number of quasi-
particle transport properties in a three-dimensional EL
by obtaining an approximate microscopic expression for
the Landau quasiparticle interaction function fP' . In
Rice's approach, ff' is obtained via a double functional
derivative of an expression for the total energy of the EL
first proposed by Hubbard"' based on the integration-
over-the-coupling-constant algorithm. Rice's paper car-
ried out explicit calculations of transport properties by
accounting for many-body effects beyond the simple
random-phase approximation (RPA). ' ' This was ac-
complished by accounting for parallel spin exchange and
correlation corrections via the many-body local-field

method introduced also by Hubbard. ' Although it pro-
vided substantial contributions, Rice's paper contained
an error that resulted in an incorrect treatment of the
spin-antisymmetric channel. '

Rice's procedure was later implemented for a 2D EL
by Ting, Lee, and Quinn (TLQ). ' Although Rice's ap-
proach was corrected, this paper still included parallel
spin exchange and correlation corrections only. As it
turns out the results obtained by TLQ for the spin sus-
ceptibility (more precisely the Lande factor g ') were
rather unsatisfactory in that the predicted density depen-
dence of g* was opposite to that observed experimental-
ly. ' ' In the same paper TLQ showed that some degree
of agreement with the expected and experimentally ob-
served curve can be achieved if one renounces the Hub-
bard local-field correction and simply performs the calcu-
lation in the RPA. The corresponding RPA calculation
for the case of a quasi-2D EL was later reported by the
same authors. '

Recently a more sophisticated and extensive study of
the microscopic many-body theory of an EL has been
carried out by the present authors' ' as well as by Ng
and Singwi and Zhu and Overhauser. In particular
the work contained in Refs. 19—21 takes advantage of an
approach that is not based on the integration-over-the-
coupling-constant algorithm but rather on a more physi-
cally satisfactory self-consistent canonical transformation
procedure. The results of these calculations are in

reasonable agreement with the experimental findings.
Since this work has been presented in a number of pa-
pers, it need not be discussed here.

In spite of recent developments, the apparent failure of
the many-body theory of TLQ to account for the ap-
propriate behavior of the spin response of the EL has to
date surprisingly remained unexplained.

It is the purpose of the present paper to demonstrate
how often neglected antiparallel spin correlations natu-
rally arise from a theoretically correct procedure even
within the integration-over-the-coupling-constant algo-
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rithm in its present form. In this respect the present
theory is based on a generalization of Rice's procedure in
which new many-body local fields are used to account for
some of the antiparallel spin correlations explicitly
neglected in Refs. 10 and 16. More precisely the main
new development with respect to the TLQ theory is the
allowance of terms proportional to the antisymmetric
many-body local field G (see below). Naively, terms of
this sort could be thought to be absent from a description
based on the integration-over-the-coupling-constant algo-
rithm where only the knowledge of the charge response
of the EL enters, a quantity which in the unpolarized
state only depends on the spin-symmetric many-body lo-
cal field 6+. As it turns out, however, what is actually
necessary is the dependence of the charge response func-
tion separately upon infinitesimal variations of the occu-
pation numbers of up- and down-spin states. This
amounts to the knowledge of the charge response func-
tion of an infinitesimally polarized EL. Naturally, this
quantity contains both the fields G+ and 6 . As a
consequence, although within the present simple ap-
proach G does not enter (as in fact it should) (Refs. 20
and 21) the expression for the quasiparticle energy, G
does at least appear, and plays an important role in the
quasiparticle interaction function ff'

As an exemplification we also present an explicit
parameter-free self-consistent calculation of the many-
body efFective mass m* and of the Lande factor g* for
the case of the quasi-2D EL occurring in a [100]Si inver-
sion layer. In view of the valley degeneracy which charac-
terizes this system, our whole theory is worked out for
the case of a multivalley EL. As we will show, allowance
of the new corrections appears to satisfactorily resolve
the problem plaguing the TLQ theory thereby shedding
light on a rather puzzling theoretical question.

