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We have studied systematically the normal-incidence-radiation absorption for the intersubband
transition in the quantum well of n-type indirect-gap semiconductors. By a special choice of the
coordinate system related to the sample growth direction, we have proposed a simple method to
calculate the elements of the inverse effective-mass tensor. Using the concept of the invariance of the
ellipsoidal constant-energy surface under coordinate transformations, the general expression for the
absorption coefBcient of the intersubband transition has been derived as a function of the sample
growth direction. We have also investigated the maximal value of the normal-incidence-radiation
absorption, the optimal growth direction for quantum-well detectors, and the comparison between
normal- and parallel-incidence-radiation absorptions. These are of great utility for designing and
optimizing the quantum-well infrared detector for normally incident radiations.

I. INTRODUCTION

In&ared detectors, based on the intersubband tran-
sitions in the n-type GaAs/Gai Al As quantum-
well (QW) structure and other similar systems, have

been developing rapidly. ' The potential of the
GaAs/Gai Al As system in the development of the in-

&ared focus plane array (FPA) is great due to the fact
that the system can be grown on a substrate of large area
with a much higher uniformity than can the Cd Hgi Te
system. However, this type of QW infrared detector and
its FPA have limited capability. The reason is that it
can only absorb the component of radiation whose elec-

tric field is perpendicular to the layer plane of the QW.
The absorption of the normal-incidence radiation is for-

bidden when the intersubband transitions are considered
in this system. This makes the manufacture of the detec-
tor array very diKcult and complicated, and the grating
structure has to be made on the surface of the QW to
improve the optical coupling and sensitivity.

Recently, QW structures based on indirect-gap semi-
conductors with anisotropic effective-mass tensors have
been attracting much attention. It is found that when
the principal axes of the ellipsoid are tilted with re-
spect to the QW growth direction, the efFective-mass
anisotropy of the conduction electrons in the ellipsoidal
constant energy surfaces (valleys) can provide interac-
tions and couplings between the parallel and perpendic-
ular motions of the electrons. This makes the normal-
incidence absorption possible based on the intersubband
transitions in these systems.

When analyzing experimental data, the authors of
Refs. 3—6 discussed the conditions of the normal-
incidence radiation absorption based on the intersubband
transitions of electrons in the QW structures, while in
Ref. 7, a theoretical analysis has been given. However,
these discussions and analyses were limited only in some

special growth directions. The optimization of the QW
growth direction and the limit of the absorption of the
normal-incidence radiation based on the intersubband
transitions have not been generally investigated yet.

In this paper, we present a general theory for the radia-
tion absorption based on the intersubband transitions in
n-type indirect-gap semiconductor QW's. In Sec. II we

first formulate the matrix elements of the intersubband
transition and the corresponding conditions for the ab-
sorption of the normal-incidence radiation in an n-type
QW. In Sec. III we will introduce a simple method to
calculate the elements of the inverse effective-mass tensor
in the nonprincipal-axis coordinate system. By the con-
cept of invariable quantities of ellipsoidal constant energy
surface under the coordinate transformation in Sec. IV
the relations among the elements of inverse effective-mass
tensor are obtained so that the calculation of the absorp-
tion coeKcients is greatly simplified. These relationships
are actually our bases to investigate the limit and opti-
mization of the normal-incidence-radiation absorption in
Sec. IV. Also in Sec. IV, the absorptions of the par-
allel and normal-incidence radiations are to be studied
and compared. The conditions of the optimal absorption
and the limits of the normal-incidence absorption based
on intersubband transitions in different material QW's
are discussed in connection with the design of the QW
detectors. A brief conclusion will be given in Sec. V.

