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Many-body theory for charge transfer in atom-surface collisions
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A theory for the effect of a strong intra-atomic Coulomb repulsion U on the nonadiabatic transfer
of charge between a metallic surface and a moving atomic species is presented. Using slave bosons
and a nonequilibrium Green s-function technique, we solve the equations appropriate for the U = oo

problem in the case when either the atom-surface hopping matrix element is small, or the number of
degenerate atomic states is large. We generalize the earlier treatment of Langreth and Nordlander

(LN) to include off-diagonal self-energies and present a general numerical scheme for the exact
solution of the Dyson equations. We verify that our scheme gives the correct answer in several

limiting cases where an exact solution is known, and give quantitative predictions of when deviations
from these limits become important. These limits include (1) the simple master equation limit for

low velocities and weak coupling, (2) the generalized master equation of LN for larger velocities

and atom-surface coupling, (3) the approach to thermal equilibrium when the time dependence is

removed, and (4) the maintenance of local thermal equilibrium when the energy parameters vary

sufFiciently slowly. From a calculation of the instantaneous (nonequilibrium) spectral function of the
level on the scattering atom, we are able to study the rate of formation of the Kondo and mixed

valent resonances near the Fermi level. We find a slow formation rate for such resonances relative

to that of the broader parts of the spectral density centered near the bare atom level positions.

I. INTRODUCTION

Charge-transfer phenomena have been observed in
many low energy ion-scattering experiments. Several
experiments ' have shown that intra-atomic Coulomb
correlation has signi6cant effects on charge transfer. The-
oretically, the dynamical interaction between atoms and
surfaces is normally described using the time-dependent
Anderson model. However, most of the theoretical
work on charge transfer processes has neglected the
effect of intra-atomic Coulomb correlation. Some
attempts to account for it have been made, but a
general and consistent treatment for the problems where
multiple tunneling channels can coexist has been lack-
ing.

Recent theoretical calculations have shown that several
different atomic states can participate in the charge ex-
change process between the atom and the surface.
The 6nal charge state of the atoms can therefore be
strongly affected by intra-atomic Coulomb correlation.
The conventional spinless theory is inadequate in this
situation.

Langreth and Nordlander2o (LN) extended the slave
boson technique of Coleman to the nonequilibrium sit-
uation and used it to investigate the e8'ect of large intra-
atomic Coulomb correlation on charge transfer dynam-
ics. The nonequilibrium version was based on a Green's
function method developed by Kadanoff and Baym and
Keldysh. A set of coupled time dependent Dyson equa-
tions for the Green's functions associated with the atomic

levels and the slave-boson state were derived. An ap-
proximate solution was obtained using what was called
the semiclassical approximation (SCA).2o In the SCA,
the set of Dyson equations reduces to a set of coupled
ordinary differential equations for the atomic state pop-
ulations, thus making the solution easy to obtain. These
simple master equations (SME) could be understood us-

ing a golden rule type of argument, so that a very trans-
parent view of the physics emerged. In the limit where

the SCA is valid, the calculations of LN based on the SCA
showed that intra-atomic correlation between the various

pairs of tunneling channels could block the charge trans-
fer.

Unfortunately the SCA is valid only in a limited regime
in parameter space. A number of interesting problems,
therefore, cannot be treated using the SCA. One such ex-

ample is He+ scattering off a Pb surface. ' ' ' ' The ki-
netic energy of the helium ion in these experiments ranges
from 0.4 keV to 2.5 keV, which is outside of the range of
validity of the SCA. LN derived more accurate equations,
which we call generalized master equations (GME), in
order to extend the range of validity of the simple mas-
ter equations. However, the range of validity of the GME
was not fully understood.

It is very important to be able to solve the Dyson
equations in a more controlled fashion. In this paper
we present a general numerical scheme for the exact so-
lution of the set of Dyson equations. In addition to the
instantaneous populations of the atomic states we also
calculate the instantaneous nonadiabatic spectral weight
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functions of the atomic states. The latter are important
for the understanding and prediction of charge transfer
dynamics when nonadiabaticity due to the Coulomb cor-
relations will be important.

In Sec. II we formulate the Anderson and slave-boson
Hamiltonians for the problem to be solved and write
down the self-energies which are now generalized to allow
off-diagonality in the atomic state index. We proceed to
discuss the instantaneous spectral decomposition for the
atomic states. In Sec. III we present an exact numeri-
cal scheme to solve the set of coupled Dyson equations.
In Sec. IV we present various model calculations for the
comparison with results of other theories, and approxi-
mations show that our solution describes a wide range
of phenomena, and gives sensible results in various limit-
ing cases. We give quantitative predictions for how close
to the limits one must be for the limiting forms to be
obtained. In particular, we show that thermal equilib-
rium is approached more slowly than might have been ex-
pected, because features near the Fermi level arising from
the strong intra-atomic correlations such as the Kondo or
mixed valence state2 ' take a longer time to form than
the larger scale features of the spectral density.

II. BASIC THEORY

When atoms scatter against metal surfaces, electrons
can tunnel back and forth between the atomic states and
the metal's conduction band. Here we treat the motion
of the atomic nuclei classically. In reality, the dynam-
ics of the charge transfer is in8uenced by several factors
including (i) the instantaneous energy levels of atomic
states relative to the Fermi level of the surface; (ii) the in-
stantaneous tunneling rate between an atomic state and
the conduction band of' the metal; (iii) nonadiabatic ef-
fect;s due to the 6nite response time of conduction elec-
trons; (iv) modifications of the classical trajectory when
a charge transfer event changes the forces on the atom
outside the surface; and (v) quantum effects on atomic
motion. Points (i) and (ii) are the properties of the adi-
abatic or local thermal equilibrium state, and have been
recently investigated by Nordlander and Tully. 2 This pa-
per is devoted entirely to point (iii). Some discussions
of points (iv) and (v) have been given in the literature.
The infIuence of the electronic processes on the trajec-
tory has been recently discussed by Head-Gordon and
Tully. The region of validity of the classical trajectory
approximations has been discussed by a number of au-
thors including Brenig, Nourtier, and more recently
Burke, Gumhalter, and Langreth.

A. Hamiltonian

We describe the interaction between the atomic
states and the metal's conduction electrons by a time-
dependent Anderson Hamiltonian, '

1

H(t) = ) sl (r(t) l~ n+ 2) Ufo I'cr'nlanl'a''
l, o.

+ ).sl n~ + ). &i ~(&)cI„. ct + H c
kyar lak

In this equation s'~ (t) denotes the instantaneous ener-
gies of the different atomic levels while ek represents the
energies (see Appendix A for a more complete discus-
sion of the meaning of e~ ) in the continuum of levels
in the substrate metal's conduction band. The sub-
scripts 0 denote spin for both the atomic states and the
conduction electrons, and l and k refer to the spatial
quantum numbers of the atom and the metal's conduc-
tion electrons, respectively. The components in t and
k referring to a common symmetry for both the atom
and metal are conserved. The first summation describes
the bare atomic states, and the second describes intra-
atomic correlation (the primed summation here excludes
the term in which both t = t' and 0 = 0'). The third
summation represents the surface conduction electrons,
and the fourth summation describes the tunneling be-
tween the atomic states and the surface conduction band
of the metal. The abbreviation H.c. denotes the Hermi-
tian conjugate. Equation (1) represents an extension of
the conventional Anderson model to the case where mul-

tiple atomic orbitals are included. Unless disallowed by
symmetry considerations, different atomic orbitals can
interact via tunneling to the substrate and back. This
results in ofI'-diagonal components of the impurity self-

energies and Green's functions, which will be discussed
in some detail later in this paper, thus generalizing the
equations of Ref. 20.

The importance of the intra-atomic Coulomb interac-
tion U has been discussed previously, and as was done
there, we assume that U is suKciently large that it can be
taken to be infinite, so that we can apply the slave-boson
method. ' Introducing a creation operator bt satisfying
boson commutation relations, we can write the bosonized
version of (1) as

II(t) =) st (t)nt +) syne
l~ k

+) V( s(t)cd btc) + H.c.
ink

(2)

In addition to the tot;al electron number, a conserved
"charge" Q~ of the above Hamiltoxiian is given by

QB = ) nlcr + nB~
la

where n~ = btb Since onl.y the Q& = 1 subspace of (2)
is physically relevant, we use the Langreth-Nordlander
method2 for accomplishing the projection onto this sub-

space.
To treat the nonequilibrium aspects we use the ap-

proach introduced by KadanofF and Baym, in a form
summarized by Langreth and used by Langreth and
Nordlander (LN).2o The procedure is to (i) develop an
approximation for the self energies, (ii) solve the time-

dependent Dyson equation [Eq. (2.9) in LN] for the ad-

vanced and retarded Green's functions G and G, and

(iii) solve the Kadano8'-Baym equations for G+ [Eqs.
(2.6) and (2.7) in LN] with the appropriate boundary
conditions, using the values of G and G obtained in

step (ii). The instantaneous probability n;(t) for Iinding
an electron in the atomic state ~i) is given by the diagonal
matrix element
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(4)

In this paper the ~i) is either the state ~lo) or the slave

boson state. Although we typically speak about the n s
as if they were "populations, " we should remember that
G is thermally averaged over all initial configurations of
the substrate electrons, so that more properly n, is an en-

semble average, which, because it is necessarily between
0 and 1 inclusive, can be interpreted as the probability
that there is an electron in state ~i).

ka

(a)

B. Self-energies

We make the same type of approximation for the self-
energies as LN. This is diagrammatically represented in
Fig. 1, and allows for the generalization to the possibility
for nondiagonality in l. As discussed in Appendix B, this
approximation is based on an expansion in 1/N, where
N is the effective degeneracy of the atomic level involved.
It also contains the leading terms in a perturbation series
in the size of the tunneling matrix element V.

