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When two objects of subwavelength size interact in the presence of a light beam, a spatially confined
electromagnetic field arises in a small spatial region located at the immediate proximity of the particles.
In scanning probe microscopy, such induced short-range interactions change the magnitude of the forces
interacting between the probe tip and the substrate. Depending on the frequency of light excitation with
respect to those of the gap modes associated with the tip-sample junction, these inductive forces act to
pull the probe toward the surface. Such an effect can be used to record optical adsorption of various
samples with an atomic-force microscope. In this paper we show that the accurate description of the
physical processes responsible for these forces can be analyzed within the framework of the localized
field-susceptibility method. Practical solutions for the light-inductive force were found by discretization
of the probe apex in real space. All multiple interactions including reflections with a substrate of arbi-
trary profile were accounted for by self-consistent procedures. We can therefore present simulations per-

formed on systems of experimental interest.

I. INTRODUCTION

Since the pioneering work of Rohrer' and Binnig,?
scanning probe microscopies and related methods proved
to be valuable tools for studying a large class of physical
observables at the nanometer scale (e.g., light emission in
confined geometry, fluorescence properties of localized
molecular aggregates, localized plasmon resonances,
etc.).! 3 In atomic-force microscopy (AFM), the use of
interaction forces at the nanometer scale to image sur-
faces of insulating materials was developed as a comple-
mentary tool to the scanning tunneling microscope
(STM).*"% The resolution obtained with an AFM de-
pends strongly on the kind of tip-sample interactions in-
volved in recording the images, and various theoretical
models were proposed.’ ~1°

In another related technique called scanning near-field
optical microscopy (SNOM), the radiation emitted from a
nanodetector (e.g., pointed optical fiber, metallic
subwavelength particles, micropipette, etc.) is analyzed
for different detector-sample configurations leading to
subwavelength-resolved features lying on dielectric and
metallic samples.!’”2° More recently, microfabricated
probes for use in simultaneous optical near-field and force
microscopy have been reported.?>?? From such hybrid
detectors, near-field images were directly compared to the
topography displayed in the simultaneously recorded
AFM images.

When an electromagnetic wave (e.g., laser light) is fo-
cused in the gap located between the probe tip and sur-
face, various physical phenomena are expected. As de-
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scribed in Ref. 23 the absorption of light by the tip and
sample can provoke a thermal expansion of the system,
leading to possible optical-absorption spectroscopy for
the sample. The electric field associated with the light
beam can also produce an additional force between the
detector and substrate. This inductive effect was already
discussed in the context of scanning tunneling optical mi-
croscopy (STOM),? also called photon scanning tunnel-
ing microscopy (PSTM). Rough numerical estimations of
this effect indicated that the order of magnitude of the in-
ductive force is experimentally accessible. However, a
detailed theoretical description of this effect which could
predict accurately the magnitude and spatial distribution
of inductive forces as a function of photon energy and
tip-sample distance (or other geometrical and material
parameters of both the probe and surface) is not yet avail-
able.

Recently, we developed a theoretical approach to
study the main features of the physical interaction be-
tween a thin probe tip and a corrugated surface. This
study was based on a self-consistent calculation of the
coupling modes of the two interacting systems in terms of
the field susceptibilities associated with the sample.?” In
the present work we adapt this framework in order to
derive a general expression for the tip-sample inductive
force. The paper is organized as follows. In Sec. IT we
derive the field susceptibility of a single corrugated sur-
face from a Dyson-type equation.”® This response func-
tion is the key quantity of our problem, and the use of
Dyson’s equation to build it avoids the boundary condi-
tion problem. Using this field susceptibility of the isolat-
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ed surface, a whole quantum electrodynamical treatment
of the tip-substrate energy interaction in the presence of
an external field is performed in Sec. III and final expres-
sions of the concomitant forces are discussed. Experi-
mentally relevant applications are proposed in Sec. IV.