II. MATRIX ELEMENT
OF THE INTERSUBBAND

TRANSITION AND THE CONDITION FOR
NORMAL-INCIDENCE-RADIATION

ABSORPTION

We set the growth direction of the QW as the z axis
and the plane perpendicular to this direction as the xy
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plane of the (x, y, z) coordinate system. In the effective-
mass approximation, the Hamiltonian of the electrons in
the QW is

In Eq. (6),

e'"'~ „e'~'~ = „e'"~ e'~ ~

H = P—WP+ V(z),
2

where P is the momentum operator, W is the 3 x 3
inverse effective-mass tensor taking into accounting the
anisotropic effect of the band structure (W;i = Wi;), and

V(z) is the potential energy. Since H is translationally
symmetric in the xy plane, the wave function can be ex-
pressed as

(k) = P (z)u(rQe'" ~, (2)

where u(r) is the Bloch function, which is approximated
as the same for all m and k values, since we consider

only the transitions among subbands. k = (k, k„) and

p are the wave vector and coordinate in the xy plane,
respectively, and (t) (z) is the envelope function. Because
of the translational symmetry in the xy plane, k is a good
quantum number. The quantum number of the energy
level in the z direction is m. In the quantum well system,
m is the subband index.

The kinetic energy of the electron, described by its
vector potential A, has to be replaced, in the presence of
a radiation, by the expression

I &- ed~ ++ t - eA'l
P+ ! W P+

c )
where e is the unit charge and c the light velocity. Here
the scalar potential has been taken as zero without loss of
generality because of the arbitrariness in the gauge. The
Lorentz condition and the choice of zero scalar potential
imply V . A = 0. Furthermore we can neglect nonlinear
effects by disregarding the term in A2. Thus the inter-
action between the incident radiation and the electron
1s

—AWP .
c (4)

By Eq. (2), the matrix element of the transition be-

tween states @ (k) and @„(qg can be written as

(4 (k) (AWP~C „(q))

u e' A W P u e' , 5

72

where i, j = x, y, z. Since P (k) and e'"')' are slowly
varying functions over one unit cell, and P is a differential
operator, the right-hand side of Eq. (5) can be expanded
into two terms:

u $ A(W(, Pe u)(e) e'e e(e)„e'e')'
72

+( ( )(A ueu'" e) AiWi, P, t) e'e'e) . (6)'
~ '7e7

) 'A;W;~ (P e*."~(P~ ~P„e*~~)

~72

4- ) A;W;, (P e'" ~~P, ~(t)„e*~P),'
(7)

where the summation g', excludes j = z. Since P„ is
only a function of z, the first term of the last equality in
Eq. (7) is reduced to

which is zero when m g n. The second term of the last
equality in Eq. (7)

(4 e'"'IP. 14 e*")= (4 IP. I4' )(e'"'Ie"')
because e'~'~ is only a function of p = (z, y). Since
(e'"')'~e'f'~) = b&, Eq. (7) finally becomes

(4 (k)~AWP~C„(q)) = b„-,) A;W, , (P ~P, ~P„) . (8)

Here we see that the intersubband transition occurs only
while the momentum in the zy plane is conserved and
the transition is between the envelop functions in the z
direction. From Eq. (8), it is easy to see that a nonzero
matrix element of intersubband transition for the normal-
incidence radiation (A, A„g 0 and A, = 0) can be
obtained only when W, or W&, are not zero. This occurs
when the QW growth direction does not coincide with
any of the principal axes of the ellipsoid of the constant
energy surface.

For electrons occupying an energy valley described by
a spherical constant energy surface, e.g. , the I' electrons
in Al Ga7 As, W;7. = 0 if i j j for any QW growth
direction of, so that

(k)~AWP~@ (k)) = A.W..(4 ~P. ~y ) .

If A, = 0, i.e., for a normal-incidence radiation, the tran-
sition matrix element is zero and thus the intersubband
transitions are forbidden.

III. ELEMENTS OF THE INVERSE
EFFECTIVE-MASS TENSOR

From the preceding section, we see that the elements
of the inverse effective-mass tensor are of essential im-

and vanishes for intersubband transitions due to the or-
thogonality of the envelope functions:

(P ~P„) =0 (mgn) .