We generally follow the notation of LN and use the
notation B for the slave boson functions (), (, A, or
B, that is "greater, " "less," advanced, or retarded, as
the case may be) and reserve G(p for the correspond-
ing atomic state functions and Ggj, for the substrate
electron functions. The self-energy term for the atomic
states shown in Fig. 1(a) takes the form

and the self-energy for the slave boson shown in Fig. 1(b)
takes the form

(6)

where K(&(, (t, t') is defined in terms of the Green's func-
tion for the conduction electrons and the tunneling ma-
trix elements as

(b)

FIG. 1. (a) Self-energy for the atomic state ~lo) and (b)
self-energy for the slave-boson state. The dashed line denotes
the Green's function for the slave-boson state, the wavy line
denotes the Green's function for the conduction electrons, and
the solid line denotes the Green's functions for an atomic state
which can be ofF-diagonal in the indices l and l'.

aspect of this projection is that we replaced the sub-
strate functions G&~&, (t, t') by their unperturbed forms

b(,s~ f & (sg) exp ( —icy(t —t')) in the expression (7) for
K&, where f&(e) is the Fermi functions4 f&(e) = (e('—
1), and f+(e) = 1 —f+(e). Corrections to this are
proportional either to B& or G(&(, and hence to (Q~) .
X& appears in the Dyson equations of the next section
in such a way that any correction to it of order (Q~)~
causes a correction of order (Q~) to the physical quan-
tities B or 0&&, . Therefore these corrections must be
neglected. We emphasize that this neglect, which turns
out to be an enormous simplification, is required, and
is not an additional approximation. This should not be
construed to imply that there is no correction to the sub-
strate electron functions themselves, and these do indeed
have a correction of order (Qn)~ which could be used,
for example, to calculate the energy transfer to the sub-
strate, an important subject which should be a matter
for a future investigation.

Finally it is useful to define

with V(~s(t) = V(~(, (t) exp(isn't). Similarly the advanced
and retarded self-energies are given by The quantity

(1O)

II ' (t, t') = ) K(&( (t', t)G„,' (t, t')

The above quantities have been projected onto the
Qgg = 1 subspace using the method of LN, accord-
ing to which one removes all terms of order (Q~) or
higher in the "less than" correlation functions. One

is a function familiar in the U = 0 problem, where to low-
est order (see Appendix A) it is the adiabatic tunneling
rate from an occupied state ~lo.) to an empty substrate
band. It is useful for setting an overall energy scale, as
well as for making contact with ab initio single-particle
calculations to determine the input parameters of our
model.

C. Dyson equations

With the above expressions for the self-energies, the Dyson equations for the atomic states and the slave-boson
state can be constructed. Dyson's equation for the advanced or retarded Green's functions [Eq. (2.9) of LN] related
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to atomic states ~la) and ~l'cr) now takes the form

OO

i——si (t) Gii, (t, t') = $( ( b(h —t') + ) dtK, ,„(t,t)B (t, tgGi„, , (t, t'),

ipse

OO

while the Dyson equation for the slave-boson propagator takes the form

i—B"(t,t') = b(t —t')+) dtK(i (t, t)GPi,.(t, tgB"(t, t'),
ll'cr

where Ki(i, are defined in Eq. (7). The advanced Green's function can be obtained directly &om the retarded Green's
function using Gii, (t, t') = (GP& (t', t))', where the asterisk denotes the complex conjugate.

The Dyson equations for the "less than" Green's functions [Eqs. (2.6) and (2.7) of IN] may be written explicitly
using (5) and (8) for the atomic states and (6) and (9) for the slave boson. The "less than" Green's function for the
states ~la) and ~l'o) satisfies

i——s| (t) G(~(, (t, t') = ) dt K((„(t,tgB (t, h)Gi(i, (t, t') + ) dt K(~(„(t,t)B (t, t)G(„(, (t, t'), (14)
If/ OO

~
pi —OO

while the "less than" Green's function for the slave-boson state satisfies

i—B((t, t') =) dt K(,.(t, t)GP, (t, tgB((t, t')+K,', , (t, t)G„, (t, t)B"(t,h')].
l l' o

(15)

The Dyson equations can be simplified by introducing G defined by the relation

t

G~i ~(t, t'):—Gii ~(t, t') exp i drs~~(~) —+ i d7s~ ~(r)
tp tp

where to can be any fixed time and G can be a Green's function or Kii( defined in Eq. (7). The retarded Green's

functions can be further simplified by introducing gii (t, t') through

GP, (h, h') —= —ig(t —h') g&i. (t, t'),

GP, ,.(t, t')—:ig(t' —t) g« .(t, t'),
(17)

and b(t, t') through

B"(t, t')—:—z8(t —t') b(t, t'),
B+(t,t'):—i8(t' —t) b(t, t'), (18)

with the supplemental conditions that g~~ (t, t) = h~ ~ and b(t, t) = 1, which arise from the equal-time commutation
relations. Notice the following relation:

(h h) gl'l (h h )
b(t', t) = b*(t, t'). (19)

In this paper, we calculate the retarded functions and then obtain the advanced ones through complex conjugation,
using (17), (18), and (19). The Dyson equations for g~i (t, t') and b(t, t') for t & t' become

t—gal~(h, t ) = —) dt K&i» (t, t)b(t, h)gpiii~(t, t ),
l"

t—b(t, t') = —) dt K, , (t, t)g«(t, t) b(t, t'), (21)

which fully determine the functions gii (t, t') and b(t, t') for t & t'. For t ( t' they can then be determined using

(19). In this notation the Dyson equations for the "less than" Green's functions take the following form:

t t—Gi(i, (t, t')=) dhK~(i„(t, tgB((t, t)g,*,,„(t',t)— dhK)i„(t, t)b(t, tgGi„, , (t, t')
ii) —OO —OO

(22)
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and

t—B~(t, t') = ) dtK|), (t, t)Gi(, , (t, tabb'(t', tg — dtKi, (t, t)g». (t, t)B((t,t'),
Ll'cr

—OO

n&. (t) = Gi(i (t, t) = Gi(i. (t, t), (24)

while the instantaneous population of the slave-boson
state is given by

where g&*,i„(t', t) and b*(t', t), the complex conjugates
of gi i (t, t') and b(t, t'), respectively, are from the ad-
vanced Green's functions. The instantaneous population
of the atomic state ]Io) is then given according to (4) by

Note that b(t, t) = 1, so that

A,'(t, t) = G,'.(t, t)b(t, t) = Gi'(t, t) = n,.{t).

Following KadanoK and Baym we introduce sum and
di8'erence variables T = 2(t+t') and r = t t' —Th.e spec-
tral density for occupied states, that is, the probability
that an electron removed from state halo) at time T will
have an energy u, is

n&(t) =8 (t, t).

It is straightforward to show that &~Quay(t) = 0, by using
Eqs. (22), (23), (24), (25), and (3), plus the following
identity:

1
p,'„(~,T) = — d7 A, (T+ r/2, T —~/2) exp[ion].

According to (30) the normalization of p is given by

dn(t) 8 (=——G((t, t') +,G((t, t')
dt Bt „, Bt' (26) (32)

where n and G+ could either refer to atomic states [Eq.
(24)] or the slave boson [Eq. (25)]. Therefore the Dyson
equations explicitly conserve Q~.

In the examples given later, we typically wiB plot the
total occupied spectral weight function for the atomic
states, which we define as

D. Spectral decomposition f „((u,T) =) p'„(&u, T).

Here we discuss the spectral density of energies re-
quired for the removal of an electron from the state ]tv).
This is defined as the Fourier transform with respect to
7':—t —t' of (ait (t')ai (t)), where a is the operator that
removes a particle Rom the state ]la) within the Qg = 1
subspace. The operator that does this is ai = ci~bt,
so that

Ai((t, t') = (cit (t')b(t')bt(t)ci (t)).

An expression for the spectral density for adding an elec-
tron to the state ]la') could be written down in a similar
fashion.