I1. FIELD SUSCEPTIBILITY
OF A CORRUGATED SURFACE

The investigation of the electromagnetic response of
rough surfaces was the subject of many previous theoreti-
cal works. For example, this problem was treated in
Refs. 29 using a set of integral equations expressed in re-
ciprocal space. Corrections to the results for a perfectly
plane surface were obtained in terms of the Fourier trans-
form of a smooth corrugation function z=n(x,y)
defining the weakly corrugated surface of the solid.
However, such an approach is inadequate for studying
awkward surface corrugations such as those encountered
in scanning probe experiments. Moreover, it appears in
this context that both mesoscopic and nanometric re-
gimes are often undissociable, particularly when a probe
tip is approached for local detection. For these reasons
we preferred to adopt a real-space representation in
which the defect lying on the substrate was built from a
self-consistent procedure which avoided the usual bound-
ary conditions on the surface of the defect.

The field susceptibility S(r,r’,w) of a material system
reveals how a dipolar source field is modified at the prox-
imity of the surface limiting this system.?’ In a general
quantum description, this response function can be ex-
pressed in terms of the matrix elements of the field opera-
tor associated with the system of interest. The deduction
of the response field of the solid to an arbitrary fluctuat-
ing dipole moment my(w) is another way of deriving this
susceptibility.’” In this section, we present a self-
consistent calculation of this dyadic tensor S(r,r’,) for a
perfectly planar surface supporting localized defects of
arbitrary shapes (see Fig. 1). In the first step we define

E
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FIG. 1. Schematic illustration of a three-dimensional paral-
lelepipedic surface defect lying on a flat surface (the reference
system). The system is submitted to a pointlike dipolar excita-
tion m, located at the position r,. The surface defect is discre-
tized with a set of n elementary cells located at the various posi-
tionsr;.
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the zero-order field, i.e., the field emitted by the fluctuat-
ing dipole my(®) located above the perfectly planar sur-
face at the position ry=(x,¥¢,2¢):

eo(r,0)=sy(r,15,0) my(w) , (1

where the dyadic tensor sy(r,ry,) represents the field
susceptibility of the planar surface (the reference system
in our case). Various analytical forms for this response
function are given explicitly in Ref. 27.

In the presence of the external field ey(r,®) the micro-
scopic components located inside the surface corrugation
acquire fluctuating multipole moments which are per-
turbed by the surrounding dielectric. The resulting self-
consistent electric field verifies the following implicit
Lippmann-Schwinger?>2% equation:

E(r,0)=sy(r,15,0) myw)
+f fso(r,r’,w)-)(s(r’,r”,w)E(r”,w)dr'dr“ .
2)

In this integral equation, the response function
Xs(r',t",w) defines the linear susceptibility associated
with the surface corrugation. If one assumes a local
response for this perturbation, it is possible to relate y, to
the local dielectric constant €,(w) of the surface defect:
[e,(0)—1]
X (r, ", 0)=——8(r'—1") . (3)
47

Such an approximation wipes out the integral over r”,
and is valid to deal with mesoscopic corrugations occur-
ring in the context of local probe microscopies since it is
well known that the macroscopic dielectric constant
€,(w) does not need to be modified for particle sizes
above 5 nm.*® The survival internal occurring in (2) can
then be performed by discretization in Cartesian
space.?>26 This leads to

E(r,0)=sy(r,15,0) myw)

[&(@)—1] =
+Tj§1 Wisy(r,1;,0) E(r;,0), (4
where W, represents the volume of the jth discretized
element in the surface corrugation. Note that the discret-
ization of the surface defect is just a numerical procedure
to take mesoscopic objects of arbitrary shape into ac-
count. The set of vectors {E(r;,w)} can be determined
by a standard linear algebra procedure. Thus by setting
r=r; in Eq. (4) one obtains the following matrix equation
to be solved numerically:

Ho)=Alw)0Fyw) , (5)

where the symbol @ indicates a total contraction on both
Cartesian indexes and positions of discretized elements.
Moreover Hw) and Fy(w) are two supervectors defined
by

Hw)={E(r,0);E(ry,0);. . .;E(r,,0)} (6)

and
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In Eq. (5), the (3n X3n) matrix A is built from different
components taken by the field susceptibility s, for all pos-
sible couples of position vectors {r;,r;}:

—1

Blw) ) ©)

Folw)=8rp,0) mylw) , (7

where $§(14,) is a supertensor given by
[e,(w)—1]

Alw)= yym

I—

810, @) ={8o(11,T0,);80(1;,T0,0);...;50(T,, T @)} .
oo o oo 0 ¢ where I represents the identity tensor, and B(w) is the
(8 (3n X 3n) matrix defined by

