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d-wave superconductor as a model of high-T, superconductors
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We study the bulk properties of d-wave superconductors relevant to high-T, copper oxides within

weak-coupling theory. The superfluid density, the tunneling conductance, and the frequency-dependent

electric conductivity appear to be quite consistent with some of the experimental data from single crys-

tals of YBa2Cu307 and Bi2Sr2CaCu08. We also predict strong anisotropy in the ultrasonic attenuation

when a sound wave is propagated within the a-b plane.

I. INTRODUCTION

Since the discovery of high-T, superconducting copper
oxides by Bednorz and Muller, ' tremendous efForts have
been invested to understand the mechanism and the na-
ture of high-T, superconductors. However, it appears
that we are still far from understanding the basic mecha-
nism involved in superconducting pairing. Recently a
possible d, & wave superconductor in YBazCu307 andx —y
other high-T, oxides has been considered rather serious-
ly. The d-wave model describes not only the almost
absence of the coherence peak in T, ' the nuclear-spin-
lattice relaxation rate but also the suppression of the su-
perconducting transition temperature when Cu in the
Cu02 plane is replaced by Zn, Ni, etc. ' More recently
the angle-resolved photoemission from the Br2Sr2CaCu08
(BSCCO} crystal by Shen et a/. ' indicates that the pho-
toemision spectra is consistent with d, , superconduc-x —y
tor. Therefore, it is gratifying if d, 2-wave supercon-x y
ductor follows from the two-dimensional Hubbard model
as recent Monte Carlo analysis suggests. '

The object of this paper is to study systematically the
bulk properties of the d-wave superconductors within the
weak-coupling mode1. ' In order to represent the layered
structure common to copper oxides, we take the Fermi
surface as a cylinder with axis parallel to the e axis. Then
the d ~ 2 superconducting order parameter is written asx y
b(k)=hf with f=cos(2$), where P is the angle the
quasiparticle momentum, which lies in the a-b-plane,
makes from the a axis. Perhaps we have to mention a
more recent angle-resolved photoemission data by Kelley

I

et al. ,
" which suggests a d-wave superconductor but

with different symmetry from above b,(k}. Indeed this
form of d-wave superconductor has been suggested' for
the superconductor in the Bechgaard salts and this type
of the order parameter has also an advantage in avoiding
the strong on-site Coulomb potential. For this alterna-
tive d-wave model, we have f=cos(ck3). The lines of
zeros in the superconducting energy gap for these two
models are shown in Figs. 1(a} and 1(b), respectively.
Following the BCS paper, ' we study both thermodynam-
ics and the transport properties of these two d-wave su-
perconductors. ' Indeed, the above two d-wave super-
conductors give identical thermodynamics, the density of
states, the superfluid density, and the frequency-
dependent electric conductivity are not easily distinguish-
able. In addition to the above-mentioned photoemission
spectra, the angle dependence of the ultrasonic attenua-
tion coefBcient can discriminate between these alternative
d-wave models.

II. GAP EQUATION AND THERMODYNAMICS

Within the weak-coupling model, the gap equation is
given by'

r( lfl') -' ~ lfl
Qco2 +g lf2l 2

with f=cos(2$) or cos(ck3) and ( ) means average over
the Fermi surface, A. is the dimensionless coupling con-
stant, co„ is the Matsubara frequency and the sum over
co„ is cutoff at co„=c,. It is more convenient to rewrite
Eq. (1) as

—ln =2(lfl) 'f dE(1+e~ ) 'X(lfl Re(E —i} lfl )
' )

b,(0) o

=—f dx(1+e~ ") 'IH(x —1)x [E(x ') E(x ')]+8(1—x—)[IC(x)—E(x)]],
7T 0

(2)

where E(k) and E(k) are the complete elliptic integrals.
Here P=T ' and the order parameter at T=O K is
given by

6(0)=—T,e' (3)
y

I

with

(.= —( lfl2) ~( lfl2lnl fl ) =ln2 —' —=(}.193 1472. . .

and y = 1.781 0. . . is the Euler constant. This gives

(4)
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FIG. 1. The lines of zeros in the superconducting energy gap

are shown for two types of d-wave superconductors (a)

f=cos(2$), (b) f=cos(ck, ).
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The gap equation (2) is solved numerically and
6( T)/b, (0) is shown in Fig. 2 as function of t = T/T, to-
gether with the one for the s-wave superconductor. ' Ex-
cept for a somewhat larger value of b,(0), 4(T)/4(0)
behaves quite similar to the s-wave one. From b,(T) the
thermodynamical critical field H, (T} and specific heat
are easily obtained. We show in Figs. 3 and 4, D(T) the
deviation from the parabolic law,

FIG. 3. The deviation from the parabolic law is shown for d-

wave( ) ands-wave(. . ) superconductors.

2.5

D ( T)=H, ( T) /H, (0)—[ I —
( T/T, ) ) (6)

and the specific heat as function of t and t, respectively.
In particular D ( T} is almost twice as large as the one for
the s-wave superconductor. We note that the order pa-
rameter deduced from the tunneling conductance of
BSCCO (Refs. 17 and 18), for example, gives much larger
5(0) [5(0)/Sacs(0) =2. 13].
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III. DENSITY OF STATES
AND TUNNELING CONDUCTANCE

The electron density of states is readily obtained from

FIG. 4. The specific heat is shown as function of T/T, for
d-wave ( ) and s-wave ( ) superconductors.
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FIG. 2. The superconducting order parameter 6( T) is shown

as function of the reduced temperature t = T/T, . Here
Ao=h(0) and the broken curve is for the s-wave superconduc-
tor.
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FIG. 5. The density of states is shown for d-wave (

s-wave ( ~ . - ~ ) superconductors.
) and
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E