The evaluation of the two-particle correlation function
(27) in terms of single-particle functions would in gen-
eral require a further diagrammatic expansion. However,
as Coleman has shown, to the order consistent with
the self-energy expansions used here (terms of order 1/N
kept), only the first term in such an expression is re-
quired (i.e., vertex corrections are of order 1/N2). Its
unprojected form is

A,.(t, t') = G,.(t, t')(b'(t')b(t))
= Gi((t, t')b(t', t) + G~((t, t')B((t', t), (28)

Ai( (t, t') = Gl( (t, t')b(t', t). (29)

where G&((t, t') = G&~& (t, t'):—(ci (t')ci (t)). The last
term G&( (t, t') B((t', t) has a (Q~) 2 dependence and inust
be projected out. The correctly projected form is then

III. EXACT NUMERICAL SOLUTION

In this section we discuss a numerical scheme which
converts the coupled Dyson equations into a set of lin-
ear equations for discrete elements. The set of linear
equations then wiB be solved exactly on a time grid us-
ing proper boundary and initial conditions. The calcu-
lational details are given in Appendix C. Since the ad-
vanced and retarded Green's functions are needed in the
Dyson equations for the "less than" Green's function, the
solution for the advanced and retarded quantities will be
presented first.

A. Retarded Green's functions

For a solution to the coupled Dyson equations for
the retarded Green's functions, Eqs. (20) and (21) with
proper boundary conditions are sufBcient. Notice that
the integral in Eq. (20) depends on b(t, t) and gii (t, t')
and the integral in Eq. (21) contains giii (t, tg and b(t, t')
with t' ( t & t. The Green's functions in the integrals are
all located closer to the equal-time direction than (t, t').
Since yii and b at equal time satisfy the boundary con-
dition, it is possible to solve Eqs. (20) and (21) using a
discretized representation of the time coordinates.

In the discretized representation the integrals in
Eqs. (20) and (21) become sums. The derivatives are
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replaced by finite differences. To solve for g~~ and b at
times (m, n) in the discretized representation, one has to
rearrange the sums and di8'erences so that g~~ and 6 with
arguments (m, n) appear on one side of each equation and
the Green's functions of other time arguments appear on
the other side. As a result, one obtains a set of linear
equations for gu (m, n) and b(m, n) depending only on
the values of g~~ ~(i,j ) and b(i,j ) vithi —j ( m —n, i.e.,
closer to the equal time diagonal. Since the values of the
Green's functions along the equal-time axis are known,

gag and 6 can be systematically calculated along diago-
nals parallel to the equal-time direction.

If the discretization is based on a second order implicit
scheme, the numerical error going from one grid point to
the next is O([b/I'~ ] ), where I'~ is the width of the
atomic state ~lo) defined in Eq. (11). The memory re-
quirements will scale as O(M ) and the required number
of floating point operations will scale as O(Ms), where
M is the number of the grid points between t = +oo.

In the large I" and small velocity limit, where M would
have to be very large, considerable reduction of the com-
putational effort can result from the observation that the
self-energies are strongly localized around equal times.
The self-energies contribute significantly only within a
region t —t' & T„ thus defining T„which we call the
memory time. The values of the Green's functions at
(t, t') with t ) t' therefore only depend on the Green's
functions in the region (ti, ti) with t —T, ( ti ( ti ( t
Thus, the calculation can be performed within a square
submatrix of side T„provided that the square defining
this submatrix moves along the t = t' direction as the cal-
culation proceeds. The computational eKort in this limit
therefore scales as N2 x M and the memory requirements
will scale as N, where N is the number of grid points
within T, .

The above method is also useful for obtaining the ther-
mal equilibrium solution. Here the retarded functions
plus thermal occupation probabilities are all that are
necessary. The double-time functions depend only on
the time difference. Using this fact enables one to set
t -+ t —t' in the row index and t' = 0 in the column
index of the discretized functions in the numerical Dyson
equations. One then obtains closed equations for the el-
ements of the first column and the calculation goes very
rapidly, requiring only O(M) in memory size and O(M2)
operations to perform.

B. "Less than" Green's functions

functions are known, the Dyson equations of the "less
than" Green's functions can be calculated systematically
along rows perpendicular to the equal time direction.

If the discretization is based on a second order implicit
scheme, the error caused in evaluation of the values at
one grid point is O([b/I'~ ]s). The required memory and
number of operations are the same as those for the cal-
culation of the retarded Green's functions. In the low

velocity limit, the localization of the self-energy can be
exploited in the same fashion as in the solution of the re-

tarded Green's functions. The calculation can be carried
out within a dynamic matrix with side T, the memory
time, defined as before such that the self-energies become
negligible for time arguments diÃering by more than T, .
This matrix will move along the equal-time direction un-

til t = oo is reached. The procedure requires O(N ) in

memory and O(N2 x M) operations.
The combined solutions for the retarded and the "less

than" Green's functions define a complete and exact nu-

merical solution to the problem. To minimize mem-

ory requirements, one can make use of the fact that
Gu (t, t') = [G~ ~

(t', t)]*, and store both the retarded
and the "less than" Green's functions in a single complex
square matrix.

In the case of large level width, a variable substitution
is performed:

(34)

where I' „(v) denotes the largest I'~ [defined in

Eq. (11)] among the la at the given value of w. When z
is used as the variable, the numerical scheme remains the
same, but the error is O([h~ b ]s) where b is the spacing
between adjacent grid points on the x mesh and

rather than the error O([QI'i b] ) obtained using t as

the independent variable. This variable substitution re-

sults in considerable numerical advantages when I'~ is

large. To obtain a numerically sound solution with t as
the variable, a nonuniform mesh with fine steps in the
regions where I'~ is large, and a coarse grid in regions
where I'~ is small would be required. A numerical im-

plementation of the present procedure on a nonuniform

grid would be realized by variable substitution such as
from t to x.

The set of Dyson equations for the "less than" Green's
functions can be solved using a technique similar to that
used for the retarded Green's functions. Equations (22)
and (23) with proper initial conditions are suilicient for
obtaining the solution. From Eqs. (22) and (23) it can
be seen that the integrals contain the "less than" Green's
functions with arguments t, t and t, t' with —oo & t &
t' & t. This means that the "less than" Green's func-
tions at (t, t') only depend on "less than" Green's func-
tions for times closer to the origin, t = t' = —oc, than
(t, t'). Since the initial values of the "less than" Green's

IV. SPECIAL FEATURES
AND VARIOUS LIMITING CASES

In the previous sections, the formalism has been de-

scribed and a numerical algorithm for the solution of the
coupled Dyson equations has been presented. In this sec-

tion, we will investigate some simple limits and the eKect
of various substrate and atomic parameters on charge
transfer.

In the examples given here, we describe everything in
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I'i (s t) = 2~p(&) ~v(s)«(t)l . (36)

With this definition the sum over k in Eq. (7) becomes
an integral and we can write

terms of two input functions per atomic level, the time
dependent energy position parameter of the atomic level,
and time dependent width parameter (see Appendix A
and the discussion below). We thus assume that Kii
[see (7)] is diagonal in l, so that the atomic state func-
tions satisfy Giv = Gi bii~. We also assume that the k
dependence of V~ I, is only through e~ I„ finally we as-
sume that the shape of Vj g is invariant. Thus we take
Vi i, = v(ss)ui (t). Thus the adiabatic width or tunnel-
ing rate function [Eq. (10)] for the U = 0 problem can
be written

I'i (t) = I', exp[—ai Z(t)], (41)

where Z(t) is the instantaneous position of the nucleus
of the atom from the surface at time t and I'& and n~
are independent of Z(t). We note that within the band
I'i (t) = I'i (t) for the rectangular shape function ((s)
used by LN, but not for the parabolic shape function
used in a few of the examples here.

In addition to I'i (t) the adiabatic level positions si (t)
are input functions. For the atom-surface scattering
problems these are parametrized in the following way:

This means that 4 =
2 for the rectangular shape func-

tion, but 6 = 4I' for the parabolic one.
In the following model calculations, we also assume

that I'i (t) can be parametrized as

(37)

f I'i (s, t) ds

1'((s) ds
(38)

The quantities f&(v) in (37) are then given by

where hi i is the Kronecker b, and where the bar over the
I"s means that they have been averaged over e. Speci6-
cally we let [v(s)

~ p(s) be proportional to a dimensionless
shape function ((s), and define the average I' by

(42)

The quantities b and Z&' are input parameters, as shown
in Fig. 2. In the 6gures a single integer i, where i = 1 or
i = 2, is used to label the states instead of the lo nota-
tion used elsewhere. In many of the model atom-surface
scattering applications discussed below, atoms (ions) are
assumed to approach the surface in the normal direction
at constant velocity until they reach the turning point
and then instantly turn around and move away from the
surface at the same speed.