Wlso(l'l,l'l,(o) Wlso(rl,rz,w) WXSO(rI’rn!w)
WzSO(rz,rl,(l)) Wzso( rz,rz,ﬂ)) WzSo(rz,r,l,w)

Blw)= (10)
W, so(r,,r,0) W, sy(r,,10) W,so(r,,1,,0)

This matrix contains all the dynamical and structural information about the surface defect when it interacts with the
reference system. The diagonal terms describe the direct coupling between each discretized element and the substrate,
while the off-diagonal terms are responsible for the interactions between these elements. Note that when the number n
remains finite, the self-consistent equation (5) can be solved exactly. It is then possible to obtain the amplitudes of the
effective fields E(r,w). Furthermore when the size of the dynamical square matrix A (@) remains reasonable (» < 500),
it is possible to derive accurate numerical solutions for the effective-field distribution contained in the supervector Fw).
It is then a simple matter to obtain a general expression for the response field E(r,w) defined in (4). Substitution of Egs.
(5) and (7) into (4) leads to

E(r,0)=sy(r,T50) myo)+ 81y, 0)0A(0)0A(0)eS)(ry,0) myw) , (11)

where A(w) is a block-diagonal matrix built from dynamical dipolar polarizibilities associated with each microsystem:

W, 0 0 0 0 0 0

o w, 0 O 0 O 0

1o o w 0 0 0
€(w)

A(w)=—;- 0 0 o w, 0 0 0 (12)

T

0 0 0 0 W, 0 0

0O 0 0 0 0 W, 0

0 0 0 0 0 O W,

and

$Solrg @)= {8¢(1p, T}, 0);8¢(Ts T, @);...58(r, I )} . (13)
Let us recall that in the present description the surface
defect is assumed to be homogeneous and isotropic. In
Eq. (11), the response field E(r,w) is linear with respect to
the external dipole moment my(w). Consequently the
dyadic tensor connecting these two vectors is merely the
field susceptibility of the system:

S(r,r',0)=sy(r,r',0) + 81,0 )0A(0)eA(w)eS (1, v) .
(14)

Equation (14) establishes a simple and compact relation
between the field susceptibility of a reference system (for
example, the perfectly plane surface of a solid) and a
more complex system displaying surface defects of arbi-
trary profile. Such a general equation is similar to the
Dyson’s equation currently used in the electronic
Green’s-function theory.’! The many-body character of
the interactions between the discretized elements is in-
cluded in the matrix product A(w)@A(w). Notice that,
when the mesoscopic surface defect is replaced by a sin-
gle polarizable center (an atomic or a molecule for exam-
ple), the matrix A(w)@A(w) reduces to a (3X3) diagonal
matrix. In this particular case the general Eq. (14) can be
solved analytically.?®



49 THEORETICAL ANALYSIS OF LIGHT-INDUCTIVE FORCES . . .

III. COUPLED MODES
OF THE TIP-SAMPLE SYSTEM

A. Model and basic equations

The application of an external field Ey(r,0) (e.g., a
laser beam) to the corrugated surface creates a resulting
electric field 64(r,w) in the vicinity of the interface. As
expected, this field is modified when a probing tip ap-
proaches the substrate. To obtain the new field distribu-
tion 6(r,w) inside the probe-sample system, one needs to
solve again an implicit integral equation

6(r,0)=6y(r,0)+ [ S(r,r,0),(r,0)-6(r,0)dr’ ,
(15)

where the integral extends on the volume occupied by the
probe tip, and x,, describes its linear susceptibility. Once
again, if one assumes a local response for the material
composing the detector, this equation can be solved with
a discretization procedure similar to the one used in Sec.
J

'flls(Rl,Rl,w) nls(RI,Rz,(IJ)
1,8(Ry,Ry,0)  1,8(Ry,Ry,0)
‘M(m)=Xp(w) “ e PPN

N.S(R,,,R,0) 1,8(R,,,Ry0)

where 7); is the weight attributed to the jth discretized
element located inside the detector.

Dispersion equation

Let us note that if the source field &, contained in the
supervector Vy(w) vanishes, we find the following eigen-
value:

V(o)=Mw)oV(w) . (21

The allowed coupled modes are then given by the solu-
tions for the dispersion equation

D(w)=det[I—M(w)]=0 . (22)

The positive roots of this equation determine the possible
eigenfrequencies of the tip-sample junction for a given
spatial configuration. The influence of surface roughness
on these modes was included in the propagator S derived
in Sec. II.

