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Elastic-displacement field of an isolated surface step
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The asymptotic elastic-displacement field of a surface step is shown to result from a planar force dis-

tribution which is composed of two point elastic dipoles, one oriented along the surface of arbitrary
magnitude and one normal to the surface with dipole moment ag where a is the step height and g is the
surface stress. The analytic form of the dipole displacement field for an isotropic material is presented.
Experimental and simulated TEM images of the asymptotic displacement field are presented which

demonstrate the dipolar nature of the force distribution. The normal dipole moment of a monatomic

step on Si(111)(7X7)is computed to be 0.58+0.04 eV/A. The tangential dipole moment is measured to
be 1.46+0.3 eV/A. The stress and strain tensors for an isolated step and the displacement field for a

stepped surface are presented.

I. INTRODUCTION

Recent advances in transmission electron microscopy
(TEM) allow the imaging of the elastic-displacement field
of crystalline surface features such as adatoms, steps, and
phase boundaries. ' The techniques represent a chal-
lenge to the theory of the elastic field of surface features,
since they allow quantitative information about the mul-
tipole moments to be extracted, if the form of the asymp-
totic displacement field can be supplied.

The elastic field of a step is the central quantity in un-
derstanding interactions of surface features. A surface
step exerts force on the bulk crystal which causes the
crystal to deform. The deformations are described by the
elastic-displacement field. If the undeformed location of
an atom is r and the location after deformation is r', then
the displacement field u, the distance the atom at r is dis-
placed, is defined by r'=r+u(r). Steps interact through
their displacement fields and the energy of this interac-
tion contributes to the surface free-energy density and
thus affects the equilibrium crystal shape. Steps also in-
teract elastically with surface diffusers and vacancies.
Field-ion-microscope (FIM) experiments observe an at-
traction between an adatom on the terrace above the step
and the step edge. The interaction of a step and an ada-
tom on the lower terrace should be very much like the in-
teraction between adatoms and a large cluster. FIM ex-
periments observe an exclusion zone devoid of diffusers of
width 10 A surrounding a cluster. Adatoms also in-
teract elastically with each other leading to an interac-
tion energy with a complicated angular dependence. An
understanding of the step displacement field is essential
to advancing surface theory beyond fixed lattice models.

The purpose of this work is to present a clear and care-
ful analysis of the asymptotic displacement field of a sur-
face step, to understand approximations made by previ-
ous works, and to present exact results when possible. In
Sec. II, the elastic multipole expansion is developed to al-
low the extraction of the asymptotic field from an arbi-
trary force distribution. The form of the displacement
field of a step and the elastic multipole moments are com-

puted. In Sec. III, the analytic form of the surface
Green's function and the dipole displacement fields are
given for an isotropic elastic material. In Sec. IV, the di-
pole fields are quantitatively tested against a simple com-
putational model of a step. In Sec. V, the effetco'f cubic
anisotropy is evaluated. Section VI presents TEM images
that determine the leading multipole moment of a step.
The theoretical displacement field is used to extract a
quantitative value for the leading multipole moment of a
monatomic step on Si(111)(7X7). The stress and strains
tensors for a surface dipole and the displacement field of
a uniformly stepped surface are reported in the Appen-
dix.

II. GENERAL RESULTS

The usual approach to the problem of step elasticity is
to approximate the force distribution at a step by a force
distribution projected on a Bat interface and then use iso-
tropic linear elasticity theory to compute the displace-
ment field. ' This involves both an approximation to the
force distribution and the approximation of using an iso-
tropic theory to model a crystalline system. In this sec-
tion, the projection of the force on a plane is investigated.
The general form of the elastic multipole expansion is
presented and used to derive exact results about the lead-
ing multipole moments.

A. Elastic multipole expansion

Figure 1(a) shows a cross section of a straight step
infinite in the y direction. The elastic problem of an
infinite straight step reduces to a two-dimensional prob-
lem with both the force distribution and the elastic-
displacement field independent of y. The mathematical
tools available for computing the displacement field work
only for Bat surfaces, so the stepped surface must be re-
placed by a mechanically equivalent Sat surface. For the
isolated step, the natural Hat surface is the plane AB in
Fig. 1(a). The correct force distribution on the plane AB,f" (x) is found by separating the crystal along the plane,
thus removing the atoms forming the step and replacing
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them with the force they exert on the plane AB. The
separated crystal is shown in Fig. 1(b). The removed por-
tions above AB wi11 be called the step system. This does
not involve an approximation because it is always possi-
ble to separate an extended body and replace the removed
portions by the forces they exert. Also, any surface
forces acting on the atoms in plane AB are treated as
external forces and absorbed into f" . This procedure
converts the complicated problem of a stepped surface
acted on by surface stresses into the problem of a bulk
crystal acted on by an external force distribution at its
Qat surface. The procedure does not introduce any ap-
proximations, since f" is simply the physical force dis-
tribution on the plane AB. It is the displacement field

generated by this force distribution that is observed ex-
perimentally. Two sets of forces contribute to f" for an
isolated step, a localized force distribution at the step, the
forces f, in Fig. 1(b), and the forces exerted by the unbal-

anced surface stresses at the edges of the crystal.
The force distribution f" has no simple relationship

to the microscopic forces on the surface atoms. It con-
tains the response forces generated by the excess stiffness

Xr

g---B

of the surface and the elastic forces generated by strain-
ing the layer of atoms forming the step. The step system
filters the force distribution on its surface as those forces
are communicated across the plane AB. Therefore, any
attempt to use information extracted from f" to model
the local microscopic force distribution is uncontrolled.
Equally dangerous is proposing a microscopic distribu-
tion of forces on the physical surface and computing f",
since an accurate calculation would include a self-
consistent treatment of the force distribution generated
by excess surface stiffness and the mechanical properties
of the extra row of atoms forming the step.

