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Dynamics of adatoms on solid surfaces
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A microscopic theory for the diffusive and vibrational motion of adsorbed atoms on a solid surface is

presented. We evaluate and analyze the dynamical structure factor and the velocity autocorrelation
function. The quasielastic scattering peak in the dynamical structure factor is found to consist of mixed
contributions from diffusive and vibrational motion. The vibrational peak indicates a shift and broaden-

ing from anharmonic effects and frictional damping. As the temperature is lowered the diffusion con-
stant crosses over from a continuous Brownian motion behavior to a thermally activated Arrhenius
form. When the frictional coeScient is varied at low temperatures, the diffusion constant crosses over
smoothly from the multisite jumping regime at low friction, via the transition-state regime, to the high-
friction overdamped regime. Applied to Na on the Cu(001) surface, our theoretical predictions on the
quasielastic-peak width and the temperature dependence of the shift of the vibrational mode agree quan-

titatively with recent experimental measurements. For adatoms on anisotropic bcc (110) surfaces, we

also study the diffusion anisotropy as well as the coupling of the two frustrated translational modes.

I. INTRODUCTION

The diffusive motion of adsorbed atoms and their vi-
brational motion near the minima of the adsorption po-
tential are usually studied as separate topics because they
involve different length and time scales. ' At low tem-
peratures, the adatom spends most of its time vibrating
rapidly around an adsorption-potential minirnurn and
diffusion proceeds by thermally activated rare events of
jumping from one adsorption site to another in its neigh-
borhood. Information about the diffusive motion can be
extracted from the quasielastic spectrum of the dynamic
structure factor at small wave vectors whereas the ada-
tom vibrational motion can be studied at finite frequen-
cies. Indeed both these aspects have been successfully
probed via He atom scattering studies. There are how-
ever situations in which the two modes of motion become
coupled and their effects are diScult to separate. The
first is at temperatures higher than the diffusion barrier
height, when the time spent by the adatom near the mini-
ma of the adsorption potential is comparable to the time
in the in-between regions. The second situation is at
larger wave vectors corresponding to motion of the ada-
tom at smaller length scales. In the study of the quasi-
elastic spectrum of the dynamic structure factor, the full
width at half maximum (FWHM) b,E(q) contains the
crucial information. It is usually assumed that its wave
vector dependence can be modeled by a multisite jumping
theory. ' However, such a model neglects the vibration-
al motion of the adatorn altogether and cannot describe
EE(q) properly at larger wave vectors. A scrutiny of the
He scattering experimental data indicates that this is
indeed the situation. This suggests that the diffusive and
vibrational motion both contribute to the quasielastic
peak and are intimately coupled. This fact is particularly
noticeable for a wave vector along a nonprincipal axis.

In this paper, we present a theoretical study of adatom
dynamics in which diffusion and vibration are treated on

an equal footing. The motion of the adatom is restricted
to two dimensions and hence vibrational motion normal
to the surface is not included. In Sec. II, we outline the
formalism developed previously' to evaluate various dy-
namic correlation functions. In Sec. III, we study the
case of a separable potential with fourfold symmetry and
evaluate the dynamic structure factor as well as the ve-
locity autocorrelation functions. %hen the theory is ap-
plied to Na/Cu(001), the FWHM of the quasielastic
scattering peak and the temperature-dependent vibration-
al frequency shift are both in quantitative agreement with
recent experimental data. Also presented in this section
is the diffusion constant for a whole range of the friction-
al coeScient parameter g at various temperatures. As
the frictional coeScient increases from g &&coo to g &&mo,

the diffusion constant clearly indicates a smooth cross-
over from the multiple-site jumping regime via the
transition-state regime (where g-coo) to the high-friction
overdamped regime. When the temperature is varied for
a fixed value of the friction parameter, the diffusion con-
stant crosses over from high-temperature behavior of
Brownian motion in a continuous medium to the Ar-
rhenius form of thermally activated jumping over bar-
riers at low temperatures. In Sec. IV, we study antisotro-
pic adsorption systems with nonseparable adsorption po-
tential and evaluate the velocity autocorrelation function.
Its zero-frequency limit gives directly the diffusion con-
stant, whereas its finite-frequency part provides us with
full information of the vibrational motion of the adatom.
We then apply the formalism to adsorption on bcc (110)
surfaces. The diffusive constants along the [001] and
[110] directions possess temperature and friction depen-
dence similar to that for surfaces with fourfold symme-
try. Their ratio goes to the right geometric value at low
temperatures as the diffusion proceeds predominantly by
the thermally activated events of crossing the saddle
points from a well to one of its neighbor wells. In this
case, each jump has a projection of a distance a along the
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[001] direction and /2a along [110]. The
anharmonicity-induced shift and broadening of the vibra-
tional modes are particularly interesting because the bare
frequencies of the two frustrated translational modes
differ from each other. When they are coupled together
via the anharmonicity of the adsorption potential, the
line shift of the two modes exhibits a nonmonotonic tem-
perature dependence. In Sec. V we present the conclud-
ing remarks. Preliminary results of some of the work
have already been reported elsewhere. "'

II. FORMULATION

We start with a model Hamiltonian of the form

consisting of both the diffusive and vibrational contribu-
tions, D(co=0} is directly the diffusion constant, and
D(co-coo) demonstrates the shifting and broadening of
the vibrational modes.