And because (u~u) = 1,

(@ (k)~AWP~@„(q))

e'" e) A;W';, P, et„e'ee)'
~72
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portance for the absorption of the normal-incidence ra-
diation based on the intersubband transition of electrons
in the QW structure. Therefore it is necessary to inves-
tigate the relations among these elements of the tensor
and the growth direction of the QW.

For almost all the indirect-gap semiconductor mate-
rials, the conduction bands have either six symmetrical
ellipsoidal constant energy surfaces (usually the Xvalley
electrons) or eight symmetrical half ellipsoidal constant
energy surfaces (usually the I valley electrons). We first
discuss the I valley electrons. The major axes of the six
ellipsoids are oriented along three crystal axes [100],[010],
and [001], forming the principal coordinate system for the
X valley electrons (X, Y, Z). The inverse effective mass

tensor W„ is diagonal in this principal coordinate sys-

tem. For example, the W„matrix, for the two ellipsoids
whose major axes are in the [001] direction, is in the form
of

tn

mn
rgl2+ m2
—(I +m)

—m

l m
QI2+ m2

where r = l + m + n . For other ellipsoids, the T
matrices are obtained in the similar way.

For the L valley material, the calculation becomes com-
plicated since the principal axes do not coincide with any
of the [100], [010],and [001]directions. In order to discuss
the coordinate transformation of tPe inverse effective-
mass tensor, we must first transfer W„, expressed in the
principal coordinate system (X, Y, Z), to the one in [100],
[010], and [001] system and then to the system (x, y, z)
determined by the growth direction. Therefore, Eq. (11)
should be modified as

(mt, 0 0 )
Wp —— 0 m, 0

u&J
(10)

whose elements are

(14)

where iUi ——1/mq, w~ = 1/mt, and m~ and mq are the
longitudinal and transverse effective masses, respectively.

When the growth direction of the quantum well

[l, m, n] does not coincide with any of the three principal
axes, the inverse effective-mass tensor has nonzero off-

diagonal elements in the new coordinate system (z, y, z),
where the z direction is defined as z = [t, m, n]. This is
the very reason why this type of quantum well can detect
normal-incidence radiation, as we have already discussed
in Sec. II. It is pell known that the coordinate transfor-
mation matrix T between LX, Y, Z) and (z, y, z) is uni-

tary, i.e., T = T, where T and T are the inversion

and transpose of the matrix T, respectively. The inverse

effective-mass tensor W in the new coordinate system
(z, y, z) becomes

%, = ).Ti'). BII ~I ).BI-I &~ ~ .
k k' kll

(15)

For the ellipsoid whose major axis is in the [111]direc-
tion,

++ ]B=
—2

—1 1
W2 W3&
1 1

v& v&
0 ~)

Similarly, the y axis in the new coordinate system (z, y, z)
is set to be perpendicular to both the growth direction
(the z axis in the new coordinate system) and the major
axis of the ellipsoid. Again we have the relations W» ——

top and W*y = Wyz = 0. Thus

whose elements are
( (m + n) I —(m' + n')

PT1

(n+ t)m —(n'+ t')
PT1

~
(I + m, )n —(I' + m')

PP1

n —m
r1

l —n
r1

m —l
~1

m
r

where mk is the diagonal element of W„, either mq or m~.

After defining the growth direction as the z axis, the
choice of the z and y axes is arbitrary. However, we in-

troduce here a special set of the x and y axes to simplify
the mathematics, while at the same time do not lose its
generality. The y axis is chosen to be perpendicular to
not only the already defined z axis, but also the ma-

jor axis of the ellipsoid. The x axis is then uniquely
determined by its orthogonality with both the y and
z axes. In such a coordinate system, Wyy QJ$ and

W „=Wy, = 0. The transformation matrix T between

W„and W is thus determined by the corresponding or-
thogonality property. For the ellipsoid whose major axis
is in the [001] direction of the principal coordinate sys-

tem,

W„= (1 —a)u)g+ am(,
w. , = 6(io, —~i) .