The planar force distribution f" allows the computa-
tion of the displacement field of the material below the
plane AB as the convolution of f" with the relevant
Green's function:

u;(x, z) = J dx'G J(x x', z)fz" —(x'), (2.1)
L

where i and j are either x or z, repeated indices are
summed, u; is the component of the displacement field,
and 6; is the four component tensor Green's function.
The x axis coincides with the AB plane and the origin
will be set to the center of force. The Green's function
G; is the solution to the problem of a line force f, at the
origin, with the displacement field given by u; =G,JfJ .
For now, the Green's function is left arbitrary. Its form
depends on the symmetries of the bulk crystal. The force
distribution from the step is assumed local and contained
in the region L. We seek a solution for the displacement
field outside this region but far from the boundaries of
the crystal, so the forces from the surface stress at the
edge of the crystal are excluded from the integration.
The asymptotic field of a localized disturbance is found
by performing a multipole expansion. Since the region L
is finite and in reality small, it makes sense to expand the
Green's function in a Taylor's series:

A

(b)

gf r

( —1)»(x')» 8"Gi(x,z)
G; (x —x',z)=gfJ n! »

n

Define the multipole Green's functions

(
—1)» 8"G;i(x,z)

D;"(x,z) =
v '

n) gx»

and the multipole moments

d,"=I dx f;" (x)x" .

(2.2)

(2.3)

(2.4)

Substituting the Taylor expansion and using these
definitions, {2.1) can be rewritten as

FIG. 1. (a) Cross section of an infinite straight step. The vec-
tor g is the force exerted by the unbalanced surface stress at the
edge of the crystal. (b) Separation of the crystal that allows the
computation of the elastic-displacement fields. The torque ~ is
generated by the force exerted by the unbalanced surface stress.
The separation of the crystal does not require splitting the indi-
vidual atoms, but induced surface forces and long-range forces
from the step are included in the step system, so the force distri-
bution f"» does not vanish to the right of the step.

u, (x,z)=QD;"(x,z)d&" . (2.5)

The utility of this expression is that displacement fields of
higher-order multipoles decay more rapidly than those of
lower-order multipoles. For an isotropie solid,
D -log(r) and D"-1lr" where r =+x +z . There-
fore, the asymptotic field is given by the lowest-order
multipole field allowed by the constraints of the problem.
The multipole expansion was first applied to surface elas-
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tie problems by Marchenko and Parshin. Recently, the
multipole expansion has been used to characterize the in-
teractions of various surface features. In the next sec-
tion, meehanieal constraints are used to compute the
lowest-order multipole moments.

B. Mechanical constraints

To generate the planar force distribution, the stepped
crystal is separated into two pieces, the row of atoms
forming the step, called the step system, and rest of the
crystal. Each piece must be in mechanical equilibrium.
For the bulk crystal to be in mechanical equilibrium,
there can be no net force or torque applied by the forces
f",therefore,

dx f;" (x)= f dx f,"~(x)+f dx f,"~(x)=0
AB L rest

(2.6)

and

f dx(rXf" )=f dx(rXf" )+f dx(rXf" )=0.
AB L rest

(2.7)

In each case, the full integral over the plane has been
separated into an integral over the step force distribution
and an integral over the rest of the plane. The integrals
over the rest of the plane contain the forces from the sur-
face stress g at the edge of the crystal and the torques ~
they generate, Fig. 1(b). The step system must, also, be in
mechanical equilibrium. It is acted on by a force g at its
left side, which generates a torque about a point in the
plane AB directly below the left edge of the crystal,
~=agy where y is the unit vector in the y direction
directed into the page and g is the magnitude of g. The
forces and torques on the step system from the surface
stress must be balanced by forces applied across the plane
AB by the rest of the crystal. The step communicates a
force gx and a torque ~=agy to the plane AB, shown in
Fig. 1(b). It is assumed the edge of the crystal is
sufBciently separated from the step force distribution so
they can be treated independently. The force communi-
cated by the step is balanced by the surface stress at the
opposite edge of the crystal and the integral of the force
over the rest of the crystal vanishes. The force conserva-
tion law, (2.6), then gives

f dxf, "~(x)=d,'=0. (2.8)

The torque integral over the rest of the surface gives the
value agy, the value from the step, because the surface
stresses at the right of the AB plane are directed along
the plane and do not contribute. The torque balance,
(2.7), becomes

f dx(rX f" )= —f dx xf," (x)y= —d,'y= —agy .
L L

(2.9)

Application of mechanical constraints allows the compu-
tation of three of the multipole moments: d =d, =0 and

d,'=ag. Note, the value of the z dipole is for a down step

as shown in Fig. 1(a), the moment changes sign for an up
step. These are exact results for the force distribution

f",not simply results for the microscopic surface force
distribution, which must then be projected upon the Hat

plane in an uncontrolled manner to compute the displace-
ment field. The z-dipole moment result was stated previ-
ously by Marchenko and Parshin and Nozieres for the
full surface force distribution. The contribution of the
above analysis is to show the z-dipole moment is ag
without approximation for the observed force distribu-
tion f",that it survives the projection process, and that
the projection process does not expose fictitious mono-
poles. Note that this result is somewhat unexpected be-
cause simple, and incorrect, projections for the full sur-
face force like parallel transport of the force vectors do
not preserve the z-dipole moment. %e also note that it is
difficult to connect the full surface force distribution with
the distribution on the plane even perturbatively because
the step involves a single layer of atoms. For the experi-
mental analysis that follows, it is vital to be able to fix one
of the dipoles so that the other can be extracted from the
data. The existence of a dipole moment d,' shows that
the asymptotic displacement field will be a dipole field.