We have developed previously' a formalism for the
evaluation of S(q, to) and D(co) based on the Mori
projection-operator formalism. ' Here we briefly summa-
rize its main features important in the present discussion.
In the Hilbert space consisting of all the dynamic vari-
ables of the adatom as vectors, the scalar product of two
arbitrary variables A and 8 is defined as the thermal sta-
tistical average of their products, i.e., ( A lB ) = ( A 'B ).
The following set of vectors is complete in the subspace
of the adatom's dynamics,

2
H= + V(R)+g M(R, A, ) u&+Hzh .

2m
(2.1) (2.4)

D(m)= f dte '"' ~)(t)
m m

(2.3)

where q is the wave vector and the angle brackets stand
for the thermal statistical average. While S(q, co) con-
tains all the information of quasielastic scattering spectra,

Here m, R, and p are, respectively, the mass, displace-
ment vector, and momentum of the adatom. V(R) is the
adsorption potential. u& is the eigenvector for the A,th
eigenmode of the substrate vibrational excitations,
characterized by the harmonic Hamiltonian H„h. ' The
scattering off substrate phonons results in an effective
friction which plays a central role in the diffusion process
and broadens the vibrational spectrum at very low tem-
peratures. At temperatures of interest, the diffusion is
mainly due to thermally activated jumping over barriers
and the vibrational mode is broadened and shifted by the
anharmonicity of the adsorption potential as well as by
frictional damping.

In order to describe the motion of an adatom on sur-
face, we calculate the dynamic structure factor defined as

S(q co}=J dt e '"'(e '"'"'"e''t'")

and the velocity autocorrelation function

where h„(p)=2 " H„(p/&2mkT ) and H„are the usu-

al Hermitian polynomials, m, n =0, 1,2, . . . . K stands
for a reciprocal lattice vector, and q stands for an arbi-
trary wave vector within the first Brillouin zone. The
norm matrix g = ( A

l
A },

„.(K,K') =m!n!5 5„„p(K—K'), (2.5)

C(a)) =y [ i co+b—+X(t0)] (2.7)

In Eq. (2.6), A „(K,t )—:e ' 'A „(K,t ) with L being the
Liouville operator. Equation (2.7) is written in a matrix
form where the indices m, n, and K are implicit. The
vector q however is fixed and not a part of the indices.
Note that this equation reduces to that obtained by
Wahnstrom in the Fokker-Planck equation approach'
for the case of a one-dimensional adsorption potential.
Here the matrix b=y '( A liL

l
A ) is block tridiagonal,

namely,

where p(K —K') is the Fourier transform of the density.
The dynamic structure factor matrix,

C „„.(K,K', m)= J dt e' '(A „(K,t)lA „(K')),
(2.6)

is determined by

b „„(K,K')=&kT/m [[5 +,5„„+(m+1)5,5„„]i(E„+q„)5»»
+[5 .5„„.+,+(n+1)5 .5„„, (]i(K +q )5»» }

+ [5, ,5„„,i(E„' E„)+5 .5„„.—,i (Ky' Ey )]V(K —K') .— (2.8)

The memory function

r(~)=y-' J dte'"&QLAle '~'~'lQL» .
0

Here Q is the projection operator out of the adatom subspace such that QB =B—Ay '( A lB ). Thus we obtain

dh (p„) dh„(p» )

(2.9)

(2.10)

Substituting Eq. (2.10) into Eq. (2.9) for the memory function and also making the approximation of replacing the pro-
jected Liouville operator QLQ simply by L, we arrive at the expression
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X „„(K,K', co)=,
, gp '(K, K, ) J dt e' '[(QP (t)mA ] „(K„t)~QP„m'A . , „.(K'))

m!n! K 0
1

+ (Qp (t)n A „](Ki,t)~QPyn'A ~ „](K')) ]

As Q projects out all the regular part of the force p due to the adiabatic periodic adsorption potential, we have

(2.11)

(2.12)Qp=g V[M(R, A. ).ttz] .

