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Asymptotic analytic solution for Rabi oscillations in a system
of weakly excited excitons
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An asymptotic solution for light-induced exciton density oscillations in a semiconductor is cal-
culated &om the semiconductor Bloch equations in the low density limit (weak optical excitation).
The analytic approximation is compared with a numerical solution of the full equations. It is shown
that even for low area fields (« 2s') density oscillations are caused by Coulomb exchange eRects
coupling the generated excitons and that the oscillation frequency and amplitude depend nonlinearly
on the Rabi frequency of the incident Seld.

It is well known that coherent pnmping of atomic sys-
tems with an optical field Ee ' ' (carrier frequency ur)

yields temporal oscillations in the electron density (Rabi
oscillations) if the exciting optical pulses E exceed a cer-
tain area. The area 0 of a square pulse is defined by the
product of the pulse duration tr, and Rabi frequency 0
of the light field:

Ed
O=OtL, , 0=

where d is the dipole moment of the optical transition.
Aa aaalytic solutioa for the electron density n of the
corresponding atomic (two level) Bloch equations for the
case of resonant excitation is given by

. , t'Oti
n = sin (2)

From this equation it can be seen that a pulse area
larger than 2m yields Rabi oscillations in the temporal
development of the electron density. A similar type of
such oscillations is observed if a semiconductor is reso-
nantly excited at the exciton resoaance. 2' Even if the
exciton resonance shows a two-level-like behavior ia the
linear spectrum, there is a main difference concerning
the physical interactions of optically excited atomic sys-
tems aad semiconductor materials: the optically gener-
ated excitons ia a semicoaductor may interact with each
other by Coulomb exchange forces. This is not possi-
ble for the electrons in atomic systems well separated
&om each other. This additional interaction of the gen-
erated excitons due to exchange interaction in the semi-
conductor yields additional effects in the light-matter
interaction. 2 4 Therefore the semiconductor has to be
described by a type of Bloch equations difFerent from
atomic systems. The coherent part of the semicoaductor
Bloch equations (SBE) contains, in comparison to the
atomic Bloch equations, an efFective source term and the
so-called band gap renormalization. These terms make
an analytical treatment of the time dependeat SBE very

difficult and numerical methods have to be applied to cal-
culate Rabi oscillations. Analytic solutions for the SBE
exist for stationary situations and nonstationary situa-
tions with vanishing exchange contributions (for a review
see Ref. 4) or for times after the optical excitation. s The
numerical solutionss for the nonstationary case includ-

ing exchange effects show significant differences between
the semiconductor and atomic Rabi oscillations. In the
atomic case Rabi oscillations are harmonic oscillations
and the oscillation frequency for resonant excitation is

determined by the value of the Rabi-frequency 0 exclu-
sively; compare Eq. (2). In contrast to this, for resonant
excitation of the exciton level of a semiconductor a sec-
ond fundamental frequency comes into play: the exciton
binding &equeacy u,„,which determines the strength of
the exchange effects.

In this paper we derive an asymptotic analytic solution
for Rabi oscillations of an exchange coupled system of ex-
citons at low density. In our approximation scheme we

take into account only the 18 exciton and neglect the con-
tinuum states as well as higher excitons. It will tura out
that the low density limit is connected to the situation
where the Rabi frequency of the light 0 Eq. (1) is much
smaller than the exciton binding frequency ur, „,. After
the derivation of the time dependent low density solution
from the semiconductor Bloch equations we compare the
obtained analytic results with numerical solutions of the
full semiconductor Bloch equations to clarify the influ-

ence of higher exciton and continuum states.
Instead of writing down the full SBE (Ref. 2) we only

present the Bloch equations for the leading exciton res-
onance as derived in Refs. 2 and 6. These equations
are a good approximation for low excitation phenomena,
which were already shown in the studies of the semicon-
ductor photon echo. In this context the interaction of
a semiconductor with light is described by an equation
for the dimensionless polarization function P of the 18
exciton only. The equation may be written in the form