The paper is organized as follows. In Sec. II we
present the correct procedure to be followed within
the integration-over-the-coupling-constant algorithm.
Within such a framework, we obtain the explicit expres-
sions for both the quasiparticle energy and the quasiparti-
cle interaction function. Corresponding expressions for
the transport quantities of interest are also derived there.
In Sec. III we present the above-mentioned explicit calcu-
lation of m * and g'. Lastly, in Sec. IV we discuss our re-
sults and compared them with previous work.

II. MICROSCOPIC APPROACH TO THE LANDAU
THEORY OF FERMI LIQUIDS

Within the framework of the Landau theory, the quasi-
particle energy Ek and the quasiparticle interaction func-

tion fI,
' can be obtained via suitable functional deriva-

tives of the total energy E. In particular for a multivalley
EL:

and

1 5E
Jk,' v 5n 5n '

v k p

(2)

where 5n & corresponds to the change in the occupation
number of spin-o quasiparticles in one of the degenerate
v„valleys. Also to obtain Et, and fzg the functional
derivatives are to be evaluated at 5n &

=0. At this point a
possible way to proceed is that suggested by Hubbard" '

and implemented by Rice' and TLQ. ' One starts from
the following exact expression for the total energy for the
system based on the so-called integration-over-the-
coupling-constant algorithm

E[n f ]=E +f E;„,(X),

where Eo is the kinetic energy of noninteracting electrons
and the quantity E;„,(A, ) is defined as

E;„,(X)= —y f" Im[u, (q)gc &(q, co)]
0 2K

u~(q }N+
2

(4)

an expression that makes manifest the fact that the total
energy of the EL is completely determined by the
knowledge of the charge response y~ for all values of the
coupling constant from 0 to e . In the above equation,
and in what follows, the subscript A, implies that the
Fourier transform of the bare Coulomb interaction u(q)
is to be multiplied by the (real) scale factor it, . Now since
it is necessary to be able to perform functional derivatives
of E[nf ] separately with respect to the occupation num-
ber of spin-up and spin-down electrons, in Eq. (4) the
charge response yc should be taken to be appropriate to
an EL with an infinitesimal polarization. For such a sys-
tem an expression for yc has been derived in Ref. 20 and
is given by

v„got(q, co )+v„yo(q, co)+4v„u(q )G" y(~)(q, co)y(i)(q, co)
xc(q ~)=

2)„(q,co)

where the denominator 2), of this expression is defined by

2)„=1—v„u(q)(1 —G+ —G" )(go~+go~)

—4v„u(q) G' (1—G+ )coty(~) . (6)

In Eqs. (5) and (6) yo is a generalized Lindhard response

function and can be defined in terms of the one-electron
Green's function g (p, co) as follows:

d6'
yo(q, co}—= g .g (p, e)g (p+q, e+co), (7)—oo 27TE

p

where
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n
g (p~)= . +

CO 6p l YJ

1 —n

CO 6 +l'g

v.XO(q ~)
xc(q»=—

1 —v, v(q )(1—G+ )yo(q, co)
(9)

where yo=yo~+yo~. 6" is in turn defined through the

In the above equation, in order to be consistent with
Niklasson's definition of the many-body local fields, the
n are exact occupation numbers. Furthermore, the
many-body local fields G+ are, in general, functions of q
and co and are designed to account for the vertex correc-
tions associated with charge- and spin-density fluctua-
tions, respectively. ' ' These functions are also defined
so as to be appropriate to the case of an unpolarized mul-
tivalley system.