Effective field inside the substrate

It is now possible to derive a general expression for the
optical electric field inside both the surface defect and the
reference system. In fact, from Eq. (15) the knowledge of
both the effective field distribution inside the tip [cf. Eq.
(17)] and the propagator S is sufficient to describe the re-
sulting field inside the substrate. This leads to
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II to derive the dyadic tensor S(r,r’,w). This leads to the
following set of linear coupled equations:

V(o)=Mao)eVyo), (16)

where V(w) and V(o) are two supervectors defined by

Vio)={6(R,0);6(R,,0);...;6(R,,,0)} (17)
and

Vo(@)={6)(R},0); 5¢(Ry,0);...;6((R,,,0)} (18)
and

Mo)=[I-Ma)]"", (19)

where m represents the number of discretization points
used to treat the probe tip. In Eq. (19), the matrix M(w)
is built from different components taken by the field sus-
ceptibility S for all possible couples of position vectors
{R;,R; } defined inside the tip:

nlS(Rl’Rm ,(l))
17,8(R,,R,,,0)
’ (20)

7mS(R,,,R,,,®)

f

6(r,0)=6y(r,0)+ 3 1,X,(0)S(r,R;,0)-6(R;,0) (23)

i=1

for any point r located inside the reference system, and to

6(r;,0)=6(r;,0)+ 3 n:X,(0)S(r;,R;,0)-6(R;,0)

i=1
(24)

for each discretized points located inside the corrugation
surface.

We note that the above procedure avoided matching
boundary conditions on the surface of the probe tip.
They are automatically satisfied by the self-consistency of
the integral equation (15). The boundary conditions at
infinity (Sommerfeld radiation condition) are guaranteed
by the asymptotic behavior of the propagator S(r,r’,),
which generates spherical waves at large distance from
the field sources.

B. The tip-sample force in the noncontact regime

When the probing tip is scanned across the surface at a
height sufficiently large to ensure that no overlap of the
electrons wave functions occurs, the long-range interac-
tion energy in the absence of permanent charges is com-
posed of two contributions:

U(R,)=U,4,(R,)+Upg(R,) . (25)
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The first one is the dispersion van der Waals energy. The
existence of such long-range forces can be inferred from
the correlation between fluctuations of the charge densi-
ties inside the probe tip and substrate. According to the
van der Waals force theory,?’ the knowledge of the
dispersion equation (22) is sufficient for determining
Uvdw(Rp ):
_fi o .

Uvgw(R,)= >~ I [ InD(iu)du (26)
After substituting Eq. (22) into Eq. (26), this energy can
be written

_h e .

UR,)=— [ “In[I—M(iu)ldu . @7
Let us note that in the context of the dispersion interac-
tions the presence of the integral on imaginary frequency
eliminates all resonance phenomena. In this situation
each matrix element of M(iu) remains small with respect
to unity. It is then possible to obtain an accurate descrip-
tion of U4, (R,) by applying the following expansion:

U(Rp):—— s qf Tr[M
g=1

MDGu))du (28)

where the symbol /' represents the matrix product of
mth order. It may be seen that the first term (m =1) cor-
responds to the direct coupling between each element in-
side the probe tip and the surface, while the other terms
account for the many-body effects.

In Eq. (25) the second contribution represents the
light-inductive energy.?* The calculation of this quantity
requires the form of the external field Ey(r,t) to be
specified. In the present work we will restrict our discus-
sion to the case of an external monochromatic field of fre-

quency w,. In this case the Fourier transform can be
written
Ey(r,0)=m8(0—ay)f(r)+78(o+ay)f*(r) , (29)

where the analytical form of the spatial function f(r) de-
pends on the location of the laser beam (e.g., internal or
external configurations). With such a monochromatic
source field it is straightforward to demonstrate that the
time-dependent effective field &(r,w) inside the probe-
sample junction can be expressed by
E(r,)=1{e " T(r,00)+e “"T*(rc,m} . (30)
The value of the vector function I' depends on the loca-
tion of the position vector r in the system. Inside the

|

Ugh(R,)=—1 2 WX (00)T(1;,0)- T*(r;,00)+c.c.