(39)

In the model calculations here we use two different forms
of ((s): (i) a parabolic form ((s) = s(1 —s~/D2) for( D and ((s) = 0 otherwise, and (ii) a rectangu-
lar form ((s) = 1 for ~s[ & D and ((s) = 0 otherwise.
Here e is being measured with respect to the Fermi level.
In either case we will follow convention and use the term
"bandwidth" for the quantity 2D, although it more accu-
rately represents the effective range of energies over which
substrate electrons hybridize with an atomic state at the
Fermi level, a range which for a conduction electron is cut
off by the band bottom at the lower end and a decreas-
ing matrix element at the upper end. The parabolic form
is used for all calculations where spectral densities must
be obtained, in order to avoid anomalies induced by the
unphysical sharp cutoffs in the rectangular (. However,
the examples where just the charge transfer is calculated
are not sensitive to such a cutoff and so the simpler rect-
angular ( is used. One must keep in mind, however,
that I'i (0, t) = I'i (t) for the rectangular case, but that
I'i (O, t) = 2I'i (t) for the parabolic. When discussing
the case of N equivalent degenerate levels, where the
various quantities are independent of lo, we often use
the notation A. This is defined to coincide with what
is normally used in the literature on highly correlated
systems as

(40)

A. Semiclassical approximation

The so-called semiclassical approximation (SCA) was
developed as an approximate method for the solution
of the coupled Dyson's equations. The approximation
makes use of the fact that the self-energies Z(t, t') are
localized to equal times. The Dyson's equations which
are of integro-differential type can thus be converted to
differential equations by replacing the Green's functions

EF

D

FIG. 2. Schematic illustration of the atomic level shifts
along the atomic trajectory outside the surface. Ez is the
Fermi energy and D is the distance from the bottom of the
band to the Fermi level. We use the rectangular shape func-
tion f(s) for ~v(s)

~
p(s). Si and Z2 are the points where level

1 and level 2 cross the Fermi level, respectively. The atomic
level functions s& (t) and s2(t) are parametrised as in Eq. (42).
The I'i (t) and I'z(t) functions are given in Eq. (41). The atom
is assumed to move with constant speed towards the surface.
At the turning point, Z~, the atom instantaneously reverses
direction and moves outward with the same speed.
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in the integrands by their values at the peak of the self-
energies. LN showed that this approximation led to two
approximate master equations. These are much simpler
than the full exact solution, so it is useful to delineate
their range of validity precisely, so that they can be used
with confidence in this range. That is the aim of this
section.

The conditions for the SCA to be valid at low temper-
ature are (LN)

~
- I ~-(t)

,. Is~-(~)l
(43)

or

,.(t) )) r,.(t),
d 2

dt (44)

where I'~ (t) is the instantaneous adiabatic width of the
atomic state defined in Eq. (11), and s~ is the energy
level of the atomic state with respect to the Fermi en-
ergy. The first condition is clearly violated when the
atomic energy levels cross the Fermi level. However, if
the crossing occurs sufficiently fast so that Eq. (44) is
satisfied, the SCA will still be valid. For a given system,
the SCA generally works best at high velocities as indi-
cated in Eq. (44). A high temperature will also increase
the accuracy of the SCA. However, if one takes a more
general perspective and compares different systems that
have roughly comparable charge transfers, then one can
say that the SCA works better at Ion velocities. This
is because according to (43) and (44), the smallness of
12 is the more significant requirement for the validitylo
of the SCA, and the value required for a given charge
transfer increases more rapidly than &~a~ (t) does. In
this paper we generally scale I'~ with velocity, which in
the simple master equation limit yields a velocity inde-
pendent charge transfer.

To the lowest order in the SCA limit, the Dyson's equa-
tions, Eqs. (22) and (23), can be simplified and the charge
transfer dynamics can be described by the following in-
tuitive set of simple master equations (SME):.20

CQ 0

(B)

.150 .

.075 .

—.075

(d)

Iv(s)l p(s)] is derived in Appendix D. It is this version
of the GME that is used in the comparisons here.

In Fig. 3 a comparison of the results from the exact so-
lution and the SME solution is plotted. The widths of the
atomic levels have been scaled with velocity to keep the
total charge-transfer comparable. The results from the
SME are therefore independent of velocity. The strong
velocity dependence of the charge transfer dynamics from
the exact solution suggests that the nonadiabaticity is
very important. In Table I, the final populations of the
atomic states at various velocities calculated using the ex-
act scheme are listed. It can clearly be seen from Fig. 3
and Table I that the SME works better for lower veloci-
ties (in units of the level width).

In Fig. 4 we show a comparison between the results
from the exact solution, the GME, and the SME solu-
tions. It can clearly be seen that the GME solution rep-
resents a significant improvement on the SME. For both
velocities, the GME and the exact solution agrees within
5%. The SME, however, is off by more than 50'Fo.

In Table II, the differences in final populations between
the exact solution and the SME described by Eq. (45) and
between the exact solution and the GME [Eq. (3.30) in
LN's paper ] are listed for various parameters. For very
low velocities, i.e. , v & 10, the results &om the exact

(t) = —I', (t) [1 —f(s( (t))]n( (t)dt ' 20 15 10 5
Z (a.u. )

10 15
Z (B.u. )

20

—f(si (t)) 1 —) n(~(t) (45)

The term [1 —P& n~ (t)] describes the available por-
tion of density of states for the atomic state Ilo) into
which an electron can tunnel. For the zero-U case, this
term would be replaced by [1 —n~ (t)]. The difference
is due to the blocking effect implied by the large intra-
atomic correlation term. The SME approach obviously
neglects all memory effects in the scattering events. An
improved approximation called the "generalized master
equation" (GME) [Eq. (3.30) in LN] takes into account
some memory effects. A better method for calculating
the retarded and advanced functions for use in this equa-
tion, and which extends the validity to the finite band-
width case [or more precisely the case of nonconstant

FIG. 3. Comparison of exact solution and the SME at dif-
ferent velocities. Panels (a) and (c) are the absolute dif-

ferences in the populations for the atomic level 2 and level

1, respectively, calculated using the exact scheme and the
SME. Panels (b) and (d) are the populations of the level 2

and level 1, respectively, calculated using the exact scheme
and using the SME (solid lines). The long dashed lines are
for v = 10 a.u. , the dotted lines for v = 10 a.u. , the
dash-dotted lines for v = 10 a.u. , and the dash-triple-dotted
lines for v = 0.1 a.u. The level shifts are illustrated in Fig. 2.
The left half is for the atom approaching the surface and the
right half is for the atom leaving the surface. The parameters
are taken as 6 = 0.02 a.u. , Z& ——12 a.u. , Z2 ——8 a.u. , ay ——=1
a.u. , o;q ——0.5 a.u. , Z~ ——5 a.u. , I'I ——Fz ——100v, where v is

the velocity in atomic units and the half bandwidth D = 10
eV. The temperature of the solid is taken as 300 K.



MANY-BODY THEORY FOR CHARGE TRANSFER IN ATOM-. . . 13 937

TABLE I. Final populations of atomic states calculated us-
ing the exact scheme. Here nq and n2 are the final occupations
for atomic state 1 and atomic state 2, respectively.

v (a.u. )

n2

mO
0.0729
0.0259

10
0.0725
0.0247

10
0.0944
0.0246

10
0.2206
0.0180

10
0.0232
0.0634

a)

solution, SME, and the GME all agree within 5%.
A detailed analysis of the validity of the GME shows

that even for velocities as high as v = 0.03, the results
from the GME lie within 5% of the results &om the ex-
act solution. The original estimate of the validity of the
GME (Ref. 20) put an upper bound on the velocity of
v = 10 a.u. The reason the GME produces such good
results even at relatively large velocities is that the esti-
mated error is only signi6cant in the region relatively far
away from the surface where the atomic level widths are
very small. Since there is no charge transfer in this re-
gion, the errors are suppressed. For large velocities such
as v = 0.1 a.u. , however, the GME totally breaks down.

We now test the criteria for the SCA, Eqs. (43) and
(44) in the above calculation. Let us define Rt

I'~ (t)/ ~s~ (t) ~. At the turning point, Rt ——63.4 x v

for level 1 and Rq ——148.0 x v for level 2, where v is the
velocity. Another quantity of interest is R, = F&

TABLE II. Percentage deviations of the SME and the
GME from the exact scheme. The superscript denotes the
SME or the GME while the subscript denotes the atomic state
1 or 2.

v (a.u. )
8SME

1

8GME
1

BSME
2

8GME
2

mO

0.0
0.0
0.0
0.0

10-4

2.67

0.56

4.98

0.53

10

22.8

0.08

5.28

5.71

IO

67.0

2.76

43.9
4.00

10

214

10

59.1
121

At the crossing point, R, = 5.3 x 104/v for level 1 and
R, = 6.0 x 10 s/v for level 2. One can see that for
v = 10 3 and v = 10 4, R, && 1 and Rq &( 1 are satis6ed
showing that the SCA should be accurate. For v = 0.01,
the criteria for the SCA fail for level 2 and are barely
satisfied for level 1. The GME at this velocity, how-

ever, produces satisfactory results due to the fact that
the charge transfer is very small in these regions. For
v = O.l, R )) 1 only for level 1. The other criteria fail.
This is the case where the GME breaks down.

This analysis shows that (i) the GME gives better re-
sults than the SCA; (ii) the criteria are much too strict
in the sense that the blocking effect and the small atomic
population at crossing points are not reflected in the cri-
teria. Our experience with the GME shows that even
when the criteria are barely satis6ed, the GME produces
reasonable results.