The separation discussed above involves applying
mechanics on the length scale of atomic distances, since
for a monatomic step the step system contains only a sin-

gle layer of atoms. It is, therefore, necessary to take ex-
treme care in the taking of limits and of coarse-graining
to avoid quantum e6'ects. A more detailed discussion of
the separation process follows. The elastic-displacement
field involves the long time average of the center of mass
of the atoms in the crystal. A microscopic representation
of the time-averaged force on the atoms must be
developed. Introduce 8, the location of the center of
mass of an atom averaged over time t. The wave function
associated with this variable g(R, ) is very well localized
because of the time average and the localization of the
atoms in the crystal lattice. If V(R, ) is the effective po-
tential energy of interaction between the atoms, then
Ehrenfest's theorem allows the definition of a force
F = ( V V(R, ) ) =d (R, ) Idt, where ( ) takes the expec-
tation value. Since the time-averaged center of mass is
well localized, this force will behave classically. In this
manner, a force distribution between the single atomic
layer of the step system and the bulk crystal is construct-
ed. This force distribution includes forces between the
step system and the atoms in plane AB and longer-range
forces between the step system and atoms deeper in the
bulk. The forces between the step system and the atoms
in the plane AB are surface forces, but the longer-ranged
forces are body forces that must be reduced to surface
forces to construct f" . The total distribution must bal-
ance the torque ag applied by the surface stresses at
infinity. Note, it does not matter how the surface stress is
distributed perpendicular to the surface, there is always
ag torque to be balanced by the step. Since we wish to
observe the same asymptotic displacement field with sur-
face forces replacing the longer-range body forces, the
surface force distribution, which replaces the body forces,
must have the same torque as the body force distribution.
Therefore, the e6'ective surface force distribution from
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the step system has the same torque as the surface plus
body force distribution, ag. Finally, absorb any remain-

ing surface forces from the elastic surface response or any
other source into the surface force distribution. Since
these forces are torque free, this does not change the
torque from ag. In this way, the surface force distribu-
tion f" is constructed by separating the crystal. The re-
sulting force distribution f" varies over extremely short
length scales. The computation of the dipole moment
effectively coarse grains the force distribution over the
entire crystal surface.

F;=—f a; rd8,—m/2
(3.3)

where r,- is the radial vector from the origin and 8 is mea-
sured from the —z axis. Performing (3.3) for o" gives
F=(1,0,0) a unit x directed force monopole and for o'
gives F = (0,0, 1) a unit z directed force monopole. With
the Green's function 6 the dipole displacement fields are
constructed.

Applying (2.3) allows the computation of D ' as

2
Dxx 4[x vzxz 1 ~

m-E, r4

III. ISOTROPIC RESULTS

The results of the previous section were derived
without specifying the form of 6. In this section, 6 is
given for an isotropic material and the dipole displace-
rnent tensor D' is calculated. The displacernent field for
an infinite line force on the surface of an isotropic materi-
al is a textbook problem in elasticity theory. ' For an iso-
tropic material 6 has the form

2
D,'„=

4 [—z +vzzx ],
~E,r4

2
D„', =

~ [zx —vzz ],
ms, r4

D' =
~ [x +(2+vz)xz ] .2

m-s, r4

(3.4}

1
XX 'fl 2

—21n(r) —(1+vz) zr

1
ZX

—(1—vz)sin —+(1+vz) z

x xz

r
(3.1)

G„,= (1—vz)sin —+(1+vz) z
1 x xz

mE2 r

1 x
G = —2 ln(r) —(1+vz)ZZ r2 2

where r =x +z . The constants Ez and v2 are two-

dimensional analogues to Young's modulus and Poisson's
ratio. They are related to the more familiar three-
dimensional expressions by Ez =E/(1 —v } and
vz=v/(1 —v), where E is Young's modulus and v is
Poisson's ratio. Constant terms are dropped from 6 be-
cause they depend on the choice of boundary conditions
and vanish as higher-order multipoles are generated.
This form of G assumes a state of plane strain. The ten-
sor 6 is a combination of two displacement fields;
u*=(G„„,O, G ) the displacement field of a unit positive
x directed line force, and u*= ( G„„O,G } the displace-
rnent field of a unit positive z directed line force. Each of
these displacement fields individually satisfy the mechani-
cal equilibrium condition for an isotropic linear elastic
material:

pV u+ ()(,+p)V(V u) =0, (3.2)

where A, and p, are the Lame coeIIlcients. The stress de-
rived from u" and u', cr,"" and o,'-, respectively, is singular
at the origin as one would expect for an applied line
force. The relation of the displacement field to the stress
is discussed in the Appendix. The line force at the origin
is found by integrating the stress over the surface of a cy-
lindrical cavity of radius r and then taking the limit
r ~0. The force F that must be applied to the cavity to
generate the displacement fields is found by evaluating

ln x —x' ' „' x'dx'.
mE2

(3.5)

If there is no correction to the dipole fields coming from

The asymptotic form of the displacement field I /r and
the order of the leading multipole as the dipole allows a
closer examination of the assumption of localization and
the validity of the multipole expansion for terms higher
than the leading order. Since the surface displacement
field decays as 1/r, the strain at the surface and the in-
duced surface stress from the step system and the surface
elastic response decay as 1/r, and, therefore, there is an
induced surface force due to the surface elastic response
which decays as I/r . This forces a more general
definition of I. as the length over which the leading-order
multipole integral d' converges. Note that the long-
range part of the dipole integral, d„' = f dx x (1/x ), does

converge and, therefore, the x-dipole moment does exist.
However, due to this nonlocal force distribution the
higher-order multipole moments do not exist since