BP .0 . 2 . 20
Ot 2 2

(3)
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Here Pq is proportional to the exciton binding frequency
u,„, (Ref. 7) and Pz is a dimensionless constant. For the
usual two-band models's one obtains Pq/u, „,= 26/3 and
P2 ——7. The total polarization is obtained by multiplying
the polarization function with the Sommerfeld-factor of
2/ (zaos), where aa is the excitonic Bohr radius and the
factor of 2 counts for the spin summation. Note that in
the wave number representation of the SBE, which in-
cludes in contrast to Eq. (3) high density efFects, the
validity of Eq. (3) is restricted to a small modulus of the
polarization PI, of a one-particle state with wave number
k: ~PI,

~
&& l. ' ' In our approximation the dimension-

less polarization function P for the 1s exciton is con-
nected to PI, by the following expression:

1s
k

mao

for the exciton density n:

f 2i * 1 —cn(3sx, k) Pi
V 3+ 1+ (~3 —1)cn(3-x, k)

1 ) 7

The cn-functions are the Jacobian functions with modu-
lus k = sin(z/12). s The cn-function is a periodic func-
tion and can be written in terms of trigonometric func-
tions for small k2 = 0.067:

cn(z, k) = cos(x) + O(k ).

Hence the expression for n takes the final form

Hence we neglect the exciton-photon interaction in the
asymptotic limit of a small ratio of Rabi frequency and
exciton binding frequency. From Eq. (3) we find a set of
equations for the real and imaginary parts of the polar-
ization P = u + iv and for the quantity n = ]P[, which
is proportional to the total electron-hole density:

Otc Bv 0 an
Bt '

Ot 2
' Bt

= pqnv, —= ——pqnu, = Ov. (6)

By inserting Eq. (6c) in Eq. (6a) and by differentiating
Eq. (6c) we derive, under the assumption that 0 is given
by a square pulse, an equation of motion for n, which is
equivalent to a quartic oscillator model:

where gs~' is the wave function of the first exciton in k-
space.

The polarization function P in Eq. (3) is driven by the
optical field 0, the exciton-exciton interaction (Coulomb
exchange contributions) is described by the second term
and the exciton-photon interaction (state filling) yields
the third term in Eq. (3). The exciton-photon interac-
tion is small compared to the exciton-exciton interaction
in the limit of a small ratio of Rabi &equency and exciton
binding &equency. The consistency of this assumption
is shown later by inserting the calculated solution Eq.
(11) into Eq. (3). However a rough estimate of the po-
larization amplitude may be obtained by the stationary
solution of Eq. (3):
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S
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We obtain the p parameter range for the validity of Eq.
(ll) from ~PI, ~' && 1:

» 2(64) 2 10 .

With this expression for n a rather simple approximation
for the total electron-hole density 2n/vrao of the full SBE
for the low density limit is found, which takes only the
1s exciton state into account. Note that our procedure
does not imply a perturbation theory in time; a solution
valid for arbitrary times is derived.

To clarify the validity of our approach for the full
SBE and to investigate the influence of the neglected
higher exciton and continuum states we have solved the
coherent part of the SBE (Ref. 2) numerically for dif-
ferent parameters p. The values of the parameter p
for which Eq. (11) yields a good approximation to the
full numerical solutions of the SBE is determined by the
condition ~Pg~ && 1 [as mentioned following Eq. (3)
(Ref. 10)]. Using the wave function of the ls exciton
Qs~' ——8/truss/[(kao)2 + 1]2 we estimate the maximum
value of [Ps~ from Eqs. (4) and (11) as follows:

2 ( Ozj (7)

(8)

Equation (8) can be integrated and yields an expression

Integrating this equation in the usual way and writ-
ing n = (20/Pq) n we obtain a first order difFeren-
tial equation for n in the dimensionless time variable
X = Ot(Pg/20) s:

Therefore from p = 104 to higher values a reasonable
agreement of the full numerical solution and the analytic
solution Eq. (11) is expected. The set of material param-
eters used in our numerical solution corresponds to bulk
CdSe (ur,„, = 0.0243 fs ). The numerical solutions for
different values of the parameter p = 0.5, 2, 104 (dashed
lines) of the full SBE for the density n as function of
the normalized time coordinate x and one oscillation pe-
riod of the analytical solution (solid line) are depicted in
Fig. 1. From a comparison one can find that as expected
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I I ~I I I I I I I From the scaling of the frequency it can be recognized
that the semiconductor Rabi oscillations like the atomic
Rabi oscillations depend on the Rabi frequency of the
light pulse but the oscillation frequency is renormalized
by a factor depending on p which in our approximation
is large compared to unity. This implies that complete
Rabi-flops may occur for pulses with areas much less than
27r.

