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Correlated state of double layers of electron fluids
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When the interlayer separation is not large, the ground state of a double layer of two-dimensional elec-
tron fluids in a large magnetic field is determined by correlations arising from the interlayer Coulomb
repulsion. We suggest that, as a consequence, the independent translational invariance of the electrons
in each layer is lost, independent of the filling fraction of the Landau levels. The gap measured recently
in tunneling across the bilayer is explained and experiments are proposed to test our description.

With a device fabricated from GaAs-Ga,_,Al As
heterojunctions, Eisenstein, Pfeiffer, and West! have re-
cently measured the tunneling conductance across a bi-
layer of ultrapure two-dimensional fluids in large perpen-
dicular magnetic fields. At very low temperatures, they
find a well-defined gap A in the conductance as a function
of bias voltage. The gap depends only weakly on the
magnetic field and there is a zero-bias conductance which
as a function of temperature is exponentially activated
with a characteristic energy scale of the order of A. The
in-plane conductivity is similar to that found in single-
layer devices. This behavior of the tunneling conduc-
tance is not associated with the quantized Hall effect, al-
though weak features are seen in A at those values of
magnetic field where the quantized Hall effect is prom-
inent.

We propose that the presence of a well-defined gap in
the tunneling conductance is a reflection of the existence
of a correlated electron state across the bilayer in a situa-
tion in which the interlayer Coulomb interaction is im-
portant while quantum-mechanical tunneling is negligi-
ble. This state breaks the independent translational in-
variance of the electrons in each layer in order to take ad-
vantage of electron-electron interactions across the bi-
layer. In a simple calculation, the correlated state occurs
when the bilyaer separation is large enough that the tun-
neling matrix element is less than the intralayer Coulomb
energy. This condition is ¢, <<e?/kr,, where «k is the
dielectric constant, r, is the interelectron separation
within each layer, and ¢, is the tunneling rate between the
layers. Under these circumstances, each layer is a “Mott
insulator” with respect to delocalization between the lay-
ers.

In the experimental setup,’ the interlayer separation d
is of the order of the intralayer particle separation 7, and
the filling factors are not near specific fractions. Under
these circumstances, we believe it is essential to include
the interlayer Coulomb correlations on the same footing
as the intralayer ones. Approaches which depend only
on single-layer correlations! ® may be relevant when the
interlayer spacing is large enough or when the system is
near a specific fractional filling, as in the discussion of
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Ref. 2. We also distinguish the experimental parameters
from the case in which the interlayer spacing is very
small, so that there is substantial interlayer overlap and
the proper electron states are the symmetric and antisym-
metric combinations from the two wells as in the experi-
ment of Boebinger and co-workers.’

At the experimental1 filling factors, Hartree-Fock cal-
culations for a single layer favor crystallization. For
vR 1, this state is destroyed by quantum fluctuations and
a fluid state is realized. When two layers are in proximi-
ty, the electron repulsion across the layers favors corre-
lated “molecular” charge distributions in which an excess
electron density in one layer is near a diminished density
in the other, so that each layer no longer has a transla-
tionally invariant electron distribution. The molecular
charge fluctuations lower the interlayer Coulomb correla-
tion energy at the expense of the intralayer energy.
When ¢, is small, this tendency is only opposed by the in-
tralayer repulsion but it is a substantial effect for d ~r.
With a Monte Carlo treatment of a lattice model (no
kinetic energy) for each of the two-dimensional (2D) elec-
tron layers, Efros and Pikus,? in work of which ours is in-
dependent, have computed a low-temperature low-bias
tunneling gap which they interpret as due to correlations
of the sort we discuss here.

In order to obtain a rough estimate of the regime in
which such a state might arise, we use a variational wave
function similar to the one employed® to describe a quan-
tum Hall liquid with both spin polarizations. It has also
been used! to discuss the correlations in bilayers when
v=Llorl.