This is just the random force on the adatom due to coupling to substrate phonons. Further decoupling of the adatom
variables p and R from the substrate variables u& leads to the expression for the memory function,

,„,(K,K',t[i)=, gp '(K, K, ) f dt e' '[i), (t)mm'C ]„,„(K„K',t)1

m!n! 0
1

+i) (t)nn'C „ i „,(K„K';t)], (2.13)

(2.14)

Note that the friction function rl (t) is just the autocorre-
lation of the random force. With Eqs. (2.5), (2.8), and
(2.14), Eqs. (2.7) and (2.13) constitute a closed set of ma-
trix equations for the dynamic correlation functions that
can be solved self-consistently. This is the so-called
mode-mode coupling approximation. Results for specific
parameters have been obtained within this approxima-
tion. ""

When the motion of the adatom is on a time scale
much longer than that for the substrate phonons, one can
employ the initial value approximation (IVA), ' ' name-

ly, the adatom variable A (K, t ) in Eq. (2.11) can be sim-

ply replaced by A(K, t=0). Then the memory function
simplifies to

X „„(K,K';to)=5 5„„5K+(rI„(co)m+rt~(co)n),

(2.15)
and becomes diagonal in all the indices. In the remainder
of this paper, we will concentrate our discussion on the
IVA using the form (2.15) for the memory function. Be-
sides the fact that it is quantitatively valid for slow
diffusive motion and the frustrated translational modes of
the adatom, most of the qualitative features we discuss
here also survive in the full mode-mode coupling approxi-
mation. "

We give here an explicit expression for g (co) using the
three-dimensional Debye model for the substrate pho-
nons and a simplified form for the coupling matrix ele-
ment

BM (R, A, ) iq, .R=He
Bxp

(2.16)

Here q& is the wave vector for the A,th phonon mode. In
this simplified model

CO COD

il (co)=il 0(cuD —co) — ln
2K CO+ Q)D

(2.17)

where rt (a=x or y) is the diagonal element of the fric-
tion tensor given by the expression,

q[ll=(X V[M[R [1 u~i&]] XV[M tR l) u~[) .

with

(2.18)

(2.20)

Each element block of b is a matrix with indices n and K
implicit,

bL I =[[bt L ]„„(K,K')] .

Using Eqs. (2.8), one finds

(2.21)

Y1=
4mmc p

Here ~z is the Debye frequency, c the velocity of sound,
and p=M/V, the mass density of the substrate. Obvi-
ously, the IVA is quantitatively valid when coD is much
higher than the frequency of the frustrated translational
modes. Although only the coupling to substrate phonons
is explicitly included in our model, the coupling to other
substrate excitations such as electron-hole pairs can be
included in a similar fashion. Since the electronic motion
is on a much faster time scale than the typical diffusional
or vibrational time, the IVA is an excellent approxima-
tion for this situation. In fact, the corresponding contri-
bution to the memory function would be similar to that
given by Eq. (2.17) with details only differing in the imag-
inary part, in addition to the fact that co& would be re-
placed by the frequency scale appropriate for the
electron-hole pair excitation, namely, the plasmon fre-
quency. When we are concerned with the region co «~D
and ImX does not play a significant role, we can regard g
as an effective friction which contains the effect of cou-
pling of the adatom to all substrate excitations (electronic
and vibrational).

We note that y is block diagonal and X is completely
diagonal. The matrix b is tridiagonal in (m +n), the sum
of the x index m and the y index n,. Thus it is convenient
to introduce a new index L =m +n and to label the ma-
trix elements in (L, n) Arranging t. he elements in blocks
byL,

b=[bL I ], (2.19)

where L,L, '=0, 1,2, . . . ; it is tridiagonal,

0 boy 0 0

bi, o

b= 0 b2 ) 0 b23

0 0 b32 0
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[bL I ]„„(K,K') =5l L.+1&kT/m [5„„i(K„+q„)+5„„+,i(K»+q»)]5& K,

+5I L, 1 &kT/m [(L+1 —n)5„„.i(K„+q„)+(n+1)5„„.,i(K +q )]5K z,

+ [5„„.i(K„' —K„)+5„„,i (K» E)—]V(K —K')
mkT

(2.22)

lN bo, 1

bi p IN+Xi

0

b

i N+X2 (2.23)

Here V(K —K'} represents the Fourier component of the
adsorption potential V(R). The memory function matrix
X in Eq. (2.15) is diagonal in L as well as in n and K.
Therefore the matrix we need to invert in Eq. (2.7) is
block tridiagonal, i.e.,

r = [p.EOO](K=O, K'=0;co), (2.25)

while the second block (L,L ' = 1} is needed to evaluate
the correlation functions D„„and Dyy,

I

The correlation matrix C=y E. Since g is diagonal in L,
only the first block (L,L'=0) is needed to evaluate the
dynamical structure factor