where the first part is simply the contribution originating
from the surface defect. According to the discretization
procedure described above, this quantity reappears as a
summation over all the elementary cells used to treat the
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probe tip it is given by

F(R,,(Oo z le CL)()) GO(Rk’(DO (31)
(as described in Sec. III A, the vector & represents the
effective field in the absence of the probe); and inside the

substrate it is given by

F(r,wo) 60 T, Cl)o)
+ 2 2 7:X,(00)S(1,R;, @)
i=lk=1
XN (@) Eo( Ry, ) (32)
where r=r; inside the surface defect, and r=(x,y,z <0)

is a point located inside the reference system. From these
equations it is now possible to derive the time-dependent
electrical polarization inside the tip-sample junction:

i Wt
=1{xo@ple ' T(r,00)+c.c.} .

P(r,1) (33)

In this relation the index a takes the values p and s in the
probe and substrate, respectively. Let us note that this
induced polarization density is, by means of the function
I, a functional of the external field E,. Hence, when this
field passes from zero to the finite value E;, the system
acquires a light-inductive energy given by the relation

-3 <fv7’a(r,t)-6(r,t)dr>, ,

where the integral has to be performed on both the
volume v occupied by the probe and sample. The brack-
ets indicate that the time average must be taken. Using
Eqgs. (29)-(33), the relation (34) can be split into two
parts:

Uina(R,)=

Upa(R,)= (34)

URNR,)+UGLR,) . (35)

The first term U} describes the inductive energy experi-
ences by the detector. This quantity can be expanded on
the discretization grid {R;} previously used to solve the
self-consistent field (see Sec. III A). Such a procedure
leads to

Ui&; :—% 2 77)(,; (o) F(Rnwo)

XF*(Ri,a)O)+C.C.} . (36)

Using a similar procedure, the second term U\:) associat-
ed with the sample can be expressed as

—+f faxdy [° _dz[X,(@0)T(r,00) T*(r,00) +c.c.], (37

f

three-dimensional surface defect (cf. Fig. 2). Finally the
second term in Eq. (37) corresponds to the inductive en-
ergy gained by the reference system in the presence of the
probing tip.
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In order to clarify the subsequent discussion, it is im-
portant to remark that the two contributions [Egs. (36)
and (37)] associated with the light-inductive energy are
expressed in a very concise way by the field amplitude
I'(r,w) [see Egs. (31) and (32)]. As indicated in the pair
of relations (31) and (32) for a given spatial tip-sample
configuration and for a given frequency w, I' displays
resonances when

Re[det(N ™ Ywy))]=0 . (38)

In particular, for a pointed metallic tip placed above a
metallic substrate this resonance can occur in the optical
range before the tip touches the sample surface. Such
resonant effects were recently observed by generating lo-
calized plasmons on a spherical metallic detector ap-
proaching a surface. In the near-field zone (about 100 nm
from the surface) extremely narrow resonance peaks
versus the approach distance were recorded.’? In the
present case, such gap modes could also generate specific
resonances phenomenon in the inductive force charac-
teristic. This differs from the van der Waals force
characteristic [see Eq. (27)], in which the imaginary fre-
quency integration damps all resonance phenomena.

IV. APPLICATION TO SPECIFIC CONFIGURATIONS

The main component of all scanning probe micro-
scopes is the nanoprobe which records the relevant physi-
cally observable phenomena for a given spatial
configuration (e.g., tunneling current, interacting forces,
electromagnetic field). In the context of near-field experi-
ments coupled with force sensor devices, two different
kinds of optical probes have already been investigated.
The first class is obtained by mechanical pulling and
chemical etching of both monomode or multimode opti-
cal fibers.>* the second type are microfabricated SiN
probes currently used in AFM: they are composed of a
pyramid apex integrated on a microcantilever.2>?? In
this case the tip extremity is a tetrahedrally shaped pro-
trusion where four faces and four sharp edges converge in

z

FIG. 2. Geometry of an experimental scanning probe device
lit in external reflection. The wave vector K, is located in the
(YOZ) plane, and the incident angle is labeled 6,. The vector
Rp,=(Xp,Yp,Zp) defines the detector apex position, and R;
characterizes the location of given volume element inside the
probe tip.
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FIG. 3. Geometry used in the numerical application of Sec.
IV. The shape of the tip is tetrahedral like those currently used
in scanning force microscopy. The aperture angle used in our
simulation is chosen equal to 90°. Z, represents the tip-sample
approach distance, and Z, defines a plane located inside the