For an unpolarized system Eq. (5) reduces to the fol-
lowing familiar form which can be treated as the defining
equation for 6+.

unpolarized spin response function as follows:

v, yo(q, co)
X,(q, ~)—= —

Vs 1+v„v(q)G" yo(q, co)
(10)

At this point the procedure involves taking the func-
tional derivative of E with respect to n k. Following Refs.
10 and 16 we do this by assuming that the only functional
dependence of E;„,(A, ) of Eq. (4) on nf stems from the
Lindhard functions yo. To this purpose it is useful to
note that

5go'(q, ~) =5 I'g (p+q, e +co}+g (p —q, ez
—co)] .

n„

Then, on using Eqs. (4)—(6) and (11), we obtain the fol-
lowing expression for the first functional derivative of
E;„,(A, ):

5E;„,(A, ) „g~ I'v(q)+4v, v(q) G' yo+4v, v(q) (G" y(~)) ]~= —v, Re g I&. ]~
I g '(p+a ~'+~ }+g'(p —~ ~' —~)].p p

(12)

From this expression and Eqs. (3), (6), and (12), and by further assuming that G+, yo, and g are all independent of A, ,
one arrives at the following simplified form for the quasiparticle energy in an unpolarized EL IEq. (1)]:

E =e Re+ —. g(p —q, e~
—e),de v(q)

—00 27tl + q, E
(13)

where

Q+(q, co)=1—v„v(q)(1 —G+ )go(q, co), (14)

and for simplicity the spin index has been left out in the expression for the quasiparticle energy. This expression coin-
cides with that of both Refs. 10 and 16.

To obtain the Landau interaction function we take one more functional derivative of the quantity E;„,(k). Following
the procedure outlined above we obtain for an unpolarized system

and

5 E;„,(A, )

5n t5nq~

v„v ( Ik —
p I )

Q+ (k —p, g —Ek)2
&

—~ 27ri

2v„v(q) (1—G++G" )

Q —Q+

4v„u(q )~G '

Q-Q+
(15)

5 E;„,(A, )

5n ~5nk~

2v„u(q) (1—G++G' )= —Re Y —m 2@i Q Q3+
g ' (16)

where we have defined

Q (q, co)=1+v„v(q)G' yo(q, co}, (17)

I

teraction function are obtained from Eq. (2) and can be
expressed as

and

g—= Ig(k+q, e„+&)+g(k—q, ez —e)]g(p —q, e —e) .
U(Ik —pl)

2Q+ (k —p, 0)

(18)

Finally making use of Eqs. (15) and (16), and upon carry-
ing out the integration with respect to the coupling con-
stant A. as prescribed in Eq. (3), the symmetric and the an-

tisymmetric components of the Landau quasiparticle in- and

U(q) (1 G+ )

—oo 2n'i Q+

(19)
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f),,'p
—fi,;t,

a
u(lk —pl)

2Q+ (k —p, O)

III. SELF-CONSISTENT DETERMINATION
OF m AND g IN INVERSION LAYERS

+2v„Re+ J . u(q) G" Fg,
q

(20)

where

F(q, ro) = 1

[Q- —Q+]'
Q- -Q+ Q++ln

Q+ Q-

(21)

In Eqs. (19) and (20), the first term on the right-hand side
is the contribution from the screened exchange while the
remaining term is a higher-order correlation contribu-
tion.

At this point it is possible to obtain useful explicit ex-
pressions for the transport quantities of interest. For in-
stance, the quasiparticle efFective mass is obtained in this
framework from'

(22)

where the notation is such that (() is the angle between the
vectors k and p which, in the spirit of the Landau theory,
have been assumed to lie on the Fermi surface. As it
turns out, in order to carry out explicit calculations, we
find that it is easier to use the alternative definition ef m *

given by

BE

~P i' F

A quantity of particular interest in the present work is
the Lande factor g'. Within Fermi-liquid theory g* can
be expressed in terms of m * and the spin-antisymmetric
Landau interaction function f, of Eq. (20) by performing
the quadrature via a contour integration along the cir-
cumference of the first and the third quadrants of the
complex frequency plane. We obtain

In order to attempt a realistic quantitative calculation
of the quasiparticles transport properties in a quasi-2D
EL a number of modifications of the standard homogene-
ous EL theory must be implemented. A complete discus-
sion of this problem can be found in Refs. 18 and 21. It
will suSce here to state that one must account for the
specific geometry of a metal-insulator-semiconductor sys-
tem, its various dielectric constants, the crystal axis
orientation, the corresponding subband structure with its
associated particular value for the electron band mass,
and the valley degeneracy. The actual numerical values
used in the present calculation are those appropriate to a
[100] silicon inversion layer and are given in the caption
of Fig. 1. The subb and structure also leads to a
modification of the bare Coulomb interaction which will
depend on the subband occupation.