S(q, co) =Co 11(K=0,K =0;co)

0 0 b iN+X& D(co) =C11(K=O,K'=0;co}~q=11

1
X 8(co —co)— ln

2m

N ND

N+ND

where

[XL ]„„.(K,K'}=[(L—n} i„r+nri»]5„„5» K

(2.24)

= [p E11](K=O,K'=0;co)iq 11 . (2.26)

Epp and E
& ] can be evaluated through a matrix

continued-fraction expansion similar to that employed by
Risken in the solution of the one-dimensional Fokker-
Planck equation. ' The continued fractions for Epp and

E» have the form

Eoo=[ —ico —bo 1( ico+X1—b1 2[
—i—co+X2 —12 3[ ico+X3—

L,I +1( 1~+Xi. +1} bl. +1,L
' ' '

) b3, 2) b2, 1) b19]

b& obo
E11= ico+X1—'

.
' —b12[ —ico+X2—12 3[ ico+X3——

lN
(2.27)

LO, LO+1( ~+XLO+1 ho+1 Lo )
'

3,2) 'b2
1 (2.28)

The continued fraction has to be terminated at some in-
teger I.=I.p. Since XL increases linearly with L, g, this
continued-fraction expansion is effectively an expansion
in inverse powers of the friction parameter g. The ter-
mination step Lp necessary for convergence is larger for
smaller values of the friction parameter. It is obvious
also from Eqs. (2.27) and (2.28) that the convergence is
fastest when co))coo [the bare frequency of oscillation in
the potential well of V(R)] and slowest for small frequen-
cies for a given value of g.

III. SEPARABLE POTENTIAL

I

C(co)=f C„(co—co')C»(co') . (3.1)

The matrix equation that C„satisfies is similar to Eq.
(2.7) but much more tractable:

symmetry. In this separable potential, the matrix b can
be decomposed into its x and y components,
b bz Iy +Iz by where I~ is the identity matrix in the
x subspace I .(K„,K„')=5 5, and so is I in they

x x

subspace. Meanwhile, g becomes the outer product
y„y» and +=X„SI»+I„X». Therefore the correla-
tion matrix decomposes as

In this section, we erst study the case where the ad-
sorption potential has a separable form
V(R) = Vo[cos(2nx /a )+cos(2ny /a )] and a fourfold

I

C„(co)=y [ ico+b +X ]—
with

(3.2)

b„(K„,K„')=&kT/m [5 .+1+(m +1)5 . 1]i(K„+q„)5,+ [5 1i(K„' E„)V(K„K„')],——1
x x~ x kT m, ltl 1
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X, (K,K„';co)=rlmfi 5, 0(co~ —co) — ln
x x 277

(3.4)

S„(q„,co ) =C„p p(K„=K„' =0;co ),
Sy(q, co)=C op(K =K'=0;co) .

(3.5)

(3.6)

The total dynamical structure factor S(q, co} then follows
from Eq. (3.1) as a convolution of S„(q,co) and S (q, co),

S(q, co) = S„(q„,co —co')S~(q~, co') .dco

2' (3.7)

Qualitatively, S„(q„,co) [or S (q~, co)] has a quasielastic
peak centered at ~=0 due to the diffusive motion of the
adatom, and a peak near co=cop =2'/a+—Vp/m due to
the localized adatom vibrational motion near the minima
of the adsorption potential. As wave vector increases,
the strength of the vibrational peak increases at the ex-
pense of the diffusive peak. When the convolution of the
x and y directions is considered for a wave vector having
both q, and q~ components, as in Eq. (3.7), then the full

width of the quasielastic peak is given by
AE(q)=2D(q, +q~) for q-0. However, as q increases,
the diffusive and vibrational motion are coupled and the
quasielastic peak becomes distinctly non-Lorentzian. It
can be written in the following form,

The equation for C~ is identical, with the x index re-
placed by y and m, m' replaced by n, n'. The solution of
C is therefore reduced to an effective one-dimensional
problem. The inversion of the matrix on the right-hand
side of Eq. (3.2) can be achieved through matrix
continued-fraction expansion as described in the previous
section. However for this case of a separable potential,
the algebra simplifies considerably. For the evaluation of
C,

~ ~
we need only to set the index n =n'=0(m =m'=0)

in Eqs. (2.22), (2.24) —(2.28), which results in much small-
er block matrices b, X appearing in the continued-
fraction expansion. For this separable potential, we are
able to obtain results accurate to better than 1% with the
continued fraction terminated at the Lo-th step
[Lp =10/(ri/cop)]. We obtain the dynamic structure fac-
tors for motion in the x and y directions as

we focus on the width of the quasielastic peak. Experi-
mentally, an effective EE(q) was extracted by assuming
that the observed data result from the convolution of a
Lorentzian with an instrument resolution function. We
follow the same procedure to extract an effective b,E(q)
from the theoretical value of S(q, co). First, we convolute
the calculated dynamic structure factor S(q, co) with an
instrumental resolution having a width of 2nD =0.05mo:

dt's

S,s(q, co) = exp
1TW p

(co co)
S(q, co') .