—xK(x) for x ~ 1
7r

E—(x ') for x) 1,
. 7T

(7)

where x =E/b, and E (x) is the complete elliptic integral.
Equation (7) is evaluated numerically and shown in Fig.
5. The density of states has a logarithmic peak at E=h.
Also N(E) increases linearly with E for small E/h.
From Eq. (7) the tunneling conductance between super-
conductor and normal metal and between two supercon-
ductors is given by

G,„(eV) /G„„=e No dEN(E)If(E «)—f(E—)] = PNO—' dEN(e)sech ( —,'P E eV—
4

(8)

and

eV G =e 'N ~ dEN(E)N(E eV)tf—(E eV) f—(E J-G„eV G„„=e

1 BN(E)=No E —edE N(E eV—) —N(E)sech —PE + ttf (E eV) —f ( —)]
2 BE

respectively, where f(E)=(1+e~ ) '. These conduc-
tances are shown in Figs 6 and 7, respectively. At low
temperatures the tunneling conductance increases almost
quadratically with eV and have a peak at eV=25(T) and
then the normalized conductance drops almost to unity.
This behavior is qualitatively similar to the conductance
observed in Bi2Sr2CaCu203 by the break-junction tech-
nique. ' ' However, a detailed comparison reveals a few
significant differences. First, the temperature depen-
dence of the order parameter which is identified by the
peak position of the conduction is quite different. The or-
der parameter deduced from the observed conductance
depends much weakly on the temperature. Further the
observed peak value of the conductance is much larger
(almost by a factor of 2) then predicted theoretically. Fi-
nally there is a small dip just outside of the peak, which is
not in the theory. These features appear to indicate the
necessity of the strong-coupling theory.

IV. SUPERFLUID DENSITY
AND ELECTRIC CONDUCTIVITY

It is easily seen that the temperature dependence of the
superfluid density is completely isotropic and the same
for the two d-wave models we are considering, though
the superfluid density itself is anisotropic. So we have

p, (T)/p= g ~ 6 (f(~)u~)n ~n+

=1——b, f dx sech ( —,'Pb, x )
7T 0

X [8(x —1)E(x ')

+e(1—x)xK(x)] .

(10)

The superfluid density is evaluated numerically and
shown in Fig. 8. In particular ps( T)/p decreases linearly
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FIG. 6. The tunneling conductance between normal and su-
perconducting are shown for T/T, =0.06 ( ), 0.5
( ———), 0.7 ( —- —- —.), and 0.861 (- ~ ~ ~ ).

FIG. 7. The tunneling conductance between two supercon-
ductors are shown for T/T, =0.06 ( ), 0.5 ( ———), 0.7
( —- —- —), and 0.86 (- - ~ ~ ).
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CO8

2A
8(co—2b, ) J ) +8(2b, —co ) dk 4( kdk4 k

0
) (12)

where

For TWO K we

(k)]I(1+0) —
(

, we have to use a morewe ore general expression

4(k) =(1+k) [E(k—)
—(1—k)K co/2h) (1—k )] (13)

o(co)/crz= J dc@'
~'(~'+ ~)+~'lf l'

co' —b
lf l

)[(co'+co )
—b,

lf l ] j
' i """

2

~—~lfl CO CO CO
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FIG. 10. The reduced thermal conductivity is shown as func-
tion of T/T, .

FIG. 11. Two coeScients describing the ultrasonic attenua-
tion coeScient a(T) ( ) and b(T) ( ~ ~ ~ ) are shown as
function of T/T, .

which is shown in Fig. 10 as function of the reduced
temperature. If the thermal conductivity is due to irnpur-
ity scattering at low temperatures, this will give a'(t) ~ T
at low temperatures. So far we described transport
coefficients, which cannot discriminate the two d-wave
superconductors. Here let us consider the ultrasonic at-
tenuation coefficient.

(a} q~~c when the propagation vector is parallel to the c
axis. The temperature dependence of the attenuation
coefficient is independent of the direction of the polariza-
tion vector for the d» state and given byZ

(1+e~ ") '=a(T),4 & dx
0 +1—x

(16)

while for f=cos(ck3}, the temperature dependence is
different depending on the transverse and the longitudi-
nal wave.

(b) qJ.c when the propagation vector lies in the a-b
plane. Further when the polarization vector lies in the
a-b plane with an angle 8 from the a axis, the attenuation
coefficients for the d ~ ~ state are given as

Z

a (8)/a~ =a ( T)—cos(48)b( T)

and

(17)

a (8) /aN =a ( T) +cos(48)b ( T)

for the longitudinal and the transverse wave, respectively,
where a( T) has been already defined in Eq. (16) and

a(T)/a„= —f dE sech E(8(E —h~ f ~ ))—
2 0 2

1 —2xb(T)= —f dx (1+ ~~")
'(/1 —x

(19)

VI. CONCLUDING REMARKS

We have studied two types of d-wave superconductors,
which are thought relevant to high-T, copper oxides. We
find that both thermodynamic properties and most of
transport coefficients cannot discriminate between these
two candidates. Therefore at the present moment the
angle-resolved photoemission experiment has a clear ad-
vantage in discriminating these two states. Perhaps also
the anisotropy in the nmr relaxation time may discrim-
inate these two states, but we do not want to enter into
this question at this moment.
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The temperature dependence of a( T) and b( T) are shown
in Fig. 11. Since a ( T) =b( T) at —low temperatures
( T ~ 0.2T, ), the ultrasonic attenuation coefficients are
strongly anisotropic at low temperature. For the trans-
verse wave with e (the polarization vector) ~~c, the at-
tenuation coefficient is again Eq. (16).
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