(18a)
(18b)

where r = l2 + m + n, as defined earlier, and r1
(n —m) + (I —n) + (m —I)

W, and W, in the new coordinate system can be
obtained by Eq. (15). However, we hereby present an
alternative and simple method instead of the direct cal-
culation of Eq. (15). Obviously W, and W, are linear
functions of wq and ia~ [see Eq. (15)]. And it is known
that if mq

——m~, the inverse effective-mass tensor in the
principal coordinate system is a numerical matrix (a unit
matrix multiplied by a constant). Such a matrix is in-
variable under any unitary transformation. It is thus
expected that for any mq and m~,
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In other words, in the expression of Wzz the sum of the
coeKcients of mq and mi equals one, while for W „it is
zero. Thus the calculation of W and Wzz is extremely
simplified. By Eq. (15), we can get a and b of Eq. (18)
as

I = W + W„„+W„= 2m' + m), (23c)

J Wzz Wyy + Wyy Wzz + Wzz Wzz zy yz zz

+ 2VNgtUi (23d)

a= ) Tg Bg

b= — ) Ts Bs, ) Ts, Bs,
) &s

(19a)

(19b)

Equations (18) and (19) are also valid for X valley by

setting j3 as a unit matrix. Finally we have

In the above equations we have chosen Wxx ——Wyy ——

mq and Wzz = cot. Other choices of the W~ elements
give the same results as shown by Eqs. (23).

Since Wyy
——mq and W&y Wyz: 0 in the spe-

cially chosen coordinate system (z, y, z) as discussed in
the beginning of this section, the above four invariable
quantities are reduced to

W„= (1 —T„)xiii + T„xiii,
W, = —T, T„mg+T, T, mI, .

(20a)

(20b)

2 =W Wzz —W. = m~u),
W + W„=mg+m) .

(24a)

(24b)

Wxxkx + Weeks + Wzzkz —E (21)

This method is of great convenience to determine the
elements of the inverse effective mass tensor in the new
coordinate system whose z axis is along the QW growth
direction. However, the calculation of the matrix ele-
ments can be further simplified by a more detailed inves-

tigation. We will come back to this point later.
Now we would like to introduce the concept of the in-

variable quantities of the ellipsoidal energy surface in the
coordinate transformations. These invariable quantities
may greatly help us to understand the relations among
different physical quantities.

In the principal-axis coordinate system (X, Y, Z), the
equation of the ellipsoidal constant energy surface of the
QW system is written as

Equations (24) are universal and thus are very use-

ful to simplify the calculation of the elements of the in-

verse mass tensor and the discussion of the limits of the
normal-incidence radiation absorption as well as its op-
timization. For example, from these two equations and
Eq. (18a), we can write W, in a much simpler form

W', = a(l —a)(xiii —xiii) (25)

where a is defined by Eq. (19a). In other words, we have
transformed the calculation of elements of the inverse
effective-mass tensor into the calculation of one param-
eter a, which is evidently much simpler. In Table I, we

list the expressions of the parameter a for X and the L
valley electrons.

where k; is the component of wave vector and E is the
energy. However, in a general Cartesian coordinate sys-
tem (z, y, z), the equation of the constant energy surface
should be

IV. LIMIT OF THE ABSORPTION
COEFFICIENT

AND THE OPTIMAL GROWTH DIRECTION
OF A QW DETECTOR

W&&k& + Wyyky + Wzzkz + 2W&ykzky + 2Wyzkykz

+2W, k, k —E = 0 . (22)

W Wy
W y Wyy
W Wy

0 0

W,
Wy,
W,

0

0
0
0

—E
u), 0 0
0 m, 0
0 0 mi
0 0 0

0
0
0

—EtUg 'W) ) (23a)

W
Wy
W

Wy W .
Wyy Wy —— 0
Wy, W 0

0 0
mq 0 = uiz~i,2

0 mi

(23b)

There are four mathematically invariable quantities
when transforming from the coordinate system (X, Y, Z)
to (x, y, z). They are

o.(~)=, , ) A;W;, , S=, (26)
SN. . 256h'~'

9I t"cp

where N, is the sheet density of carriers in the quan-
tum well, I'/li is the lifetime of the carrier in the first

TABLE I. The value of parameter a for X aad L valleys.