For a variational wave function of the bilayer, we
write’

W =AY (YR (0, YR (i =), (D)

where the u; and v; are the (complex) coordinates of the
electrons in the left and right layers and A is the an-
tisymmetrization operator, which does not mix the elec-
trons in the separate layers. This approximation is ex-
pected to be valid as long as the tunneling is weak, as in
the case we discuss. Aside from their Gaussian envelopes
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exp[ —u?/41%], with I the magnetic length, ] =V'ch /eH,
the ¢y} are polynomials of order mN (N —1)/2 (the lay-
ers have equal density), and ¥} is a polynomial of order
nN? where N is the number of electrons in each layer.
At high magnetic fields we are justified in restricting ¥ to
contain only wave functions of the first Landau level; un-
der this circumstance, » is an integer (which we shall take
equal to 1 in order to have the most favorable case). The
interparticle separation r; in each layer may be found
from the highest power in the wave function of one of the
electron coordinates. For ¥, it is r,=IVm+n.
Then the filling factor for each layer is’ v=1/(m +n).

Since there is effectively no kinetic energy in the prob-
lem, the ground-state energy is given by

( 1I}L ¢LR VL l/jL lI}LR )
= +E, o= '

B R R =y bt
(Yr¥Lr, VR VR YLR)
(wR ¢'LR >¢R ll}LR )

(\ymmn, VLR \I/mmn )
(Y, o)

(2)

where the Vs are the Coulomb interactions. We discuss
these integrals as follows: In the expression for E,, we
may perform the integration over all the right coordi-
nates {v;}. This gives an expression of the form

E = [ (Ld%u)x, (uDVix, (u) 3)

where x? is a polynomial in the {u;] and we have as-
sumed all wave functions normalized. y? is given by

G u )= [ (d%)¢l, - 4)

It is easy to see that the highest power of any u; in the
polynomial x;({u;}) is N(m +n). Therefore the
effective interparticle spacing in the left-layer wave func-
tion y; ({u;}) is ry=IV'm +n. If the ground state were
translationally invariant in each layer, then we would ex-
pect E; and Ej to be functions of r; only, independent of
d.

The interlayer correlation energy is a competition be-
tween two effects. When two layers are in proximity with
no charge redistribution, E;x =0 as the electron repul-
sions are canceled by the stationary positive counter-
charges. However, a correlated molecular charge read-
justment will lead to an attractive contribution to the
electrostatic energy. Let x be a configurational coordi-
nate which measures the charge displacements. Then the
interlayer Coulomb interaction will lower the energy by
an amount depending on a combination which, schemati-
cally, has the form 1/ d2+(x +r,)?. For small x /d, this
gives a negative contribution to the energy which is linear
in x. Opposing this effect is the increase of intralayer
Coulomb energy due to the distortion, which is quadratic
in x since the undistorted state is at a minimum for the
intralayer energy. Therefore, the lowest energy will al-
ways be realized for a correlated distorted state. We
write

E  +Eg+E g=f(r,)—(e*/r)gd /r,) , (5)
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where g(d/r;) measures the correlation energy and
g(o0)=0.

Let us compare this situation with that of two uncorre-
lated layers with wave function

\1’02 (Lmo) (Rmo) ’ (6)
in which the two layers each have translationally invari-
ant charge distributions of density n,—1/(/ 2mo), that is,
particle separation r®=I[1/m,. Thus, "0’ is the
ground-state wave function of a single layer of density n,
in the applied magnetic field. This is just the density of
the positive background which is unchanged when inter-
layer correlations are introduced. Thus, the correlated
wave function with r,=IV'm +n must have the same
density no=1/[1*(m +n)] (to cancel the positive back-
ground) as the uncorrelated one, so that my=m +n.
Therefore, the energy for the uncorrelated state of Eq. (6)
is simply the f(r;) of Eq. (5). Assuming that E;,Ey are
smooth, we argue that the correction to the energy [the
second term in Eq. (5)] due the correlated charge redistri-
bution is negative and that therefore the correlated state
is always favored over the uncorrelated one. The argu-
ment fails near quantized Hall fractional fillings, where
the energy as a function of changes in the pair distribu-
tion function in each layer might have a cusp. Indeed, in
the actual experiments, deviations from a weak nomoton-
ic magnetic-field dependence are seen at fields corre-
sponding to filling fractions v=1, , and 3.