(2wo)
(3.9)

Then we fit the resultant spectrum S,s(co} to the convolu-
tion of a Lorentzian form with the instrumental resolu-
tion function,

f — exp
dN

rrw p

(co co)

(2 ')
bE(q) A (q)

co'+ [bE(q)/2]'

in the interval ~cd
~

~ 0. lcop to extract an effective FWHM
b,E(q, )cofor the quasielastic peak. The best fit to the ex-
perimental data from Ref. 8 is obtained by choosing the
parameters in the Hamiltonian as g =0.15coo and
6=2 Vp =780 K (67 meV). The choice of Vp implies a
bare-adatom vibrational frequency vp=cdp/2m =1.4 THz.
(This is the frustrated translational mode. ) This is con-
siderably less than the Debye frequency for Cu,
COD/2~=7 THz, and justifies the use of the IVA in the
evaluation of S(q, co). In Figs. 1 and 2, we plot bE(q) to-
gether with the experimental data taken from Ref. 8 for
temperature T=300 K and 200 K, respectively. The
theoretical fit of the data is very good. Beyond the first
Brillouin zone, b,E(q) increases rather than decreasing to
zero toward the center of the second Brillouin zone, as
predicted by the multisite jumping theory. This indicates
clearly the contribution of the vibrational mode to the
quasielastic spectrum. The same conclusion about the
importance of the vibrational-motion contribution to the

S(q, co)=
2 +S(q,co),A (q)

co + [b,ED(q)/2]
(3 8) 400-

where S(q, co) is slowly varying near co=0 but peaks at co

near coo.

To illustrate the above discussion, we apply our theory
to analyze the Na/Cu(001) system for which He scatter-
ing data appeared recently. As argued in Ref. 8, the in-
teraction effects are weak at the experimental Na cover-
age (0-0.1) and the adatom motions can be considered
as independent. Thus our single-adatom theory is ap-
propriate for the analysis. For this system, the adsorp-
tion sites are the fourfold hollow sites. The x and y direc-
tions correspond to [110]and [110]and a =2.56 A. The
dynamical structure factor was measured for wave vector
q along the [100] direction, and thus it can be factored
into the convolution form as described in Eq. (3.7). First,

300—

Zx
200—

!100- /

I I I I I I

0. 5 1 1.5 2 2. 5 3
Parallel Wave vector c[ (1/A]

3.5

FIG. 1. FWHM {LMeV) of the quasielastic peak vs the parallel
0

wave vector q(A ') in the [100] direction at temperature 300
K. g =0. 15')p ct)D =Sec)p. The solid curve is from the theory.
The experimental data with error bars are taken from Ref. 8.
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200— 200K o
300K +

150—
(1}

Zx 100—

0.1 .—

10-2

50-
10

0—
0

I I I I

0. 5 1 1.5 2 2. 5 3
Parallel Wave Vector g (1/A)

3.5

FIG. 2. As Fig. 1, except T=200 K.

quasielastic peak has also been reached via molecular dy-
namics (MD) simulation studies. We find that, along the
x or y direction, the behavior of bE(q) is close to the
simple predictions of the multijump theory, without the
mixing of diffusive and vibrational motion.

To analyze the microscopic picture of the diffusion, we
investigate S(q, co) in more detail. In Fig. 3, we plot
S(q, co) for q=(1 9n/a, 1..9m./a) and T=200 K. It can
clearly be decomposed into a narrow Lorentzian part
near co=0 plus a more slowly varying part S(q, co), as in-
dicated in Eq. (3.8}. We extract A (q) and EE~(q) of Eq.
(3.8} by a least squares fitting in the frequency range
0~ co ~0.02coo. We then compare EED(q} to the predic-
tion of the multisite jumping model

bED(q)=2v g P„[2—cos(naq„) —cos(naq )] . (3.11)

Here v is the total jumping rate and P„ the probability
for the event of jumping n sites. In Fig. 4, we plot [P„I
for the two temperatures 200 and 300 K. We note that at
both temperatures multiple jumps of two and three steps

1
ll

1

(

0. 8 -,'

I

I

(
I
I

I

(

0. 6 -',',

I

I
I

I

1

(
I
(

0.4 -',
I

1

I

I

I

I
(
(

0.2 -',

Q

0 0.02 0.04 0.06 0.08 0.1
Frequency

FIG. 3. Dynamic structure factor S(q„=q„=1.9~/a, co)
(scaled with 1/coo, solid curve) decomposed into a sharp
Lorentzian peak (dashed curve) and a slowly varying part S
(dotted curve) for T=200 K. The frequency co is scaled by coo.