J dx x "(1/x )~ ao for n & 1. Therefore, the asymptotic
form of the displacement field cannot be systematically
corrected by the addition of higher-order moments.
Correction of the asymptotic dipole result involves
evaluating the full integral (2.1). The expansion in (2.5}
must be viewed as an asymptotic expansion that diverges
after the first term. It is necessary then to verify that the
divergent higher-order terms do not introduce correc-
tions to the dipole fields which decay as 1/r. The con-
cern is that the divergent higher-order multipoles might
renormalize the dipole moment from the value computed
as the integral of f . It is, therefore, necessary to ex-
plicitly verify that u,.~D .d.' as r~ao. We do this by
numerically computing (2.1) at the surface for a surface
force distribution which decays as 1/r . Define
f„'=sgn(x)/(1+x ) ~1/x . The dipole moment of
this force distribution is d„' = f dx xf„' =2. The displace-

ment field at the surface is

u„(x,O) = IG„„f„'dx'
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the higher-order moments, then the displacement field at
the surface should approach u, (x,O) =D,'„d„'=2d ' /
m.E2x. Numerical evaluation of the ratio
u„(x,O)/u„"(x, O) converges to one demonstrating that the
multipole expansion does correctly capture the leading-
order multipole. Note that this is the result we would in-
tuitively expect. Well outside the range of convergence
of a dipolar force distribution, the displacement field
should be dipolar with the dipole moment of the force
distribution. In the future, we hope to extend this result
and redefine the higher-order multipoles so the diver-
gence is removed.

IV. COMPUTATIONAL TESTS

The above expression for D is the simplest possible for
a surface step, a pure dipole field. Before using the dipole
displacement field to extract the dipole moments from an
experimental TEM image, the theoretical displacement
fields are tested using a simple computational model.

Rather than use a physical model of a solid, such as a
molecular-dynamics solid, which would allow only a
qualitative test of the asymptotic step fields, a simplified
two-dimensional solid is used so a quantitative test can be
performed. The model used incorporates the basic phys-
ics of the problem: a discrete crystalline solid with an
atomic step on a surface that experiences surface stress.
Through suitable choices of the force parameters the
model is made isotropic. Since the step problem, under
the assumption of plane strain, reduces to a two-
dimensional problem, the displacement fields apply to a
two-dimensional solid. The computational model is a
two-dimensional solid composed of masses and perfect
linear springs. The unit cell for the crystal is a square of
unit area with masses at each corner and a mass at the
center. Springs are added along the edges of the square
with spring constant k& and between the center mass and
each corner with spring constant k2. The resulting two-
dimensional crystal is shown in Fig. 2. All springs are
unstretched and have spring constant one. This choice
for the geometry of the masses and the spring constants
generates an isotropic two-dimensional crystal with
E2= —', and vz= —,'. The unit cell is repeated to make a

crystal with a step as shown in Fig. 2. Surface stress is
added to the model by adding an extra set of springs,
with spring constant k3, between the surface atoms.
These springs have equilibrium lengths shorter than the
distance between the surface atoms. In the simulation
presented, the surface springs have equilibrium length
0.95 and spring constant k3=0. 1. Since the step height
is 0.5, the value of d,' from (2.9) is 0.0025. The addition
of extra springs to the surface gives it added stiffness, just
as physical crystals have a surface elastic response. Also,
the step does not step down a full bulk unit cell giving the
step system unique elastic properties; another effect that
exists in Si.

The crystal was annealed using a simple viscous dy-
namics to find the equilibrium displacement field. A
40X40 lattice was used with the top boundary free and
the other sides adjusted to the theoretic displacements to
eliminate the extreme finite-size effects inherent in surface
force distributions. The annealed displacement field is
shown as the vectors with open arrowheads in Fig. 3(a),
with the circles being the undisplaced locations of the
masses. The surface truncation is the same as in Fig. 2.
The displacement field is scaled by r =+x +z + 1 and a
magnification factor to make the asymptotic displace-

j

o

k)"""""k2- -.—— kg
-------- k)+kg

C+-- ----6--- —--+3

%)

FIG. 2. Computational two-dimensional crystal. The lines
represent the springs. The line kl+k, represents the two
springs with spring constants kl and k3 between the same
masses.

FIG. 3. Computational test of isotropic dipole fields: (a)
Two-dimensional crystal. The circles represent the undeformed
location of the masses. The open arrowheads are the displace-
ment of the masses upon annealing the crystal multiplied by r
and a magnification factor, where r is the distance from the step
edge with a cutofF. The closed arrowheads are the calculated
field using only the dipole moments. (b) Force distribution on
plane AB. The two longest vectors have been reduced by a fac-
tor of 5 so the asymmetry generated by the step can be seen.



49 ELASTIC-DISPLACEMENT FIELD OF AN ISOLATED SURFACE STEP 13 853

ment field visible. The origin of r is the center of force x,
defined as

AB2 d~x A82

X l.

f d (yAB)2 f d (yAB)2
L L

(4)

Although nothing in the analysis forces this choice for
the origin, the closer the origin is to the force center the
better the approximation of the multipole expansion.
The force distribution f" can be measured computa-
tionally and the force center lies under the step edge.
With this choice of the origin the dipole moments can be
measured giving d„'=0.00287 and d,'=0.002486. The
z-dipole moment is extremely close to our theoretic value
0.0025, thus showing the validity of using ag as the step
moment. The value of the x dipole could be arbitrarily
changed by adding extra springs between the step layer
and the AB layer. The extra springs model relaxations at
the step edge. It was impossible to afFect the z-dipole mo-
ment by any local force distribution at the step, thus
showing that d,'=ag is a general result. Using the mea-

sured x-dipole moment and the theoretical z-dipole mo-
ment, the dipole displacement field is calculated and
shown as the closed arrowhead vector field in Fig. 3(a).
The agreement for masses within the bulk crystal is excel-
lent. There are no free parameters in the theoretical dis-
placement field since d„' is measured and d,', Ez, and vz

are calculated. The displacement field for the step system
is computed by evaluating the calculated fields at
z =+0.5.