B. Finite bandwidth

4-

~ 2

Q
20 15 io 5

Z (a.u.)

I I I

10 15 20 15 io 5 io 15
Z (a.u. ) Z (a.u. ) Z (a.u. )

FIG. 4. Comparison of the populations n, (Z) calculated
for large U using the SME, the GME, and the exact solution
at difFerent velocities. The parameters of the system are the
same as those in Fig. 3. The inputs I',- have been scaled
for each velocity so that the SME would predict the same
charge transfer for each trajectory. The bandwidth of the
metal is 0.368 a.u. In (a) we show the results for velocity
v = 0.01 a.u. and d, i 2 = 1 a.u. In (h) we show the results for
velocity v = 0.001 a.u. and Az, 2

——0.1 a.u. The upper part
of each figure shows the population ni(Z) as a function of
distance from the surface, while the lower part of the figures
shows the population n2(Z). The dotted lines are the results
using the SME, the solid lines are the results using the GME,
and the dashed lines are the results obtained using the exact
numerical solution.

When the surface bandwidth is finite and the level
width is sufBciently narrow that it is spanned entirely by
the bandwidth, the spectral weight of the atomic state is
largely unafFected by the bandwidth. However, when the
atomic level width is large enough to be comparable to
or ever larger than the half-bandwidth (the Fermi level
to the bottom of the band), the actual spectral weight
will be efFectively cut off by the 6nite bandwidth.

In Fig. 5, the instantaneous populations of the upper
atomic state and the lower state for some different band
cutoffs, i.e., D = 1.25 eV, D = 2.5 eV, and D = 5 eV,
are shown, while at the turning point I'i(Zi) = 0.18 eV
and I'2(Zt) = 2.23 eV. Since the band cutoffs D = 2.5 eV
and D = 5 eV are larger than the level widths, the dy-
namics should not be influenced by the bandwidth. From
the figure it can clearly be seen that the charge transfer
for these bandwidths is very similar. On the other hand,
for a band cutofF of D = 1.25 eV, which is smaller than
I'2(Zi) = 2.23 eV, the dynamics are expected to be dif-
ferent. This can clearly be seen in Fig. 5. For D = 1.25
eV, the atomic level width of the upper state is electively
reduced by the small bandwidth. As a result, the upper
level becomes more populated in the vicinity of the turn-
ing point, Zq ——5 a.u. The population of the lower level
is thereby suppressed.

As the bandwidth gets still smaller, one begins to see
quantum charge oscillations reminiscent of Stuckelberg
oscillations. Since this is the subject of a subsequent



13 938 SHAD LANGRETH, AND NORRDLANDER

&.00
9 (~)

.75—

.3-

.50—
.2- (b)

.25—

80

I I

15 10
Z (a.u. )

10 15

Z (a.u. )
20

s o ulations of the atomic statesFIG. 5. Instantaneous p p
is is the distancendwidth. The horizontal axis is e

lf" f }1 1

the surface. The e a is

h 1

face and the right a is or
el &~a~~is for the popu a ion o

=5 V th io d hd
the o ulation of t e ower

the half bandwidth D = 5 e
dli fo D=eV, and the o e ilines for D = 2.5 e

linearly as in Fig. 2.hift functions vary incaThe atomic level s i
'

inca
taken as 6 = 0.02 a.u. ,

Z =018 Vin oint are I'iThe I' values at the turning p
'

jZ j ——2 23 eV respectively.I'2(z g) ——

idth limitpaper, we w'will not iscuss the narrow bandwid
sim 1 mention ath t this is another lim-py

i
' h' h is described correct y yiting case w ic is

C. The efFect of degeneracy

'nvesti ate the effects of degeneracyg
els on the charge trans er. n

tional theories for ethe charge trans er, w e
ted ' the chargecorrelation eKectss have been neg ecte,

1 on the total width oftransfer probabi i ybilit depends only on e
h t there are cases wherethe atomic state.. We will show t a ere

dividual channel canthe detailed tunne i g ivielin rate of eac in ivi

e is ke t constant.g p
I . 6 the instantan o p

1 vel is plotted for e gthe de eneracies = 1,eve
e N = 1 results are a e

ich is exact in t is case.
final charge trans er is abe seen that the na

f the atomic levels fory. ppal o ulations o e a
es are 0.85 for N = 1 an

th t 11

N = 4, respective y. e i
1 char ed positive ions,gy

he &action that remain ion
1 —n, which varies acco grdin to e a

4
1.C.

'1'b d 1 1 ts stem in equi i riumWe now turn to a sys
tral weight as a unc ionr t of ¹ Thethe occupied spectra weig

= 1 the result is ofresults are shown in ig.

0
20 10 15

( ~) Z (&.&)
~

o ulation of the atom for

nd the dotted line is fo
. 2. The levels are assumedescribed in ig. 2. e

= 10 a.u. and cx, = . a.g

e N g~ ——0.82 eV where
is v =. . . d the half bandwidt is

= 5 a.u. , we take N
dt bThe atom is assume

e surface at a distance of 2 a.u.towards the sur ac
and to turn back away from t e sur ace

truncated Lorentzian-likehe Fermi-function trunca e
cor-

k "" t th'Fmmixed valence pea ri

h h & b
e wei ht for this pea c

rt of the spectrum ra erlower energy par o
ation number w ice of the atomic occupa io

=2g
.79 for N =, n-has the values n 0.79 N — n-

d
'

ing whether or not aeter in determining
1 1 h hears near the Fermi eve w

the Kondo temperature'"'""' '"'
h

e Fermi level is e

pthe eak is K anK ~

the ratio PT~ of t e on o
berature P ecome

unity. Although ~s~ is not strict y in e

O
D 4

0
frequency

ied spectral weight function, as defined
1 1th 1

= —NQ. The abscissa is in units oE =

20



49 MANY-BODY THEORY FOR CHARGE TRANSFER IN ATOM-. . . 13 939

n = 1, it is still useful to estimate T~ (Appendix E). For
the situation depicted in Fig. 7, we find T~ ——0.067NA
for N = 4 and T~ = 0.044NL for N = 2. For compar-
ison P i = 0.026NE in each case. Therefore we are in
a regime where the temperature is lower than the other
energy scales of the problem, and the widths of the Fermi
level resonances should be T~, and that is indeed the
case.

D. The approach to equilibrium

A nontrivial question for any nonequilibrium theory is
how long it will take a prepared initial configuration to
return to thermal equilibrium. Improperly formulated
theories may not show a return to equilibrium at all. We
illustrate here both in the Kondo and the mixed valent
regimes that the instantaneous occupied spectral weight
function [Eq. (31)]does in fact return to its thermal equi-
librium value, once the Hamiltonian becomes time inde-
pendent. We calculate the time necessary for this relax-
ation to equilibrium.

In Fig. 8 the nonequilibrium occupied spectral weight
functions of an atomic state for large time T and the equi-
librium one calculated by Coleman's projection method
are compared for different paths towards final equilibrium
in the mixed valence regime as well as in the the Kondo
regime. In Fig. 8(a) the final atomic energy is in the
mixed valence regime with N = 2. T~ is estimated at
0.067NA while the temperature is 0.026NA. The thick
dotted curve coincides with the solid line showing that
the level has indeed reached thermal equilibrium. Fig-
ure 8(b) shows similar results for the case where the equi-
librium state is in the Kondo2~ regime with N = 6. Here
we estimate T~ ——0.003NA, while the temperature is
0.0046NA.

What about the question of how long it takes? Rel-
evant here is what we call the memory time T, which
we define to be the interval (t, t + T,) outside of which
the retarded self-energies in Eqs. (8) and (9) becomes
negligible. It is shown in Fig. 8(a) that the "less than"
Green's function takes a longer time than the retarded
Green's function to reach final equilibrium. In the par-
ticular calculation for Fig. 8(a), it is sufficient to take
the memory time T, = 100(NA) i with 6 defined in
Eq. (40). In order to simplify the picture, the problem
is modeled in the following way: the level width starting
as zero and increasing exponentially until it reaches its
final value. The long dashed curve in Fig. 8(a) is the
instantaneous occupied spectral weight function when
the nonequilibrium retarded Green's functions Brst be-
come identical to the equilibrium ones. When the pa-
rameters of a system remain constant for a time longer
than the memory time, the equilibrium and nonequilib-
rium retarded Green's functions will be identical because
the Dyson equations and boundary conditions at equal
time for the nonequilibrium and equilibrium functions
are equivalent. The fact that the long dashed curve is
different &om the equilibrium curve shows that the oc-
cupied spectral weight function takes a longer time to
reach its equilibrium by a factor of 4, for this particular
model calculation.

E. Local thermal equilibrium and deviations

We now investigate the conditions under which local
thermal equilibrium can be maintained if the system is
driven by a slow time variation of the level position. How
slow a variation is necessary to maintain thermal equilib-
rium? The answer is crucial to all fundamental calcula-
tions of dynamics, because it will tell us whether the elec-
tronic motion follows the nuclear motion adiabatically or
not, or in other words whether the Born-Oppenheimer
approximation can be used or not.