In order to actually calculate m' and g* for various
electronic densities, appropriate expressions for the
many-body local fields G+(q, ro) must be employed. The
procedure we have used coincides with that described in
Ref. 21 and is based on a self-consistent determination of
G+, for which a static model expression is assumed. o

More specifically we take for G+ the following simple
form:

20—

=1+ J f (P)
g

* vr 0 2m'

m' &~ u((k —p()
(2n ) o Q+ (k —p, O)

2v„m m+ f dz I du u(q) G" (q, iro)
0 0

XF(q, i co)P+ (z, u ), (24)

io-

I

l.a
I

2.0
Fs

l

3.0

where

P+(z, u)= [(z —u —1) +(2zu) ]'i +(z —u —1)
[(z —u —1) +(2zu) ]

(2S)

and we have introduced the variables z=q/2pF, and
u =corn /qpF.

FIG. 1. Calculated values of the functions P+ and P
defined in Eq. (26), vs r, . The curves labeled P (1) and P (2)
correspond to the theories in Refs. 21 and this paper, respective-
ly. The following values have been used for the parameters in
our calculations: 0.19 for the band-mass ratio, 2 for the valley
degeneracy, 3.8 and 11.8, respectively, for the oxide and semi-
conductor dielectric constants, 5330 A for the thickness of the

0
oxide layer, and 32.5 A for the average electronic distance from
the oxide-semiconductor interface. For comparison r, =2 cor-
responds to a density of 1.7 X 10' cm
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L[(q +p~)' ] G+(0D)q
G+(q)=

L(q) [q +[}33 G' ( )p ] ]'~

(26)

where the form factor L(q) is given in Refs. 18 and 21
and accounts for the modification of the bare Coulomb
interaction in the inversion layer. Furthermore, in the
above expression G+(co) are the values of the valley
many-body local fields for large values of q and ~ and are
determined by the value at the origin of the static pair
correlation function g (0). ' The corresponding exact ex-
pressions are given by

l.2—

G+ ( cc }= [1+(v, ' —2)g(0)] (27)
G S G (I)

and

G" (~)=v, 'g(0) . (28) O.O
I

2.0
I

3.0
I

4.0 xlo cm

Finally, p+ are suitable functions of the electronic density
which ensure the correct limiting behavior of G+ for
small q and co =0.

At this point the calculation proceeds as follows. First
the values of both P+ and g(0) are determined as a func-
tion of the density from existing calculations of the total
energy of a 2D EL. In particular we have extracted these
functions from the results of Jonson whose work was
based on the popular theory of Singwi et a/. ' Then, the
effective mass m* can be determined as a function of the
density from Eqs. (13), (23), and (26) since, in the present
formulation, the only unknown quantity P does not
enter its expression. Once m* is known we use a trial
value for P and calculate a preliminary value for g"
from Eqs. (24) and (25) at each density. At this point by
means of the relationship

00)
(29)

+S m g

involving g *, m *, the free-electron Pauli spin susceptibil-
ity yz, and the static long-wavelength spin susceptibility,
we deduce a new function P by making use of Eqs. (26)
and (10}. These new values for P are then used as input
for a new iteration of the whole procedure. The calcula-
tion is terminated when self-consistency is finally
achieved for the values of P (or equivalently g') at each
density. As a consequence the present calculation is free
of arbitrary parameters.

In Fig. 1, we present the self-consistent values of P+ as
a function of the density parameter r, (the average elec-
tronic distance expressed in effective Bohr radii). In this
figure, as well as in the remaining ones, the curves labeled
(1}correspond to the results of our full theory of Ref. 21,
while the curves labeled (2) are the results of the present
theory.