There are two regions where the agreement between
the annealed and calculated fields is not perfect, in the
step system and in the bulk crystal near the center of
force. To test what part of this error is the result of keep-
ing only the lowest-order multipole, the displacement
field was computed by numerically evaluating (2.1). This
removed almost all error near the center of force, but did
not correct the problems in the step system. It is, there-
fore, incorrect to use the dipole fields measured asymp-
totically to compute the displacements of atoms very near
the step edge. The results in Fig. 3(a) are probably the
best a dipole field can do at predicting displacements near
the step edge. This is because the simple surface stress
force distribution produces only negligible quadrupole
moments. While the quadrupole and higher moments are
not defined because of the divergence of the moments,
effective higher-order moments exist and are useful if the
region of integration in (2.4) is restricted to some L. The
difference between the annealed and calculated displace-
ment fields in Fig. 3 is actually the result of octupole
terms and higher. In a real crystal, the step edge tries to
recoordinate its empty bonds and relaxes into the bulk.
This will generate quadrupole moments that will be
longer ranged and possibly stronger than the octupole
moment generating the error in our simulation. Also, it
is clear that the simple continuation of the displacement
field into the step system does a poor job reproducing the
displacements and that this has nothing to do with the
multipole approximation. A correct treatment would use
the displacements in the AB plane to compute the dis-

placements in the step system. Note that the atom at the
step edge undergoes a much larger displacement than
predicted by the simple extension of the displacement
field into the step system. This anomalous displacement
is also observed in more microscopic treatments. " The
simple computational treatment above shows that at least
in part this is due to the mechanics of the stepped system
itself and, therefore, any treatment that tries to model the
effect using a force distribution on a Sat interface is in-

complete.
The simulation clearly shows that the isotropic fields in

the previous section are correct, that the dipole fields are
the only surviving fields a few lattice spacings from the
step edge and that the z-dipole moment is correctly given
by ag.

V. CUBIC SYSTEMS

In the next section, experiments that measure the dis-
placement field of a step on Si(111)(7X7)are presented.
The isotropic results will be used to analyze the experi-
mental images. Silicon is, however, an anisotropic ma-
terial. The use of the isotropic displacement fields
represents a major approximation and in this section,
that approximation is examined. Thus far, we have been
unable to find a closed form solution to the full cubic sur-
face line force displacement field. The stress tensor for a
line z directed monopole has been calculated by
Lekhnitskii. ' The full solution for the anisotropic stress
tensor is so complicated that integration to produce the
displacement field is not feasible. There is also a broad
literature on the bulk point force problem' in the con-
text of dislocation theory. ' Unfortunately, the solutions
to the cubic problem for bulk dislocations are not easily
extensible to a surface force distribution because they
contain stresses normal to the surface. To evaluate the
severity of the isotropic approximation, the mass and
spring model of the previous section is used to compare
the annealed field of a cubic crystal with the correspond-
ing computed field using the isotropic displacement fields.

The elastic constants for Si at room temperature are:
C]]= 166 GPa C&p =64 GPa and C44 =79 GPa. The
effective Lame coefficients are estimated by using the
Voigt average of the stiffness tensor, giving p=C~

H!5 and A, =C—,z H/5, where H—=2C44+C, z
—C»

measures the anisotropy. If H=0 then the material is
isotropic. For Si, p=67. 8 GPa, A, =52.8 GPa, and
H =56 GPa. A dimensionless measure of the anisotropy
is J=H/C]& which for Si is 0.34. The two-dimensional
quantities entering the displacement fields can be calcu-
lated in terms of the Lame coefficients:
vz=A, /(A. +2p) =0.28 and Ez =4p(A, +p)/(1, +2@)
=1.08 eV/A3. In the mass and spring model in the pre-
vious section, the elastic constants are: C&& =k&+k&/2,
C» =k~/2, and C44=k~/2, where k, is the spring con-
stant of the springs along the unit cell edges and kz is the
spring constant of the springs connecting the corners to
the mass at the center of the cell. A choice of k& =0.62
and k&=1 results in H/C» =0.34 and yields v&=0. 33
and E&=1.13. With this choice of parameters, the an-
nealed- cubic displacernent field is compared with the
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FIG. 4. Computational test of cubic anisotropy. The circles
represent the undeformed location of the masses. The open ar-
rowheads are the displacement of the masses upon annealing the
cubic crystal multiplied by r and a magnification factor, where r
is the distance from the step edge with a cutoff. The closed ar-
rowheads are the calculated isotropic field using only the dipole
moments, with the average Poisson's ratio and Young's
modulus.

computed isotropic displacement field in Fig. 4. The
agreement between the computed and annealed field is
still quite good. It is, therefore, satisfactory to use the
isotropic displacement fields to extract the dipole mo-
ments from a cubic material such as Si. The difference
between the isotropic Geld and the actual cubic displace-
ment field will result in a small error in the measured di-
pole moment.

VI. EXPERIMENTAL RESULTS

In this section, a TEM image for a monatomic
Si(111)(7X 7) step is analyzed using the displacement
fields computed in (3.4). The leading-order multipole is
shown to be the dipole and a value for the dipole moment
is extracted from the experimental data.