Furthermore we can see from the scaling of the am-
plitude that the exciton-photon interaction is of minor
importance compared to the exciton-exciton interaction
in Eq. (3):

OO 2 3

NOBfALIZED TIME

5 (15)

FIG. 1. Numerical solution of the coherent part of the
SBE for the density n versus normalized time x for difFerent

p = 0.5, 2, 10 (dashed lines in order of decreasing amplitude)
in comparison with the analytic solution Eq. (10) (solid line).

the agreement of the analytic and the numerical solution
for increasing p becomes better. A slight difference in
the oscillation frequency is seen to arise for the largest

p = 10 value, which we attribute to the influence of the
neglected states which are taken fully into account by the
numerical solution but not by our analytical approach.
We conclude that the asymptotic solution is very useful
to investigate the limit p m 0 of the coherent part of
the full SBE, especially the amplitude and frequency of
the Rabi oscillations.

In the following we show a signiflcant difference of
semiconductor Rabi oscillations in comparison to atomic
ones: for large p the product of the time for one com-
plete Rabi-fiop and the field amplitude 0 (the area) can
be much smaller than 27t but Rabi-flopping is still ob-
served in contrast to atomic systems where an optical
pulse with an area smaller than 27t would not induce
a complete flop in the electron density. To illustrate
this we discuss one characteristic example for bulk CdSe
(Io,„,= 0.0243 fs ). For the p-parameter of p = 10s and
0 = 10 fs the period time of the Rabi oscillation is
about 10 fs yielding a pulse area of 0 —1 ( 2' which
produces one complete Rabi-flop. For larger values of p
the pulse area which induces on semiconductor Rabi-flop
can be much smaller than unity. This can be easily seen
by extracting the amplitude A and the frequency (d„~ of
the nonlinear density oscillations from Eq. (11):

(14)

1

(dIll 3
~

cxc
~

2 15 cxc

0 q 30 ) 0 (16)

For the situation investigated numerically in Refs. 3 and
10, the Rabi frequency of the light and the exciton bind-

ing frequency are approximately in the same order of
magnitude, i.e., 0 u,„„adoubling of the number of
Rabi-Bops occurs due to the factor of approximately 2 in
Eq. (16).

In conclusion we have obtained analytic results for res-
onant low density Rabi-Bopping in an exciton system for
arbitrary times. The Rabi oscillations are caused by light
pulses with areas much less than 2m. This is not possible
in atomic systems. The reason was shown to be the inter-
action of excitons due to the Coulomb exchange effects.
The temporal development of the observed Rabi oscil-
lations can be described very well by a simple analytic
formula which takes into account the exciton-exciton in-

teraction.

The authors acknowledge CPU time at the HLRZ,
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We confirm the approximation made after Eq. (3), that
in the limit p m 0 the exciton-photon interaction may
be neglected. For p ~ 0, the nonlinear density oscilla-
tions of Eq. (11) are a unique signature of the coherent
exciton-exciton interaction.

It is interesting to note that already for p = 2 the
analytical solution yields a good approximation for the
value of the nonlinear frequency (Fig. 1). For this reason
the well known doubling of the Rabi-flop number com-
pared to the atomic case known for 2x and 3' pulses
as observed in Refs. 3 and 10 for resonant excitation of
the 1s exciton may be explained by Eq. (14). For this
purpose the ratio of the nonlinear frequency ~„j and the
Rabi-frequency 0 of the light 6eld which determines the
oscillation frequency in the atomic case is calculated:
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