In Fig. 2 we display our results for the quasiparticle
effective mass m* as a function of the areal density n.
There the empty circles are the experimental data from
Ref. 6. The dashed line corresponds to the RPA calcula-
tion where G+ and G are arbitrarily set to zero.

Finally, in Fig 3 we have plotted our results for the
enhanced Lande factor g*. There, along with the results

FIG. 2. Plot of the ratio m /m vs the electronic areal densi-

ty n. The values of the parameters are the same as in Fig. 1.
The solid curves labeled G+ & G (1) and G+ & G (2) corre-
spond to our full theory of Ref. 21 and this paper, respectively.
The dashed line corresponds to the RPA calculation, i.e.,
Gy =0. The circles are the experimental data taken from Ref.
6.

l.7

l.5—

1.2—
RPA

l.o—

0.9
O.O l.O 2.0 3.0 4.O 5.0 6.0 }t lO c~

FIG. 3. Plot of g*/g vs the electronic areal density n. The
values of the parameters are the same as in Fig. 1. The solid
curves labeled G+ & G (1) and G+ & G (2) correspond to
our full theory of Ref. 21 and this paper, respectively. The
curve labeled TLQ is the prediction of Ref. 16 which is ap-
propriate for a 2D EL. The dashed line corresponds to the
RPA calculation, i.e., G+ =0. The full circles are the original
data from Ref. 8, while the dashed curve labeled SK corre-
sponds to the same data after the rescaling by Suzuki and
Kawamoto (Ref. 32).
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of the new theory and that of Ref. 21 we have presented
the RPA curve as well as the theoretical prediction of
TLQ for a 2D EL that we have actually numerically
reproduced on our own. For comparison we have also
displayed the original data from Ref. 8 as well as their
rescaled version according to Suzuki and Kawamoto
from Ref. 32. Although our calculation is for a quasi-2D
EL, the improvement of the present theory [curve G+
and 6 (2)] over that of TLQ is quite obvious.

IV. DISCUSSION AND CONCLUSIONS

We have developed a microscopic approach to the
Landau theory of Fermi liquids based on the integration-
over-the-coupling-constant algorithm and a generaliza-
tion of the Hubbard theory of many-body local fields.
The method is the same as that previously employed by
Rice' and TLQ. ' Our contribution consists in account-
ing on equal footing for both parallel and antiparallel
spin correlations. The latter were neglected in previous
theories.

Our main results are represented by the explicit formu-
las for the Landau quasiparticle interaction function ff'
provided in Eqs. (19) and (20). Of interest is also our re-
sult for the Lande factor g' which is proportional to the
Wilson ratio. An explicit expression for such a quantity
is provided in Eq. (24). At variance with previous work'6
our expression for f„the spin-antisymmetric component
of ff'~, does contain both 6+ and G as separate quan-
tities describing different physical processes. For the
sake of clarity we remind the reader that in a multivalley
EL these two quantities are related to the single-valley
spin-dependent many-body local fields as follows:

1 6 "t+ ( v„+v„—1)6 t ~ (30)

where in turn 6 ~ ~ =6„~~„„,+6,~~„„,. Here the subscripts
x and c refer to exchange and correlation effects, while in-
tra refers to intravalley processes. While 6+ is designed
to mimic the vertex corrections associated with charge
fluctuations, 6' accounts for spin-fluctuations-induced
vertex corrections.

The Hubbard approximation' used by Rice and TLQ
corresponds to the case in which only the processes asso-
ciated with G ~~ are kept, since Hubbard's original idea
was to account for exchange effects. Clearly in this case
we have G+ =6" =G t t/v„. Under this (in general in-
correct) assumption our results (once they are expressed
for the case of a 2D EL) reduce to that of TLQ. In this
sense some contributions from spin fluctuations are in a
crude way included in the TLQ theory. On the other
hand, the results of the analysis presented in Sec. III of
the present paper clearly display in vivid fashion the irn-
portance of the proper and concomitant inciusion of the
contributions stemming from both 6+ and 6" . From a
quantitative viewpoint, in particular, the formulation of
TLQ suffers from the problem that, in general, even
within a static model 6+ is larger than 6" . A direct in-
spection of the expression for g, given by Eq. (24),
shows that assuming for these two quantities the same
value, leads to an overestimation of the higher-order

dynamical correlation contributions with respect to the
screened exchange term. This problem is compounded
by the fact that these terms have opposite sign. The re-
sult is a sizable underestimation of the renormalization
effect which can be seen to get worse as the electronic
density decreases.