We have made a rough estimate of the interlayer corre-
lation energy by calculating the change in energy of crys-
talline layer by introducing a charge at a perpendicular
distance d from the center of a square plaquette of a 2D
crystal and allowing the plaquette to readjust its nearest-
neighbor separation, keeping the rest of the crystal fixed.
The result is shown in Fig. 1, where the correlation ener-
gy g(d /r,) (in units of e?/kr,) is plotted. This shows the
behavior of the correlation energy as a function of layer
spacing at fixed density.

It is clear that, with states like Eq. (2), the usual
method of calculating the tunneling current as a convolu-
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FIG. 1. Correlation energy in units of e?/kr, as a function of
interlayer separation in units of 7.
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tion of the spectral functions on the two sides is invalid.
We argue that the correlation energy leads to a gap in the
tunneling characteristic, as observed.! An electron tun-
neling between the layers contributes to the current at the
leads only if it is excited out of the correlated ground
state. This requires an energy of order of the correlation
energy (e?/kr,)g(d /r,), which will be the order of mag-
nitude of the gap A in the tunneling spectrum. In effect,
this gap expresses the stiffness of the distorted state with
broken translational invariance.

The observed tunneling gap is of order 2 meV com-
pared to an e2/xr; of 22 meV, thus a measured g (d /r,)
of order 0.1. Our calculation then gives d/r;~0.8. In
the actual experiment, theﬂ width of each layer is 200 A,
the barrier width is 175 A, and r; is 250 A. Thus the
effective d is somewhat larger than r;. On the other
hand, the layers are not strictly two dimensional at these
length scales, so that the intralayer Coulomb effects are
softer than those of our rough calculation of g(d /r;),
which is in any case an underestimate since further-
neighbor (Madelung) correlations are neglected.

The observed weak magnetic-field dependence of A
may be understood qualitatively by the observation that
an increase in magnetic field shrinks the electron orbitals,
which enhances the correlation energy. Therefore, we ex-
pect lzli slight increase of A with increasing magnetic
field.

The conductance of the bilayer for electric field parallel

to the layers should be normal, with a somewhat larger
effective mass due to the interlayer correlations. Recent-
ly, observations of the interlayer Coulomb interactions
have been reported for bilayers via the so-called
Coulomb-drag effect.!”!> These experiments, carried out
in weak or zero field, have been accounted for by inter-
layer Coulomb scattering in the 2D electron fluids;!* !
thus, they should have a characteristic T2 temperature
dependence. In a similar geometry, but at high magnetic
field, we can suggest an experiment to test the lack of in-
dependent translational invariance of the ground state we
have described: Apply the electric field along the plane
in only one of the two layers and measure the current in
both of the layers. They should be comparable in magni-
tude and have identical temperature dependence. A vari-
ant is to construct a bilayer where one layer has electron
carriers and the other has hole carriers, as in Ref. 13.
Then the currents in the two layers should be in opposite
directions'? for an applied electric field in only one layer.
This effect arises solely from the molecular interlayer
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FIG. 2. Correlation energy in units of e2/kd as a function of
interelectron separation r; in units of d.

Coulomb correlations and is distinct from that already
observed at low magnetic fields,'>!> where the drag is
temperature dependent. In our case, the leading effect is
temperature independent.

In our picture, the competition between intra- and in-
terlayer effects produces a consequence which may be ex-
perimentally accessible. For fixed interlayer spacing d
the correlation energy increases in magnitude for small
r,, has a maximum which in our very rough calculation is
in the neighborhood of r,~3d, and then decreases for
larger r,. Thus, we predict that the tunneling gap will in-
crease with density at high density but decrease with den-
sity at low density. The behavior is shown in Fig. 2,
where the correlation energy is plotted as a function of
r,/d. Complementary to Fig. 1, this shows the behavior
of the correlation energy (in units of e2/kd ) as a function
of r, (i.e., density) for fixed layer separation.

In conclusion, it is our view that the experimental re-
sults of Eisenstein, Pfeiffer, and West! depend strictly on
interlayer correlations and cannot be explained by
single-layer correlations. Tunneling into single layers
should reveal single-layer effects and so far there is no
single-layer evidence!! for a true gap as seen in Ref. 1.
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