I valley

Major axis

[100]
[010]
[001]

l2

m2
n2

Major axis

[111]
[111]
[1I1]
[111]

L valley

3ar

(l+ m+ n)'
(—l + m+ n)'
(l —m+ n)'
(l + m —n)'

From the infinite-barrier approximation and assuming
that only the lowest subband is occupied so that the tran-
sition is between the ground and first excited states, the
absorption coeKcient o. can be expressed as
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FIG. 1. The absorption coefficient of the normal incident
radiation based on the intersubband transition as a function
of the parameter a for Ge, Gaq Al Sb, AlAs, and Si well
materials.

excited state, p is the re&action index, L is the well
width, and Ru = 1.5m2A W„/I . Equation (26) is de-
rived from our general formula of absorption coefBcient as
a function of intersubband transition (both the quantum
well and superlattice systems). The relation between n
and W;~ was discussed in Ref. 10, while the expression
of a for quantum well detector was derived by Brown
and Eglash. It is recalled that for the normal-incidence
radiation, A, = 0, and in our selected coordinate sys-
tem, W „=0. For a nonpolarized incident radiation
(]A~] = ]A„]), from Eqs. (18a) and (25) and keeping Ku
constant, a can be expressed, apart from a constant, as

/~3/2 a(1 a) (wt wl)

[(1 —a)wg + awi] ~
(27)

where p, 3.5 for all the materials under investigation.
We have shown in Fig. 1 the absorption coefBcient n
as the function of the parameter a for four kinds of well
materials which have been widely investigated. It is ob-
tained from Eq. (27) that n reaches its maximal value

when

a=a= (swg + wi) —g(w, + wi)'+ 12w, w(
(28)

2(w|, —w()

Using the formulas listed in Table I, we can calculate
the a parameter for the different growth directions of the
QW. By comparing the calculated a parameter with a of
Eq. (28), the optimal growth direction for the absorption
of the normal-incidence radiation can be obtained.

For X electrons in the energy valley with a [100] major
axis and I, electrons with a [111]major axis, we present
the calculation results in Table II for the four different

well materials. The value of ~wq is also given, which will
be useful for later discussions. It is clear that if the cal-
culated optimal growth direction is [l, m, n], the direction
of [m, l, n] for the [001] X valley and the directions ob-
tained by the index rotation for the [111]I valley are also
optimal because of the symmetry. The optimal growth
directions for other valleys can be obtained in the simi-
lar way. It should be pointed out that in Table II only
low-index optimal growth directions of the QW detector
have been listed, where we have not taken into account
the problems of the real material growth. In addition,
the results are obtained for only a single valley whose
major axis is listed in the table.

Table II and Fig. 1 have clearly demonstrated that
among these four well materials studied, Ge is the best
candidate for the largest absorption for the normal-
incidence radiation based on the intersubband transi-
tions. This conclusion agrees with the recent experi-
mental results. It is of interest to compare the absorp-
tion coeKcients of indirect-gap systems with well known
direct-gap systems, e.g. , the GaAs well. Still keeping her

constant, it is easy to obtain from Eq. (26) that for a
nonpolarized incident radiation a = 0.48 at 45' incident
illumination for the GaAs well where mq ——m~ ——15.0.

Now we would like to discuss the comparison between
the absorption of the normal-incidence radiation and that
of the parallel incident radiation for the same QW struc-
ture based on the intersubband transitions. For the par-
allel incident radiation and by Eq. (26), the absorption
coeKcient o.

~~

can be written as

a)( = W„/W„~ = QW„. (29)

It is then more convenient to compare W, with W„
instead of comparing Eq. (27) with Eq. (29). From
Eqs. (18a) and (25), assuming wq ——Pwi and omitting
m~, we have

W„= (1 —a)P+ a,
W, = ga(1 —a) (1 —P) .