10-5
0 10

FIG. 4. Jumping probabilities vs jumping distance (in units
of the lattice constant).

are frequent. Also the jump rate v=0. 17voe " is con-
siderably smaller than the value given by the transition-
state theory, vTsT=voe . This is consistent with the
recent theoretical result ' that the probability of mul-
tisite jumps increases while the jump rate decreases as
rj~O. The diffusion constant actually increases as I /q in
this limit. " Our result for the fraction of double jumps is
approximately the same at T=200 K and 300 K, in con-
trast to that of Ref. 8, which finds a larger fraction of
double jumps at T=200 K compared with T=300 K.

The fact that our theoretical result fits the experimen-
tal data better than the MD simulation of Ref. 8 can arise
from two sources. First of all, the friction parameter g
chosen here to be 0. 15coo should be considered as an
effective friction originating from coupling to all sub-
strate excitations and not just to substrate phonons. In
fact, if we use the estimate of g from the continuum elas-
ticity theory, 7}/coo is found to be only 0.025. Even
though this estimate is rather crude, it indicates at least a
substantial contribution to the effective friction parame-
ter from coupling to electronic excitations for
Na/Cu(001). In the MD simulation, only coupling to
substrate phonons is included and this results in an un-
derestimate of g. Secondly, the diffusion constant, or
equivalently, the jumping rate, is thermally activated
with the Arrhenius form Ae, with 5 equal to the
diffusion barrier. In our work, 6=2VO is chosen as 780
K (67 meV). In Ref. 8, the effective barrier is extracted
from the maximum broadening at the zone boundary,
which contains both vibrational and diffusive contribu-
tions and theoretically does not obey a rigorous Ar-
rhenius form. This leads to their choice of a smaller bar-
rier height 6=51 meV.

In Fig. 5, we plot the diffusion coeScient Dzz Dyy
vs friction g for various temperatures. We mention here
that the diffusion constant extracted from the curvature
of EED(q) =2D(q„+q ) is identical to that given by ve-

locity autocorrelation, D„„(co=0)or D~~(co=0). At very
high temperatures, the adatom is basically executing
Brownian motion in a homogeneous viscous medium and
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FIG. 6. Vibrational-spectra structure factor
S(q„=q~=m/a, co) (scaled with 1/cop) for T=780, 512, 300,
200, 180, and 70 K (from top to bottom); the barrier b, =780 K,
g =0.15cop and coD = 5Np. The frequency is scaled by cup.

FIG. 5. Diffusion constant D (scaled by culpa') vs friction g
{scaled by coo) for PE=0.02, 0.2, 1, and from 3 to 13 by steps of
2 (solid curves, from top to bottom). The dashed lines are for
the corresponding Kramers rate theory.

ly toward mo. At very low temperatures, the vibrational
linewidth is dominated by frictional damping. It is in-
teresting to note that the temperature dependence of the
shift of the vibrational peak comes from two different
sources. The coupling with substrate excitations tends to
shift the peak frequency to the high-frequency end, while
the anharmonicity effect pulls it toward the low-
frequency side and is dominant for coo &)coo. Moreover
the anharmonicity-induced line shift has much stronger
temperature dependence. At lower temperatures, the
anharmonicity effect is smaller and thus the peak position
is closer to coo. Once we have chosen the parameters for
the best fit of b,E(q) for the quasielastic scattering peak,
the vibrational peak is completely determined in our
theory with no further adjustable parameters. Our
choice of 5=780 K corresponds to a bare vibrational fre-
quency vo=1.4 Thz. At 70 K, our results indicate a vi-

brationa1 peak at v7O=1. 35 THz, while at 180 K, the
peak is shifted to vl8o=1. 22 THz. These theoretical re-
sults are in excellent agreement with the measured values
of the frequency of the frustrated translational mode,
vo=1.4 Thz at 70 K and 1.23 THz at 180 K. It would
be desirable to have more detailed line-shape analysis of
the experimental data for a comparison with our theoreti-
cal prediction of the shift and broadening of this vibra-
tional mode.