All parameters of the system except the position of the
atomic level will be kept constant. We define the local
thermal equilibrium as the equilibrium state correspond-
ing to the instantaneous position of the atomic level. We
take the time (T) variation of the atomic energy level to

0.2
Q0

0

.08-
O
0

.04-

0—6 —4 —2
frequency

FIG. 8. The approach to equilibrium. The solid curves are
the instantaneous "nonequilibrium" spectral weight functions
of the atomic states for time T )) T,. The thick dotted curve
in panel (a) and the dashed curve in panel (b) are the corre-
sponding thermal equilibrium spectral functions. The dashed
line is the instantaneous nonequilibrium spectral function cal-
culated at an intermediate time T = T, after the time depen-
dent I' becomes constant. The thick dotted curve in panel

(a), taken at T = 4T, after the time dependent I' becomes
constant, coincides with the solid curve. The vertical axis
measures the occupied spectral weight function and the hori-
zontal axis measures the frequency in the units of NA, with
N the degeneracy of the atomic states and 4, the final equi-
librium value of E [Eq. (40)]. Panel (a) is for N = 2, the
final energy level of an atomic state c = —NE, the half con-
duction bandwidth D = 5NA„ the temperature of the solid

P = 0.026Nb, , a temperature corresponding, for example,
to 300 K for NA = 1 eV. The height of the energy level stays
constant, while the position dependent b, (z) is parametrized
by b, (z) = A, exp[ —n(z —z, )] for z ) z, and b, (z) = E, for
z ( z, where o.(zo —z, ) )) 1, and where zo is the starting
point. Panel (b) is for N = 6, e = 2NE, D = 5NA—, and

P = 0.0046NE. The energy levels of the atomic states start
their motion very high above the Fermi energy and quickly
approach their final equilibrium value while the values of E
are kept constant. The parabolic shape function ((e) is used.
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be'4

(46)

where e is the initial energy of the atomic state. Both
and b are taken as constants. The quantity 4 is

kept constant during the process and the temperature
P ~ = 0.026NE. Our calculation shows that when

(T) ( 0.025 (Nb, ), the instantaneous occupied
spectral weight functions differ imperceptibly &om their
equilibrium counterparts. This implies that the local
thermal equilibrium is maintained. In the present cal-
culation we will assume a level shift of &~&s (T)
0.25 (Nb) .

In Fig. 9, we show some snapshots of the system just
described. It can clearly be seen that the difference be-
tween the instantaneous spectral functions and the corre-
sponding local thermal equilibrium plots are largest when
the atomic level lies close to the Fermi energy. It is also
in the energy range close to the Fermi energy that the
largest deviations &om local thermal equilibrium occur.
The mixed-valence and the Kondo peaks are much weaker
than their local thermal equilibrium counterparts. The
widths of these resonance peaks are relatively narrow,

Q
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suggesting that they should take a longer time to form.
With the present rate of variation of the atomic level po-
sition, there is not enough time for the resonance peak
to be fully formed.

In the final snapshot, we are at a point where the T~
is becoming less than the temperature. The Fermi level

resonance is disappearing, and local equilibrium is much
better maintained in the region of what is left of this
resonance. By the time r reaches —2ND we find that
the resonance has all but disappeared.

We conclude from our model calculation that if a sys-
tem varies with time sufBciently slowly, local thermal
equilibrium can be maintained. When local thermal equi-
librium does break down, it is going to do so first near
the Fermi energy. The fact that there can be anoma-
lously sharp features in this region due to the Kondo or
mixed valent states is likely to attach special importance
to this region.

We close this subsection by discussing a possible chan-
nel for enhanced nonadiabatic energy transfer between
atom and surface induced by the formation of the reso-
nance peak near the Fermi energy of the atomic spectral
function. There are two channels of energy transfer in
atom surface scattering: excitation of surface phonons
and excitation of electron-hole pairs in the surface. Be-
cause of the unfavorable mass ratio, electron-hole pair
excitation via slow atomic motion can be of importance
only when sharp energy features move near the Fermi
level. The conventional descriptions of energy loss
due to the excitation of electron-hole pairs have been
based on a single-level Anderson model. In the U = 0
model, an enhancement of the nonadiabaticity can occur
only when the atomic level passes the Fermi energy, be-
cause only then is there a sharp feature near the Fermi
level in atomic spectral function. For large correlation
cases, as has been shown in this and the preceding sub-

sections, many-body effects strongly enhance the spectral
weight just below the Fermi energy by forming a sharp
resonance peak. This occurs even when the atomic level

is located well below the Fermi level in the Kondo regime
and even when the width I' is sufEciently large that there
would be little electron-hole pair excitation even if the
atomic level were near the Fermi level. The strong in-

crease in spectral weight below the Fermi energy induced
in the Kondo and mixed valence regime is likely to en-

hance the probability of nonadiabatic electron-hole pair
formation. Further studies are needed to evaluate the
importance of this nonadiabatic energy transfer mecha-
nism.

FIG. 9. Local thermal equilibrium. The solid curves are
the occupied spectral weight functions of the system in local
thermal equilibrium. The long dashed curves are the instan-
taneous occupied spectral weight functions. The I' function
(and hence b,) is kept time independent and the rate of change
of the atomic energy level position z&s (T) = 0.25(NE) .
The degeneracy N is given by N = 2. Panels (a) to panel

(f) show p& (u, T) at times T when s~ (T)/NA equals —0.1,
—0.4, —0.7, —1.0, —1.3, and —1.6, respectively. The en-

ergy or frequency on the abscissa is measured from the Fermi
level and in units NA. The temperature was 0.026NA and
D'= 5NA. The abscissa is in units of NA.

V. CONCLUSIONS

We have presented a general many-body description of
charge transfer in atom-surface scattering including the
effects of large intra-atomic correlation. This is a general-
ization of the theory of LN to include off-diagonal atomic
self-energies and an arbitrary bandwidth" and shape as
a function of energy for the adiabatic single electron tun-
neling rate into the substrate. A very important result
is that we have developed an exact numerical solution to
these equations. This was used to put quantitative nu-
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merical limits on the region where the much simpler sim-
ple or generalized master equations developed in LN were

valid, and it was found that this region was considerably
larger than the simple a priori criteria would have led one
to expect. The exact solution was also used to investigate
the bandwidth" dependence of the charge transfer; sig-
nificant changes were found as the bandwidth was suK-
ciently narrowed. It was shown that increasing the degen-
eracy of a single atomic level did not lead to a significant
reduction in the atomic occupation probability, although
it did lead to a substantial rearrangement of the weight
in 'the instantaneous spectral functions as the Kondo and
mixed valence resonances rose near the Fermi level. We
found the time required for a fixed atomic species out-
side the surface to return to its equilibrium charge state,
and determined how fast such an atom could move and
still remain in local thermal equilibrium. It was found
in regimes where the mixed valence or Kondo state are
present that the Fermi level resonances representing these
states could not be maintained in local thermal equilib-
rium except for anomalously slow atom velocities. This is
a source of nonadiabatic charge transfer, and hence nona-
diabatic energy transfer, which is not present in previous
models. The extent to which this nonadiabaticity will
have important e6'ects on atomic motions is unknown,
but should be investigated.
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APPENDIX A: MEANING
OF INPUT PARAMETERS

Normally in a realistic calculation one would like to
take the input parameters, e~ and I'~, &om a static
one-body calculation of the ab initio type, so it is use-
ful to discuss the relationship between these parameters
and the single-particle energies and widths determined in
such a calculation. For the case discussed earlier (LN) of
a single level and a Bat substrate band with large band-
width, the quantities e and I' [see Eq. (11)] are just the
single-particle energy and width (FWHM or decay rate)
obtained from the one-body calculation. This is no longer
exactly true in the case considered here, however. For 6-
nite bandwidth, or a nonBat band, or where there are
multiple levels which are close enough in energy to af-
fect each other's decay rates, one must determine the pa-
rameters by comparing the solution of the static U = 0
Anderson model with the ab initio calculation.

It su8ices to obtain the retarded Green's function,
whose poles determine the energies and decay rates of

the states in terms of the c's and I"s. This is most conve-
niently done in &equency space, where we can just write
down the exact retarded self-energy as

1
Zu (~) =) &ii &ii (A1)

4) —E'g

where the index cr has been dropped since the spin chan-
nels are not coupled in the single-particle picture. In
addition, we deal only with retarded functions here, so
that we drop the "R" superscript. To obtain Gui(u) we
must invert the matrix (u —si)hu —Zii (u). One obtains

(A2)
(d —si —Au (ld)

Gu(ur) =

where Aii (ur) is obtained by solving

Au (~) =Z«(~)+):Zu (~)
t I I

1 —$~tr~i
X A) i ((u).