A. Description of experiment

The technique of dark field imaging in a transmission
electron microscope is particularly useful for imaging
crystal strain. ' It involves forming an image with elec-
trons scattered from only one reciprocal lattice plane
(e.g., only one Bragg diffracted beam). In a TEM only
three types of contrast will be visible at a step: phase
contrast, thickness contrast, and strain contrast. Phase
contrast arises for the same reason as Fresnel fringes in
light optics. An electron's phase depends upon the dis-
tance it must travel through a crystal. Since a step is a
boundary between regions of differing thickness, the elec-
trons on either side will possess different phases. At the
bottom of the crystal, these electrons will interfere to
form fringes. For thin samples under near-focus condi-
tions, phase contrast is negligible. Thickness contrast
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FIG. 5. A line scan from a TEM image showing the intensity
pattern for a step on Si(111)(7X7). The step in at x =0. The
image is a dark field image in the (g, 3g) condition where the
step normal is parallel g.

arises from the periodic variation in Bragg beam intensity
with depth in the crystal. The period of oscillation de-
pends on the orientation of the crystal with respect to the
incident electron beam. Since crystal thickness is quan-
tized, a step will mark a discrete change in the image in-
tensity. This effect can be used to measure the step
height. Strain produces lattice plane rotations and thus
locally changes the angle of incidence of the electron
beam with respect to the reciprocal lattice plane contrib-
uting to the image. In this way crystal strain is mapped
as changes in intensity in the dark field image.

The full experimental details are given elsewhere. '

Si(111)(7X7) samples were prepared and placed in a
JEOL 200CX TEM modified to provide a UHV specimen
environment. Sample areas were characterized by
micron-sized flat areas surrounded by highly terraced re-
gions. ' Typically, the flattest areas were only 300 A
thick. Images were taken using the —,'422 and 220
reflections under a variety of diffraction conditions. The
220 dark field images revealed the presence of both strain
and thickness contrast at steps. Because of the surface
sensitivity of —,422 dark field images, it is possible to
differentiate between single and triple height steps. Only
monatomic steps were chosen for analysis.

Images of monatomic height steps were then digitized
for quantitative analysis. Line scans perpendicular to the
monatomic steps were performed to measure intensity as
a function of distance from the step. One such line scan
is shown in Fig. 5 where the step is located at the center
of the plot and thickness decreases from left to right. If
the step showed only thickness contrast, the intensity
profile would be a step function. The oscillations in in-
tensity near the step indicate the presence of strain since
the images were taken near focus. The extrema occur
roughly 50 A away from the step and mark where the
step strain has rotated the 220 crystal planes either
closest to (maximum) or furthest from (minimum) the ex-
act Bragg condition. This behavior is indicative of a
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change in the sense of lattice plane rotation across the
step. Furthermore, unlike phase contrast which would
only extend a few angstroms from the step near focus, the
contrast in the experimental images persists up to 150 A
away from the step. Images can also be obtained as a
function of the deviation parameter. Because of the
strong dependence of the experimental contrast on the
deviation parameter, one can only conclude that its cause
is strain. ' For Fig. 5, the deviation parameter was mea-
sured as 0.010 A '. It should be noted that during a line

scan, the intensity is averaged over two or three pixels
where each pixel corresponds to roughly 8 A. Thus the
resolution is only about 20 A.

Once the experimental images have been digitized, they
can be compared with computer simulated images. The
method of image simulation involves numerically solving
Schrodinger's equation for the illuminating electrons'
transit through the crystal and is described in detail else-
where. " Strain in the crystal is accommodated using
the rigid-ion approximation and it is assumed that the
displacement field varies slowly with position. The simu-

lations produce the intensity as a function of position for
a stepped surface under the influence of the model strain
field. Experimental and simulated images can be com-
pared to determine the order of the leading multipole as
the dipole. The magnitude of the x-dipole moment can
then be extracted.

(measured for convergent beam electron diff'ruction) cor-
responding to the experimental image in Fig. 5. The ex-
perimental and simulated images are compared using two
statistics which were found to be sensitive to the dipole
moments: the step contrast defined as EI, /AI2 and the
asymmetry defined as b,I&/b, II as shown in Fig. 5. The
simulations use the isotropic dipole fields in (2.3) and the
average elastic constants; E2=1.08 eV/A, v&=0.28.
The finite thickness of the sample was corrected for by
the addition of an image dipole that removed the normal
stresses at the bottom surface of the sample. The z-dipole
moment is fixed by the experimental value of the surface
stress, '

g =0.186+0.012 eV/A, and the step height
a =3.14 A, giving d,'=ag =0.58+0.04 eV/A. Compar-
ison of experimental and simulated images using the step
contrast statistic yields d„'=1.66 eV/A. The asymmetry
statistic gives a value of the x-dipole moment as d,' = 1.25
eV/A. We report the x-dipole moment of a monatomic
step on Si(111)(7X7)as d„'=1.46+0.3 eV/A, the average
of these values. These two statistics have different sensi-
tivities to the components of the dipole moment and to
the possible sources of error in the experimental image.
The step contrast is dominated by the x-dipole moment

(a)

B. Qualitative results

The elastic multipole expansion divides the asymptotic
displacement fields into universality classes. The asymp-
totic displacement fields for two systems with the same
leading multipole can be collapsed onto a universal curve
for that multipole by adjusting d" /E2 and v2. It is, there-

fore, possible to determine the order of the leading mul-

tipole by comparing the shape of the experimental inten-

sity curve with the shapes of computationally simulated

images of various pure multipole fields. In Fig. 6, the
simulated images of dipole and monopole fields are
presented. The monopole curves are qualitatively
different from the dipole curves. The general shape of the
simulated intensity plots can be compared with the exper-
imental image of a monatomic step on the (7 X7) recon-
structed (111) surface of Si, ' shown in Fig. 5. The x-
dipole curve in Figs. 6(a) is the best match for the general
shape of the experimental intensity curve. This experi-
mentally establishes the dipole as the leading-order mul-

tipole of a step. The z dipole is a minor efFect and is add-
ed to the x dipole to adjust the asymmetry in depth of the
troughs measured by EI, —AI', in Fig. 5. A qualitative
comparison of the simulated intensity curves in Figs. 6(a)
and 6(b) with the experimental curve in Fig. 5, leads one
to expect the x dipole is the dominant term with a small
z-dipole moment. The analysis of the next section bears
this out.