IV. ANISOTROPIC AND NONSEPARABLE POTENTIAL

We now turn to study the vibration and diffusion of an
atom adsorbed on an anisotropic surface with a nonsepar-
able potential. The adsorption potential as dictated by
the symmetry is modeled by

(4.1)V(R) = Vo[1 —cos(2~x /a )cos(2ny /aa )],
where a=&2. This potential is appropriate for adsorp-
tion on bcc (110) systems, e.g., 0/W (110), ' ' with the
coordinates chosen as the x axis along the [110]direction
and the y axis along [001]. This potential possesses maxi-
ma located at (x~ =na, yM =maa ) and [x~=(n
+1/2)a, yM =(m +1/2)aa], minima at [x =(n

the diffusion constant D =kT/g for arbitrary friction g.
As the temperature is lowered, the diffusive motion of the
adatom becomes dominated by the thermally activated
events of jumping over barriers. Consequently, the tern-

perature dependence starts to conform to the Arrhenius
form D o-e ~ with 6=2VO being the barrier height. In
the low-temperature region, the diffusive motion can be
divided into three regimes corresponding to different
values of the friction parameter q. For small friction
such that g «coo, the rate for the adatom to exchange its

energy with the environment is very small. In fact, it
vanishes in proportion to rl. Although the thermally ac-
tivated events then become rare, once an adatom is ac-
tivated with an energy above the barrier, it will travel a
distance inversely proportional to g before it relaxes into
a potential well. Therefore, the diffusion constant in this
regime behaves as I /rI. In the opposite limit of high fric-
tion, g)&coo, the adatom is strongly coupled to the envi-

ronment and exchanges energy with it very rapidly.
When an adatom is activated from a potential well and
crosses the barrier, it may recross the barrier back to the
original well instead of relaxing into the next well. Thus,
the diffusion constant is also inversely proportional to q
in this limit. ' Interestingly, for intermediate values of
friction, there exists a regime where the diffusion con-
stant is weakly dependent upon friction and is given by
the transition-state theory (TST). In this regime, the
adatom moves mostly by single-site jumps and there is
negligible recrossing of the barrier. In the TST and
high-friction regimes, when g/coo ~ 1 and Ph )2, our re-
sults compare well with the Kramers rate theory, '

D =(coca /2m)(')/ 4+ri /coo rl/a)o)e-
Next we examine the vibrational spectra. In Fig. 6, we

plot S (q„=vr /a, q =m /a, co ) for various temperatures.
At higher temperatures, the vibrational peak is located at
the low-frequency side of coo. The peak becomes sharper
as temperature decreases, and its position moves gradual-
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+1 2a/ )ay =maa] and [x =nay =(m+ I/2)aa],
and saddle points at [xs =(n+ I/4)a, ys =(m + I/4)aa ]
and [xs=(n + I/4)a, ys =(m +3/4)aa ],
with m, n =0 +1 +21, 2, . . . , . The diffusion barrier
is determined by the difference between the saddle point
and the potential well (the minimum), b, =Vo. For a
nonseparable adsorption potential such th t ' E .

. },much more intensive numerical efforts are necessary
to evaluate the continued-fraction expansion in Eqs.
(2.27) and (2.28). Instead of the full S(q, co) spectrum for
a range of q values which was calculated in Sec. III for
the separable potential, we have evaluated for this case
the velocity autocorrelation function D(ro) f =0.
While

co or q=
i e D(co=0) is directly the diffusion constant, its

nite-frequency part carries information about the vibra-
tional modes. It is clear from the form of Eq. (2.17}that,
in the IVA, there is a broadening of the adatom vibra-
tional motion due to coupling to the substrate phonon
modes whenever co&aD. At the same time, due to the
Kramers-Kronig relation for the memory function, the
imaginary part of the memory function cause an upward
shift of vibrational frequency. This shift is maximum at
ro-coD (in fact, it diverges logarithmically in the IVA).
These qualitative features are preserved in the mode-
mode coupling approximation, except that ReX is not
abruptly cut off at ~co~=niD but decays smoothly as
~co

~
~ ac due to multiphonon contributions. "

Terminating the continued fraction in Eq. (2.28) for
Eii at Lc =(n +—m ) = 10 and using 21 X 21 reciprocal lat-
tice vectors, we are able to evaluate D(ni) with an accura-
cy better than a few percent for values of 7)/con between
0.125 and 32. In F'an . In Fig. 7, we plot the diffusion constants
Dz~ and D» as functions of the friction g~ =

g~
=g for

various temperatures. At very high temperatures,
D„„=D =kT/rl. The diffusive motion of the adatom is
almost a continuous Brownian motion in a homogeneous,
isotropic viscous medium. As the temperature is
lowered, the adatom dynamics gradually becomes dom-
inated by thermally activated processes. At very low
temperatures, the diffusion proceeds by jump events from
one potential well to another via the saddle point. Each
jump results in a displacement of the adatom whose pro-
jection is a along the x direction and aa along the y direc-
tion; the ratio of the two distances is I/a. As clearly
demonstrated in Fig. 7, the ratio D„„/D approaches the
geometric ratio I/a =0.5, along with th t d h

ot and D„get closer to the thermally activated
Arrhenius form ~ e ~ . As the value of the friction pa-
rameter is varied at low temperatures, we also observe a
smooth crossover from the low-frictio 1/'

n q regime vsa
the TST regime to the high-friction I/i) regiine. This

e avior is exactly parallel to the discussion we have
presented in Sec. III for the separable potential.