Lag
—egin —Ztii pi (~)

(A3)

APPENDIX B:DISCUSSION
OF APPROXIMATIONS

As mentioned in the text, the basic truncation of the
exact self-energy to what is shown in Fig. 1 is appro-

If there is but a single I channel, then Zii(u) = Au(td)
and (omitting the subscripts) one finds in the vicinity of
the pole

G(~) = Z
(A4)

where E is obtained by solving E = s + Re Z(E),
Z is given by Z = 1 —&&ReZ(E), and 1/r
ZIml'(E)—:—2ZIm Z(E), where a real argument to a
function implies the limit toward that value &om above
the real axis. The quantities E and w are the adiabatic
energy and lifetime as determined by one-body theory
and are the appropriate quantities to fit to such a calcu-
lation. For a wide Bat band, ReZ is essentially zero, and
one obtains E = s and 1/r = I'(e) as in (ll). However
if the band is finite or energy varying, then the above
process must be inverted to find e and I'.

For the case of multiple levels, one then needs to solve

(A3) or else show that the difference between Z and A
is negligible. It will not be negligible for levels whose
widths overlap, as is likely to be the case for levels which
are degenerate in the absence of the surface, but which
become coupled as the atom moves toward the surface.
The retarded Green's function will now in the simplest
wide band case have a pole in the lower half plane for
each state. One solves for the position and residues of
these poles and carries out the earlier procedure for each
one. This is straightforward for the case of two states
where one can do everything analytically, and the pro-
cedure can also be easily inverted to find r~ and I'~ kom
a given set of E~ and ~~, if one makes the factorization
assumption with the same shape function for each state.
For larger numbers of coupling states, where numerical
methods would be necessary, the procedure would be-
come quite tedious.
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priate to leading order in 1/N and to second order in
V, where N is the effective number of degenerate states
on the atom, and V is the tunneling matrix element of
the Hamiltonian (1). With respect to N variation, one
compares different problems with different N which oth-
erwise have roughly the same gross energy scales. In this
problem the gross energy scale is set by the initial rate of
filling of all the atomic states together, given that they
are all empty. This rate is related to the slave boson
self-energy and is proportional to NV . Since this is to
remain constant as we vary N, it is useful to define
a rescaled (N-independent) hopping matrix element V
through V = V/~N. In this way it is easy to see that one
order higher in V means one higher order in 1/N if the
vertex summations are fully restricted by conservation
of to and the same order in 1/N if totally unrestricted.
This is how the demonstrations of the correctness of the
procedure are carried out. The only difference here is
that there are never any fully restricted sums, because
the l labels do not all refer to conserved quantum num-
bers, even though the 0 labels always do. Therefore the

effective N for our problem, although larger than the
number of elements in the 0 space (normally two), will
be smaller than the number of elements in the lu space
combined. Without an exact specification of the partic-
ular problem to be solved, it is not possible to define the
effective N more precisely. The imposition of constraint
to the Q~ = 1 subspace further complicates the issue in
a well known way. 7'

We mention that the theory as presented is also self-
consistent, conserving, and "4 derivable" in the sense
of Baym, which guarantees, for example, that all Ward
identities are satisfied. This, and the fact that it is a non-

perturbative theory that is appropriate when N is large
and T not too small, ' put an important constraint on
the theory making it unlikely that unreasonable results
will be predicted even if N is not so large. This is im-

portant because one certainly wants to apply the theory
to cases where N is as small as 2. Here a 1/N2 correc-
tion would be estimated at 25'%%uo. The only place where

the validity can be checked with certainty is for the case
N = 1, where the smallness of 1/N cannot reasonably be
invoked, but for which the theory compares very favor-

ably in the cases we have checked with the exact N = 1

theory (i.e. , the U = 0 theory), except that the Fermi
level resonances, which in this case would be spurious,
although becoming very small, do not disappear entirely.

In actual applications it may be desirable to make fur-
ther approximations or simplifying assumptions, which
are not actually necessary in order to enable the applica-
tion of the exact solution method given in Sec. III, and
indeed such a simplification was made in Sec. IV, where
we illustrate the application of the exact solution to var-
ious cases. This was to neglect the nondiagonality of
K&&, in I,. The first thing to note is that the off-diagonal
atomic Green's functions are smaller by a factor of 1/N
with respect to the diagonal ones. However, they make a
contribution to the slave boson propagator of order 1/N,
and therefore, except for very large N, the neglect of
these terms would need to be justified by means other
than the 1/N expansion, presumably via the sizes of the
matrix elements and energy differences in the particu-
lar problem under consideration. One might expect that
these terms would have to be kept if the states t and t'

had nearby energies and were not of different symmetry,
because then small energy denominators would appear.

APPENDIX C: DETAILS OF THE EXACT NUMERICAL SOLUTION

In this appendix, the Dyson equations are discretized and the method of solution presented.

1. The retarded Green's functions

Here we will use the discrete integers i, j, m, and n in place of the time arguments of the various functions, with
consecutive integers representing a time difference of 8, the grid spacing. The discretized version of Eqs. (20) and (21)
can be written as

m z

gn ~(m, n) = g~t (m —1, n) —) zb ) ) c~K&&„(i,j)b(i,j)g~ ~ ~(j,n),
i=m —1j=n

(Cl)

and

m 2

b(m, n) = b(m —1, n) —) -'6 ) ) c,K, , (j, i)g(~ ~(i, j)b(j, n),
m, —1 g n

(C2)

where c~ equals unity except when j = n or i, where c~ = 2.
The quantities g~p (m, n) and b(m, n) inside the summation on the right hand sides of Eqs. (Cl) and (C2) can be

moved over to the left side. Using the fact that g&p (m, m) and b(m, m) are unity, one can rewrite Eqs. (Cl) and

(C2) in the following way:

g~~ ~(m, n) + ) 4b K&&„(m,m)g~ ~ ~(m, n) + 4b K&&, (m, n)b(m, n)

= g~~ (m —1,n) — hK&&, (m —1,n)b(m——1, n) —) G~~ ~ ~(m, n), (C3)
)II
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and

) ib Ki~, (n, m)gii (m, n) + 1+ ib ) Ki~ (m, m) b(m, n)

= b(m —],n) —) ib2K&~& (m, —1,m—, 1)b(m —1,n) —) Bii (m, n). (C4)
le

In this expression G« i (m, n) is defined as

m i—1

G«'~" (m n) = 4b K&~&" (m 1 m 1)g~"i' (m 1 n) + 2b ) ) Ki)i" (i j)b( j)g& "i' (j n)
i=m —1j=n+1

and Bl( (m, n) as

m, i—1

(m n) = 4b Kt't (n m —1)g«' (m —1,n) + b)-) K(,) (Z, i)g«(i, p)b(j, n).
i=m —1j =n+1

(C6)

The set of Dyson equations for continuous Green's functions have now been converted into a set of linear equations
of discrete Green's functions. Since the equal time values of the Green's functions are known, the discrete Green's
functions can be obtained in the following manner. (i) Set the values of gii to be b& i and b to be unity along the
diagonal. (ii) Solve gi&i (m, m+ n) and b(m, m+ n) for all possible m with fixed n. (iii) Increase n by 1 and repeat
step (ii) until all elements in the matrix are solved.

The order in which steps (ii) and (iii) are taken is not unique. As long as the calculations are arranged in such a
way that all the values of Green s functions in Eqs. (C5) and (C6) have been previously obtained, the linear equations
for the discrete Green's function can be solved. The particular order given here is the one that can be most easily
vectorized.

2. The "less than" Green's functions

The "less than" Green's functions can be calculated from the discretized version of Eqs. (22) and (23) and their
conjugate equations. For t g t, the discretized and simplified version of Eq. (22) can be written as

Gii (m n) + ) 'b Kii -(m m)Gi i (m, n) —'b Kii (m -n)B ( n)

= G&&, (m —1, n) + 4b K&&, (m —1,n)B (m —1,n) + ) Gii ~ (m, n) (C7).

The discretized and simplified version of Eq. (23) can be expressed as

—) 4b K&~& (n, m)G&~&, (m, n) + 1+) 4b K&(i (m, m) B((m, n)

= B((m —1, n) —) 4b K&+& (m —1, m —1)B((m —1,n) +) B«(m, n) (C8).
In these expressions,

m n —1 i —1

G«i ~(m, n) = zb' ) ) K&&„(i,j)B (i,j)gt', &„(n,j) —) K&&„(i,j)b(i,j)G&„&, (g, n)
i=m —1 j=1 j=l

—4b Kii„(m —1, m —1)Gt"i' (m —1,n), (C9)

and

m n —1 4—1

Bii (m, n) = 2b ) ) K&)i (j, i)G&~&, (i,j)b'(n, j) —) Ki, i (j, i)gii (i,j)B (j,n)
i=m —1 j=1 j=1

+ 4 b K&, i (n, m —1)Gii, (m —1, n). (C10)
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These expressions were simplified by moving the "less than" Green's functions at m, n to the left side of the equations,
and keeping the "less than" Green's functions at i, j with i + j ( m+ n on the right side.