gap.
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FIG. 4. Perspective view of the normalized electric-field in-
tensity distribution I /I, inside the tip-sample junction calculat-
ed in a plane z =Z parallel to the surface. The zeroth-order
solution in the half-space (z >0) is the superposition of an in-
cident plane wave and the reflected field from the surface. The
incident angle 6,=75°, and the calculation has been performed
with a tetrahedral tip of height H =100 nm. The curvature ra-
dius of the tip end is equal to 7.5 nm. (a) Z,=5 nm; Z,=2.5
nm. (b) Z,=15nm; Z,=7.5 nm.
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a common tip ending with a small curvature radius 7, (1
nm <r, <50 nm). In our application, we considered
such a tetrahedral tip apex facing a perfectly plane sur-
face (cf. Fig. 3). This choice avoided the complexity intro-
duced by the real profile of the substrate. Nevertheless, it
retained the main characteristics of the physical process-
es investigated in this paper. A more complete simula-
tion based on the entire formalism detailed in Secs. IT and
I11 is planned for a forthcoming paper.

A. Field distribution in the tip-sample junction

The tip chosen to calculate the light-inductive force
Uina(R,) [cf. Egs. (35), (36), and (37)] was a pyramid
(height H and aperture angle =90°) with an optical in-
dex Mo varying between 1.5 and 2.2. Moreover, for the
computation we considered a discretization grid built
from a Cartesian mesh consisting of six layers of grid
points organized in a succession of square layers parallel
to the sample surface. Furthermore we will restrict our
application to the external reflection configuration de-
scribed in Fig. 2. In this case, the zeroth order excitation
field Ey(r,w) (cf. Sec. IIT A) above the surface is the sum
of an incident plane wave of frequency w, and a reflected
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FIG. 5.
8,=15".

Same as Fig. 4, except that the incident angle is
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wave by the substrate. In the p-polarized operating mode
this field is written as

Ey(r,0)=mEy{ f(1)8(w—wy)+ f*(r)8(0+wy)} , (39
with
fo(n)=0, (40)
£ n=le " =R,e " cos(6,) , 1)
fin=le " +R,e " sin(6y) , 42)

where E represents the magnitude of the incident field,
and R, is the reflection coefficient of the sample; k, and
k, are the wave vectors of the incident and reflected
waves, respectively, while 6, represents the angle of in-
cidence. We chose the configuration in which the vector
k, was parallel to the (YOZ) plane.

As illustrated by the pair of relations (36) and (37), the

—7R° |
2. 6,=15 !
2_
—
<
1,51
14
-45 -30 -15 0
Z(nm)

0.8 -45 -30 -15 [6)
Z(nm)
FIG. 6. Illustration of the variation of the normalized

electric-field intensity (I/I,) inside the substrate. The two se-
quences of curves show the variation of the intensity induced by
the presence of the SFM tip. These curves have been calculated
for different lateral positions Y spaced 2 nm apart along the sur-
face. The parameters of the SFM tip are those of Figs. 4 and 5,
and its position is Z, =5 nm.
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FIG. 7. Variation of the normal light induc-
tive forces as a function of the approach dis-
tance Zp (in fN). The calculation was per-
formed with a tetrahedral tip of height
H =400 nm, and of curvature radius r,. =40
nm. ¥, 6,=56.5° (Brewster angle); O, 6,=50°;
and Q, 6,=60".

—1800
0

20 5 30

2 35
Zp(nm)

magnitude of both the light-inductive energy and the
concomitant normal force defined by

F=—=2

z U d
aZP mn

(43)
depends on the magnitude of the self-consistent field
I[(r,0) located around the tip-sample junction. As ex-
pected, the confined character of this field is responsible
for the efficiency of the optical binding between the tip
and substrate. In order to characterize the spatial exten-
sion of this confinement, we calculated the normalized
electric field intensity n=1/1, inside the gap formed by
the tip-sample interface (cf. Figs. 4 and 5). In this ratio,
I, corresponds to the intensity calculated in the absence
of the detector. These calculations have been performed
with a tetrahedral tip of height H =100 nm and of optical
index n,,=1.5. We found that for an approach distance
Zp of about 5 nm, a very confined field occurs in the gap.
Using a 7.5-nm-radius tip end we usually obtained less
than 20-nm lateral extension for this field intensity.
Moreover, in the external reflection configuration, the
shape of the intensity maps calculated in the p-polarized
mode depended dramatically on the incidence angle 6,. A
possible origin of this effect is the shadow introduced by

the probe in th near-field zone. This situation occurred
preferentially for small angles of incidence (cf. Fig. 5). In
any case these simulations illustrated convincingly the
optical confinement originating from the interfaces
geometry.