C. Quautitstive results

To extract the x-dipole moment from the experimental
intensity curve, images are simulated for various x-dipole
moments using the diffraction condition and thickness

(c)

(cf)

I I 1 I

-300.0 -200.0 -100.0 0.0 100.0
x (Angstroms)

I I

200.0 300.0

FIG. 6. Simulated intensity plots of low-order elastic mul-

tipoles: (a) Pure x dipole field, d =0, d'=(1.0,0.0) eV/A, (b)

pure z-dipole field d =0, d'=(0. 0, 1.0) eV/A, (c) x monopole,
d =(0.05,0) eV/A, d'=0, (d) z monopole, d =(0, —0.05)

0
eV/A, d' =0. Images simulated using average Young's

0

modulus and Poisson's ratio for Si and passed through a 30-A
filter.
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as can be seen in Fig. 6(a) and is relatively insensitive to
the z-dipole moment. Unfortunately, the step contrast is

also sensitive to stray monopole moments coming from a
slight curvature of the step and sharp surface features far
from the step. The asymmetry statistic is controlled by
the ratio of the x-dipole moment to the z-dipole moment
and should be less sensitive to stray rnonopoles. The
asymmetry, however, is a much smaller effect than the
step contrast and, therefore, contains larger statistical er-
rors. Hopefully, the average of these two statistics comes
close to capturing the true physical situation. The
difference in the two values of the dipole probably indi-

cates a stray monopole field resulting from a slight bend-

ing of the step.
When comparing the images simulated with a pure di-

polar strain field with those taken from the microscope,
differences in the peak position and intensity slope near
the step can be seen. This disagreement is not well un-

derstood but could derive from a variety of causes. While
the experimental intensity profiles were taken from isolat-
ed steps, these steps could contain kinks or sharp bends
which would introduce a significant monopole term to
the strain field. This would tend to shift the intensity ex-
trema further away from the step and decrease the slope
at the step. Another complication is the limited experi-
rnental resolution. The process of taking an image and
then digitizing it tends to smear out abrupt changes in in-

tensity exaggerating the range over which the strain con-
trast is seen. In the future we hope to be able to use the
multipole expansion to analyze the experimental images
and extract all the moments. This would allow the
monopole effect to be measured and the z dipole to be ex-
tracted along with the x dipole.

The data in Fig. 5 were previously analyzed using a
model for a stepped surface' proposed by Srolovitz and
Hirth' for relaxations near the step edge. The model
used monopole forces at the step to capture the anoma-
lous relaxations of the step edge commented on in Sec.
IV. There was some agreement between the simulated
images of the monopole model and the experimental data,
but qualitative differences were evident. The array of
monopo1es captured the correct change in sense of lattice
plane rotation as the step is crossed, but failed to repro-
duce the distinctive trough in the experimental image.
When an isolated monopole was tried, which was expect-
ed to be a better match to the experimental situation,
more qualitative problems surfaced in the form of a lack
of saturation of contrast changes at infinity. This work
resolves the qualitative differences between the simulated
images and the experiment, showing that the correct
model involves dipole forces.
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APPENDIX

1. Stress and strain tensors of a surface dipole

In this section, the stress and strain fields for a pure di-

pole are presented. For a pure dipole force, the strain
tensor e; can be written as

1 1e; =M;kdk, (A 1)

Differentiating D gives the expressions for the six com-
ponents of M' as

M„'„„=—
6 [x (x —3z )+v~z (z —3x )],2

7T 2r

M', = —
&

[z (3x —z ) —v2x (x —3z )],2

2r

4
M„'„,= —

& [ —xz(z —x ) —2v2z x],
7T 2I'

(A3)

2(1+v~)
M„'„= z (z —3x ),

7T 2f

M,'„=— [—v2x z +(2+v2)xz ] .
m.E2r

The strain tensor is related to the stress tensor o., - by the
isotropic constitutive relations:

where repeated indices are summed and M' are defined
as

r)D„1BD BD k
xxk g

& xzk 2 gx gz

1

k
M k=M, k, M„k=

()z

VII. CONCLUSION lJ I lJ EJ flP2
(A4)

The leading multipole moment of an isolated straight
surface step is the dipole moment. The z-dipole moment
is fixed by the surface stresses and has the value ag. The
x-dipole moment can be fixed by fitting simulated image
profiles to image profiles observed in TEM experiments.
For Si(ill}(7X7), the x-dipole moment is measured as
d„' = 1.46+0.3 eV/A and the z-dipole moment is comput-
ed to be d,' =0.58+0.04 eV/A.

where 5 is the Kronecker delta and p and A, are the Lame
coefficients. The Lame coefficients are written in terms of
E2 and v2 as: A. =v2E2I(1 —v2) and 2p=E2I(1+v2).
The stress tensor can also be expressed in the form of
(A2):

(A5}

Substituting M into the constitutive relations gives X as
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2 2

7Tr

= 2z'
, (z' —3x')

m.r , (z' —x')4xz
m' r

(A6)

2 sin(28)
&

2 cos (8)
re re 2m' r mr

Ngo„=Xgg, =0,
with 6 is measured from the —z axis.

(A7)

2. Displacement field of a stepped surface

The experiment presented earlier was best described by
an isolated surface step. A more common geometry is
the uniformly stepped surface with an infinite array of
steps each separated by a distance h. In this section, the
calculation of the displacement field of an isolated step is
extended to the displacement field of a stepped surface.
First, the effect of rotating the separation plane AB is ex-
amined and then the displacement field is computed.