A number of technical remarks concerning the present
approach are here in order. In implementing the type of
microscopic approach to the Landau theory employed in
this work, it is crucial to be able to keep track separately
of the occupation numbers of quasiparticles with opposite
spin projections. The problem with Rice's theory' stems
from not having properly recognized this point. In our
opinion the shortcomings of his analysis originate from
this oversight rather than being inherent to his method as
a whole, as suggested in Ref. 34. In the present formula-
tion the proper treatment is ensured by the use of the ex-
pression for the charge response of the EL in an

infinitesimally polarized state. From a formal viewpoint
the results of Ref. 10 correspond to the arbitrary choice
of 6" =0.

Another interesting point to be noted is that, in the re-
gime of interest, the functional derivative and the integra-
tion over the coupling constant can be freely taken in any
order. This is consistent with the assumption of validity
of the Landau quasiparticle concept.

We discuss next the limitations of the present forrnula-
tion of the EL theory based on the integration-over-the-
coupling-constant algorithm. The main shortcoming of
the approach is the fact that the local field 6" only ap-
pears in f, . Also puzzling is the fact that the quasiparti-
cle energy given in Eq. (13) only contains 6+ and, there-
fore, leaves out most of the contributions associated with
spin fluctuations. That such contributions should appear
in the quasiparticle energy is not only expected on gen-
eral grounds, but has also been recently established by a
number of different theoretical approaches to the theory
of EL. ' ' In this respect a more physically sound
theory of the quasiparticle properties in an EL has been
presented in Ref. 21. There, expressions for the Landau
quasiparticle interaction functions and the Lande factor
g' have been derived. For comparison the numerical re-
sults of such a more complete theory applied to the case
of an inversion layer of the type studied in Sec. III have
been provided in Figs. 1 —3.

We think that problems in the present formulation of
the EL theory based on the integration-over-the-
coupling-constant algorithm are likely to originate from a
number of uncontrolled approximations which are cus-
tomarily made in the present context with no proper
justification. As mentioned in Sec. II the main approxi-
mations used are the following: (1) In taking the func-
tional derivative of E;„,(A, ) [Eq. (4)] the functional depen-
dence of the many-body local fields G + on (separately) n&~

and npL was neglected. (2) In pe~ormlng the integration
over the coupling constant A, in Eq. (3) the dependence on
A, contained in 6+, yo, and g was also neglected. It is
our opinion that the first of these two approximations is
the most suspect. Accordingly, we believe that meaning-
ful progress from the present status of the integration-
over-the-coupling-constant algorithm can be achieved
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through a systematic study of the many-body local 6elds
in a polarized electron liquid.

Finally, we conclude by noting that a meaningful com-
parison between alternative many-body theories was
achieved here only by studying the behavior of the Wil-
son ratio g'lg. As it turns out a similar analysis focused
on the many-body enhancement of the effective mass
m*/m is less effective since, for the EL, this quantity

displays, in general, a similar and rather uninspiring den-

sity dependence within virtually any reasonable approxi-
mation.

ACKNOWLEDGMENTS

The authors would like to thank G. Vignale for useful

discussions. This work was partially supported by DOE
Grant No. DE-FG02-90ER45427 through MISCON.

Present address: NTT Basic Research Labs, Musashino-shi,
Tokyo 180.

'L. D. Landau, Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys.
JETP 3, 920 (1957)].

~V. P. Silin, Zh. Eksp. Teor. Fiz. 33, 495 (1957) [Sov. Phys.
JETP 6, 387 (1957)]; 33, 1282 (1957) [6, 985 (1957)]; 34, 707
(1958) [7, 486 (1958)].