Equations (C7) and (C8) are used to calculate the off-diagonal "less than" Green's functions. For t = t', to ensure
the conservation of Q~, Eqs. (C7) and (C8) as well as their conjugate equations are needed. Using the relation (26),
we find that the equal-time components of the Green's functions satisfy

t
G—~(, (t, t) = 2Re) dt K(„( (t, t)B (t, t)g( ()~(t) t) —K„, (t, t)b(t t)}G())~(t) t)

~
I I OO

(C11)

and

t8+—{t,t) = 2Re) dt K&+& {t,t)G&~&, (t, t)b(t, tg —K&,
&

(t, t)g~~ (t, tgB (t, t)
lt'a

(C12)

In these expressions, g~~ and b are the simplified retarded Green s functions calculated using the algorithm described
in the preceding subsection. Here g&'&, and b' are the complex conjugates of g~~ and b, respectively.

For the diagonal (equal time) "less than" Green's functions, Eqs. (Cll) and (C12) can be discretized and simplified
to the following forms:

G&&,~(m m)) + Re) 2b K&&„~(m, m)G&„&, (m, m) —Re2b K&,&~(m, m)B (m, m)

= G„, (m —l, m —1)+Re —,'b'K, , (m —l, m —1)8 (m —l, m —1)+) Gu i- (m), (C13)

and

—Re) 2b K&+& (m, m)G&+t, (m, m) + 1+Re) 2b K&+& (m, m) B~(m, m)

= 8 (m —l, m —1) —Re ) 2b K&& (m —l, m —1)B (m —l, m —1) + ) Gn~ ~(m) . (C14)

In these expressions G~t & ~(m) is given by

m a —1 i —1

Gu l (m) = b ) ) K&„&~(j,i)B (j, i)gt l» (i,j) —) K&&„(i,j)b(i j)G&„t, (j, i)
i=m —1 j=1 i=1

—~ 82K&+&„(m —1, m —1)Gt„&, (m —1, m —1). (C15)

Notice that Eqs. (C13) and (C14) lead to the relation P& G&~& (m, m)+8~(m, m) = P& G&+& (m —l, m —1)+8+(m—
1,m —1). The conservation of q~ is thus preserved exactly in the discrete representation.

The solution to the set of linear equations for the "less than" Green's functions can be obtained using the following
prescription. (i) Initialize G&&, {1,1) with the original population of the atomic state for t = I and with zero for I g t
and 8 (1, 1) with 1 minus the sum of the original populations of all the atomic states. (ii) Solve G&&, (m —n, n) and
8+(m —n, n) for all possible n with fixed m. (iii) Repeat step (ii) with m starting at 3 and increasing by 1 at a time
until (M, M) is reached. M is the number of points along one direction of the matrix and corresponds to the total
time between effective t = +oo. Again steps (ii) and (iii) can be rearranged. The algorithm given above is suitable
for vectorization.

APPENDIX D: SIMPLE AND GENERALIZED MASTER EQUATIONS

The self-energies Z(t, t') are strongly localized to equal times. The SCA amounts to replacing the Green's functions
in the integrands of the right-hand side of the Dyson equations by their values at the peak of the self-energies.

Applying the SCA to the Dyson equations (22) and (23) results in the following equations:

t t—G„, (t, t') = ) 8 (t, t) dtK~„(t, t)g, , ,„.(t', t}—G~~, (t, t') dtK~~~„. (t, tabb(t, t)
)II —OO —OO

and
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t' t—B~(t, t') = ) G)~f, (t, t) dtK(~) (t, t)b*(t', t) —B~(t, t') dtKftf (t, t)gff ~t(t, tg
ll'o —OO —OO

(D2)

These equations are standard partial differential equations and can be solved relatively straightforwardly once the
retarded Green's functions have been calculated. To make the approximations more transparent, the retarded and
advanced Green's functions are now introduced. Using Eqs. (37), (17), and (18) and omitting the off-diagonal Green's
function in l, the Dyson equations (Dl) and (D2) take the form

t t
i —G e( tl') = G (et t') dt yf' (t)f' [tj fx(t tjB (t tj+ Be(t I) dt}[I' (t)I' (tj fe(t tjG [t t') (DS)

and

t t'
i Be(t,—t) Be(t,=t'}) dl}[[I' (t)I' (tjfe(t t)G (ttj+) , Ge(tt) d, i/f' (t)I' (tjfx(I t)B"(t,t'). .

—OO

(D4)

In order to evaluate these expressions, approximate expressions for the advanced and retarded Green's functions
must be derived. Applying the SCA to the Dyson equations for the advanced and retarded Green's functions Eqs.
(20) and (21) and making use of Eqs. (37), (17), and (18), the following Dyson equations are obtained:

and

i G(t, t') = d—(t —I')+ G (t, t') f dt}[I' (t)f' (tjf (t, tjB (t, tj

i—B (t, t') =$(t —t'}+B (I t')) f di/I' (t)f' (tjfe(t t)G"(t tj.
cr

(D5)

(D6)

These equations can be integrated to obtain the following expressions for the retarded Green's functions:

8 t —t' t
Ge(tt') = , exp —e de dt/f(e)f(tjfx'(etjB '( tje,
B (t, t') = exp —i) de dt/I' (e)f' (tjf (t, e)G (etj,8 t —t'

t'
(D7)

Due to the localization of f& the dt integral can be extended to —oo. To lowest order, one can then replace the
retarded Green's functions in the exponents by

b' (t t') =

tl t
exp — de dt/I' (e)I' (tjfx(e;tj

2 tl tl

tl t T.xp —) d. df})[r.(.)f.(tjf&(I,.) .
2 tl tl

(D8)

We thus obtain the expressions

G (t, t') = exp i d7. dt I' (~)l'—(tgf (~, tabb (w, t)
-R t'(t —t ) . — — — -o oR

2 tl tl

BR(t, t') = exp i ) d7. dt I' (~)l'—(tg f~(t, ~)go (~, t)
8(t —t')

t' t'
(D9)

for the retarded Green's functions. These expressions represent an improvement on the expressions in Eq. (3.28) «
LN, which were derived for in6nite bandwidth.

Equations (D9) can be inserted directly into Eq. (D3) and the Dyson equations can be solved by direct integration.
Notice that since QR = 1, the slave boson population can be calculated directly from

nR(t) =1 —) n. (t). (D10)
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The populations of the impurity levels can be directly calculated from Eqs. (D3).
Using the identity (26), rate equations for the populations of the impurity states can be derived directly from

Eq. (D3) and take the form

t

dt
—n (t) = n (t)2Im dt I (t)I" (tgf~(t, t)BR(t, t) + n~(t)21m dt I' (t)I' (t)f~(t, t)G" (t, t)

(D11)

where Eq. (D9) is used for the advanced and retarded
Green's functions. These equations will be referred to
as the generalized master equations (GME) and can be
solved straightforwardly. Detailed comparisons between
the exact calculation and the results from the GME for
different velocities and bandwidths have been described
elsewhere. The GME well describe the charge transfer
for ion-surface scattering in the hyperthermal regime.

Further simplifications in the spirit of the SCA are
possible. Assuming that the rapid oscillation with re-
spect to t is contained in the functions f&, we obtain

d

dt
.(t) = -r.(t) f' (..(t)) .(t) —f' (..(t)) (t)

= ln 2m —1 —C 0.26066

bo. = —
/

—+ ln
N (2 NAj' (E3)

where C is Euler's constant. To obtain an approximate
generalization to a parabolic band, we note first that as
long as 6 is the value at the Fermi level the leading
exponent ~e/Nb, ~ will be unchanged and we assume that
the formula (El) is still valid at least approximately, if we

replace the bandwidth D by an effective bandwidth D'.
Using the logarithmic scaling appropriate to the Kondo
problem gives

(D12)
D' ' ds („(e)
D ~ s („(0)

(E4)

APPENDIX E: ESTIMATION
OF THE KONDO TEMPERATURE

For the multichannel Anderson model (no off-diagonal
terms in the atomic level index) and a rectangular ((e)
one can make use of the Bethe ansatz to solve for T~
analytically; for e in the band the result may be written
as

(
TIc = D exp I—

NA
(E1)

where o. = a + bn, with

This equation is referred to as the simple master equation
(SME).

where („refers to the rectangular shape function and („
refers to the parabolic one. This suggests that we can
still use (El) for the parabolic band as long as we make

the replacement D ~ De ~, which is the same as using
a = 0.76066 instead of (E2). All the Kondo tempera-
tures estimated in this paper will use this procedure.

Equations (El), (E2), and (E3) can also be used to
estimate the validity of the 1/N expansion in the Kondo
region by expanding the exponent in (El) to order 1/N
and comparing how the result differs &om the exact one.
In this manner one estimates, for example, for the pa-
rameter choices in Fig. 7, that the results are in error by
about 10% for N = 4 and 60% for N = 2. As ~c/NA~
gets larger, so does the error, so that we estimate a 10%
error for a case with the parameters of Fig. 8(b) even for
%=6.
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