Before a displacement field can be computed, a new
separation plane must be selected and the dipole mo-
ments recomputed. The plane AB is not appropriate for
a uniformly stepped surface because it intersects the sur-
face. Clearly, a separation plane parallel to the surface
must be chosen. Figure 7 shows the old separation plane
AB and the separation plane for a stepped surface CD.
Examination of the stress fields (A7) shows that the solu-
tion to the surface problem of an isolated step cannot be
simply extended to a stepped surface, since the isolated
step solution has stress normal to the surface for any sep-
aration plane except AB. This is not surprising, because
the choice of a separation plane causes a one-dimensional
projection of the actual two-dimensional force distribu-
tion. There is no reason the result of projecting the force
on the plane CD should be simply related to projecting
the force on the plane AB. The torque computation in
Sec. II can be repeated for the stepped surface using the

C--g

m.r 77r

There is also a component of the stress along the step
given by o„=v(o „„+o „). Later it will be convenient
to examine the stress in cylindrical coordinates where X
has the form

2 cos(28)
&

sin(28)
rrx r8x 277r m' r

u,'(x, z) = g D,,'(x +nb, z)d', (AS)

where u' is the displacement field of the stepped surface
and 6 is the step separation. Introducing the stepped di-
pole fields D" allows (AS) to be rewritten as
u (x,z) =D;~"(x,z)d&', where

D,J"(x,z) = g D,'(x +n6, z) .

The summation only alters the variable x in the expres-
sion for D '. Examination of (3.4) finds that x only occurs
in the combination h (x,z)=x ir, m =0,—1, 2, and 3.
If the expressions h in the isolated step displacement
field are replaced by

h' (x,z) =— g h (x +nb„z) = (x +nb, )

„[z +2( +xnan) ]
(A10)

the stepped dipole fields are obtained. Carrying out this
substitution, the stepped dipole fields are

D„'„'= [h 3(x,z) —viz h', (x,z)),1s

mE2

plane AB as the separation plane. This time the torque
from the edges of the crystal about a point in the plane
AB directly below the left edge of the crystal is n, agy,
where n, is the number of steps. Since the surface com-
municates no net force to the crystal, this is also the mo-
ment about any point in the crystal. The force generating
this torque is localized at the surface, so if the crystal is
separated at the plane CD, a torque n, agy is communi-
cated to the bulk crystal through the plane CD. The iso-
lated step result is, therefore, recovered, each step has a
z-dipole moment of ag, exactly. This argument leaves the
value of the x-dipole moment for the force distribution on
the plane CD arbitrary. However, since the magnitude of
the displacement field of a stepped surface should be ap-
proximately the same as that of an isolated step near the
step, it is probably useful to approximate the stepped sur-
face x dipole by the isolated step value. It is important to
appreciate the difference in the x- and z-dipole moment
results: using the isolated step z-dipole moment for the
stepped surface is an exact result of mechanics, using the
isolated step x-dipole moment for the stepped surface di-

pole moment is an uncontrolled approximation based on
intuition.

The pure dipole displacement field of an isolated step
with dipole moments computed along the CD plane in
Fig. 7, can be written as u; D'jdj where the x axis is
parallel to CD and the z axis is the outward normal to
CD. To compute the displacement field of a uniformly
stepped surface, the contributions of each step are added

D "= [—z h 0(x,z)+ v~zh 2(x,z)],1s

mE2

1sD„",= [zh2(x, z) —v2z ho(x, z)],~E,

(A 1 1)

FIG. 7. Two-dimensional crystal with a stepped surface.
D"= [h3(x,z)+(2+v~)z hi(x, z)] .1s

mE2
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SG=

Si=

S =
2

x+nA
„[z +(%+nb, ) ]

sinh(Z)sin(X)
b, Z [cosh(Z) —cos(X)]

z —(x +nIJ. )

„[z +(x+nh) ]

2m cosh(Z)cos(X) —1

[cosh(Z) —cos(X) ]
z +(%+nb, )

„[zz+(%+nb, ) ]

All that remains is the computation of the sums in (A10).
Fortunately, these are familiar from the theory of bulk
dislocations. ' Introduce the following sums:

&2 ZD" =0, D""= — coth
22

(A14)
D1soo

XZ

z
coth

2

D lsoo 0ZZ

plied to a stepped surface by Srolovitz and Hirth. ' The
displacement field for a stepped surface obtained by com-
bining (All), (A12), and (A13) is extremely complicated.
Writing it out in full conveys no greater insight than the
combination of expressions (Al 1), (A12), and (A13) above
and is not presented. It is more instructive to examine
the field in the interesting z ~0 and z ~—~ limits. First
examine how the surface disturbance decays into the bulk
by setting X=0 and taking the z~ —Dc limit which
yields D"":

S3=

2m. sinh(Z)

g Z cosh(Z) —cos(X)

z (x+nh)+(%+nb, )

[z +(x+nh) ]

sin(X)
b, cosh(Z) —cos(X)

(A12)

The disturbance at the surface decays exponentially into
the bulk with a characteristic distance of the step spac-
ing. This result was also found for an array of point
monopoles' and, therefore, should be considered a gen-
eral property of regular arrays of point forces. It is also
interesting to examine the displacement field at the sur-
face, setting z =0 yields

S2 —Si
'2

ZSG.2'

(A13)

The results from the theory of dislocations were first ap-

where X =2m%/b, and Z =2mz/b. The functions h' are
easily expressed in terms of S giving

S) +S2
$$ A'=S

Z

D„„'(%,0)= cot —,D,„'(%,0)=0,2 X
E25 2

D„",(%,0)=0, D,", (%,0)= cot2 X
E2S 2

(A15)

In future work, this expression will be used to compute
the surface free energy due to elastic interactions of a
stepped surface.
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