P. Nozieres and J. M. Luttinger, Phys. Rev. 127, 1423 (1962)~

4J. M. Luttinger and P. Nozieres, Phys. Rev. 127, 1423 {1962);
127, 1431 (1962).

5J. M. Luttinger, Phys. Rev. 119, 1153 (1960); 121, 942 (1961).
J. L. Smith and P. J. Stiles, Phys. Rev. Lett. 29, 102 (1972).

7G. Abstreiter, J. P. Kotthaus, J. F. Koch, and G. Dorda, Phys.
Rev. B 14, 2480 (1976).

8F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823 (1968).
T. Neugebauer, K. von Klitzing, G. Landwehr, and G. Dorda,

Solid State Commun. 17, 295 (1975).
' T. M. Rice, Ann. Phys. (City) 31, 100 (1965).
'J. Hubbard, Proc. R. Soc. London, Ser. A 240, 539 (1957).

' J. Hubbard, Proc. R. Soc. London, Ser. A 243, 336 (1957).
M. Gell-Man and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

~~D. Pines and P. Nozieres, The Theory of Quantum Liquids
(Benjamin, New York, 1966), p. 296.

' As it turns out Rice tried to correct his derived formula for

ff'~' by postulating an ad hoc modification without formal
justification. His final expression, however, still differs from
the one given in Ref. 16 or can be surmised from our Eqs. (19)
and (20) once one arbitrarily sets G" =G+ =G/v, .

'6C. S. Ting, T. K. Lee, and J.J. Quinn, Phys. Rev. Lett. 34, 870
(1975); there is no mention in this paper of the fact that the
result for the Landau interaction function substantially differs
from that of Ref. 10 where the very same procedure was car-
ried out.

' The reader is referred to our Fig. 3 as well as to Fig. 2 of Ref.
16.

~sT. K. Lee, C. S. Ting, and J. J. Quinn, Solid State Commun.

16, 1309 (1975).

S. Yarlagadda and G. F. Giuliani, Phys. Rev. B 38, 10966
(1988);Solid State Commun. 69, 677 (1989);Surf. Sci. 229, 410
(1990).
S. Yarlagadda and G. F. Giuliani, Phys. Rev. B 49, 7887
(1994)~

'S. Yarlagadda and G. F. Giuliani, Phys. Rev. 8 49, 14188
(1994).
T. K. Ng and K. S. Singwi, Phys. Rev. B 34, 7738 (1986); 34,
7743 {1986).
X. Zhu and A. W. Overhauser, Phys. Rev. B 33, 925 (1986).
These authors employ a single pole approximation which in

general is expected to provide only qualitative results.
This point was appreciated in Ref. 16 but not in Ref. 10.
For simplicity we have assumed here that the density Auctua-

tions are equal in all the occupied valleys.
G. Niklasson, Phys. Rev. B 10, 3052 (1974).
A discussion of the many-body local fields for a multivalley

system can be found in Ref. 20.
Although in principle these two definitions are equivalent it is
not obvious a priori that they in fact lead to the same result
for m within a necessarily approximate treatment. This
problem needs further investigation.
G. E. Santoro and G. F. Giuliani, Phys. Rev. B 37, 4813
(1988).

OFor the details of this procedure the reader is referred to Ref.
21.

'M. Jonson, J. Phys. C 9, 3055 (1976).
K. Suzuki and Y. Kawamoto, J. Phys. Soc. Jpn. 35, 1456
(1973).
For the homogeneous EL case the reader is referred to C. A.
Kukkonen and A. %. Overhauser, Phys. Rev. 8 20, 550
(1979); the generalization of this theory to the multivalley

case (more specifically widely separated valleys) is provided as
an appendix in Ref. 20.
H. Yasuhara, Y. Ousaka, and H. Suehiro, J. Phys. C 20, 2511
(1987).
G. Vignale and K. S. Singwi, Phys. Rev. B 32, 2156 (1985).
K. S. Singwi, Phys. Scr. 32, 397 (1985).