We addressed the question of the decay of the normal-
ized intensity =1/ induced by the detector inside the
sample (see Fig. 6). This quantity could easily be derived
from the results established in Sec. III B [see Eq. (32)].
As expected, knowledge of the spatial variation of
n(x,y,z) inside the substrate afforded some insight into
the efficiency of the tip-sample coupling. It allowed us to
define precisely a criterion to determine the range over
which the threefold integral occurring in Eq. (37) must be
performed. Sets of 17(z) curves are presented in Fig. 7 for
a fixed position of the tip Rp=(0,0,5 nm). These curves
have been calculated for different lateral position y,
spaced 2 nm apart along the surface. Note that the exten-
sion of the field penetration inside the substrate is strong-
ly limited and varies dramatically with respect to 6,. It
may be seen, for example, that for large incident angles
the decay length is optimum just below the tip apex.
Furthermore, the variation of the field induced under the
surface occurs on a scale fixed by the probe tip size.
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FIG. 8. Same as Fig. 7, but with v, 6,=10%
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Indeed for a 100-nm-height tip, the ratio i is nearly equal
to unity when |z| is greater than about 60 nm.

B. The optical binding force

Having collected enough data about the spatial distri-
bution of the confined optical field around the interface,
it was possible to study numerically the behavior of the
optical binding force F, [see Eq. (43)]. As in Ref. 33, we
assumed that the laser beam after focusing provided 2.2
W of mean power over a surface of 150 um?. From the
knowledge of the function Uj4(Xp,Yp,Zp), it was easy
to obtain the normal light force. For a given spatial
configuration (Xp=0,Y,=0), U,y was computed for a
small number of points located around Z,. The function
U,,q Was then fitted from these points by a polynomial in
Z. We used five values of Z to fit U, 4(z). The z-force
component was calculated at point Z, from this polyno-
mial. In Figs. 7, 8, and 9, F, is drawn as a function of the
approach distance Zp. The calculation took into account
a tetrahedral tip of height H =400 nm terminated by cur-
vature radius r,, =40 nm. For a mean power of 15
mW/um?, the magnitude of the force varied within 2 and
5 pN when the tip was located in the immediate proximi-
ty of the sample. Such a force can be currently detected
by using AFM resonant devices.” Furthermore, for a
fixed sample-to-tip edge distance, F, appeared to be very
sensitive to the incident angle 6, (see Figs. 7 and 8). This
light-polarization effect originates from a subtle competi-
tion between the interference pattern generated by the su-
perposition of both incident and reflected waves and the
optical near-field confined by the tip-sample interaction.
Thus, as evidenced in Fig. 7, working in the vicinity of
the incident Brewster angle appears to provide an in-

teresting opportunity to observe the purely optical bind-
ing force alone. Finally, it is interesting to note the
strong sensitivity of the magnitude of F, with respect to
the optical index of the detector (Fig. 9).

V. CONCLUSION

Using the field-susceptibility method we have proposed
a theoretical analysis of physical mechanisms underlying
the light-inductive forces occurring when a laser beam is
focused in the gap formed by a thin probe tip and a cor-
rugated surface. We have also detailed a numerical solu-
tion procedure that allows realistic geometries to be han-
dled. The numerical applications discussed above illus-
trate optical confinement as it originates from the tip-
sample geometry. Another interesting finding is that a
very direct link exists between the spatial localization of
the optical energy and the characteristics of the light-
inductive force. Moreover, our simulations clearly indi-
cated that working in the vicinity of the Brewster angle
might be of experimental interest for recording the purely
optical binding force between the two interacting sys-
tems. Finally the direct-space discretization procedure
used to solve this coupled system may easily be adapted
to the study of other experimental configurations (e.g., to-
tal internal reflection, coated metallic tip).
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