In Fi s. 8—10g . —,we plot the dynamic correlation func-
tion D(co)/kT for iI/co&=0. 1 and coD =3cgo at various
temperatures. For this relatively low friction value, the
matrix continued fraction is still terminated at L0=10
and thus the low-frequency part of D(co) may not be reh-
able, whereas the vibrational part should be qualitatively
correct since the convergence of the continued fraction
improves with increasing co. I.et us first analyze D„„(co}.
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At high temperatures, when Ph ( 1, it possesses a prom-
inent diffusive peak at low frequency ~co~-0 and it is
nearly structureless at the vibrational frequency
co-coo, —=coo. At the temperature decreases, the diffusive
peak is suppressed and the vibrational peak gains weight
accordingly. The line shape of the vibrational peak is
asymmetrical with stronger broadening on the low-
frequency side. Moreover it is shifted to the low-
frequency side of the bare frequency coo, . While the vi-

brational peak becomes sharper as the temperature is
lowered, its position moves gradually toward coo, . At
very low temperatures, the vibrational linewidth is dom-
inated by the friction coef5cient q which results from col-
lisions with phonons. As in the case of a separable poten-
tial, the coupling with substrate phonons tends to shift
the peak frequency to the high-frequency end, whereas
the anharmonicity effect pulls it toward the low-
frequency to the high-frequency end, while the anhar-
rnonicity effect pulls it toward the low-frequency side and
is dominant for coD )&no. Moreover the anharmonicity-
induced line shift has a much stronger temperature
dependence. The anharmonicity effect is smaller at lower
temperatures and thus the peak position is closer to coo .
The line shapes of the vibrational modes in D~~(co) are
also asymmetrical. The peak of D (co) is shifted toward
the low-frequency side of coo~ =coo/&2. The shift in the
position of the D «(co) peak, however, is more complicat-
ed than the corresponding behavior for D,„(co) The.
anharmonicity within the y mode tends to shift the peak
toward the low-frequency side of coo„. However, anhar-
monicity also causes the mixing of the y mode with the x
mode and thus shifts the y mode in the opposite direction
because coo„)coo . The y-mode shift therefore has a non-
monotonic temperature dependence. At Pb, =1.5, the
two frustrated translational modes are strongly

broadened and they almost overlap. As the temperature
decreases to Pb, =2.5, the y mode is gradually decoupled
from the x mode and the y peak shifts toward the low-
frequency end.

V. CONCLUDING REMARKS

We have presented a microscopic theory of discussion
and vibration of an adatorn on solid surfaces. For a se-
parable potential, we evaluated and analyzed the dynamic
structure factor. When applied to the Na/Cu(001) sys-
tem with a fourfold symmetry, the calculated full width
at half maximum of the quasielastic spectrum and the
shifted vibrational frequency are in excellent agreement
with the experimental data from He scattering experi-
ments. The quasielastic scattering spectrum is demon-
strated to have contributions from the vibrational as well
as from the diffusive modes. The contribution of both the
anharmonic potential and frictional damping to the ada-
tom vibrational spectrum are also discussed in detail. We
have also investigated the vibrational spectra and
diffusion constant of an adatom on an anisotropic system
such as a bcc (110) surface with a nonseparable adsorp-
tion potential by evaluating the velocity autocorrelation
function of the adatom. The temperature dependence of
the diffusion constant clearly demonstrates a smooth
crossover from the high-temperature continuous Browni-
an motion behavior to the low-temperature thermally ac-
tivated characteristics. As the friction is varied at low
temperatures, one also observes the change from the
low-friction multisite jumping regime to the transition-
state regime and then to the high-friction overdamped re-
gime. The frequency spectra of the velocity autocorrela-
tion function show the broadening and shift of the vibra-
tional modes. At temperatures higher than the diffusion
barrier, the spectra have only a diffusive peak at ~co~-0
with no detectable trace of vibration. At temperatures
comparable with the barrier height, the vibrational
linewidth is dominated by anharmonic dephasing. At
temperatures much lower than the barrier height, fric-
tional coupling with substrate excitations becomes the
dominant dephasing factor. Since the bare frequencies of
the two frustrated translational modes for the anisotropic
surface are different from each other, the temperature
dependence of the shift of the vibrational modes is con-
siderably more complicated than for the surface of four-
fold symmetry.
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