(30a)

(30b)

Obviously, the parameter P is related to the anisotropic
property of the effective-mass tensor of the well mate-
rial (0 ( p ( 1). p = 1 means that the effective
mass is isotropic so that W, = 0. The absorption co-
eKcient of the intersubband transition for the normal-
incidence radiation vanishes, similar to the I' electrons
in a GaAs/Gai Al As QW. The parameter a, defined
in Eq. (19a), represents the orientation characteristics of
the QW (0 & a ( 1). Both a = 0 and a = 1 imply that
the growth direction of the QW coincides with one of the
principal axes so that W, = 0, and thus the absorption

TABLE II. The maximal value of the absorption coefficient and the optimal growth directions.

Material
AlAs

GaAlSb
Si
Ge

Valley
X
L
X
L

Major axis
[001]
[111]
[001]
[111]

5.263
6.304
5.263
12.195

tU~

0.909
0.766
1.020
0.610

a
0.795
0.839
0.780
0.918

1.278
1.941
1 ~ 132
5.182

~tUg
2.294
2.511
2.294
3.492

Optimal [lmn]
[102][113][203]
[123][133][112]
[102][113][203]
[122][112][133]

The unit of the inverse efFective-mass elements is 1/mo, where mo is the free electron mass.



49 THEORY OF NORMAL-INCIDENCE ABSORPTION FOR THE. . . 13 765

(P—1)/2

W

Because the maximal value of the absorption coeffi-
cient of the parallel incident radiation based on the in-

tersubband transitions is n~~
——~mt (when the growth

direction coincides with one principal axis), as listed in
Table II, it is noticed that for a QW, the maximal value
of the absorption coefficient of the parallel incident ra-
diation is not always greater than that of the normal-
incidence radiation.

V. SUMMARY

FIG. 2. Elements of inverse efFective-mass tensor W and
W (in unit of m~) vs parameter a.

coefficient of the intersubband transition for the normal-
incidence radiation vanishes, though the QW is made of
the indirect gap semiconductor material. Figure 2 shows

W„and W, as functions of parameter a. By a very
simple calculation, it is found out that the straight line
of W„and the curve of W, have two cross points only
if

P ) Pp = 3 + v 8 = 5.828 .
In this case, when

3P —1 —gP' —6P+ 1 3P —1+ gP' —6P+ 1

4(P —1)
&a(

4(P —1)
(31)

we will have W, & W„. In other words, the absorption
of the normal-incidence radiation is larger than that of
the parallel incident radiation. Thus, for the same QW's,
the conditions for a larger absorption of the normal-
incidence radiation are as follows: First, the anisotropy
effect of the effective-mass tensor of the well material
should be large enough so that the longitudinal mass m~

is at least 5.828 times larger than the transverse mass
mt. Second, the growth direction of the QW must satisfy
Eq. (31). For example, for electrons in the Gaj Al Sb
I valley, P = 8.229) Po. If one chooses [2, 1,3] or [2, 3, 3]
as the growth direction [l, m, n], the parameter a is 0.8571
or 0.9607, which satisfies Eq. (31). Thus the absorption
of the normal-incidence radiation is larger than that of
the parallel incident radiation in this QW. For a QW
made of Ge, the same analysis can be done and a similar
conclusion is obtained. However, for the Si QW, since

P = 5.16 & Po, the absorPtion of the normal-incidence
radiation is always smaller than that of the parallel inci-
dent radiation for any growth direction.

We have derived the conditions to absorb and detect
the normal-incidence radiation based on the intersub-
band transitions in an n-type indirect-gap semiconduc-
tor quantum well. Quite different from previous publica-
tions, our investigation provides with a new method and
we have established a simple and systematic theory to
study the absorption of the normal-incidence radiation
based on the intersubband transition in the n-type QW.
The method is based on the special choice of the coordi-
nate system associated with the growth direction of the

QW, on the simple calculation of elements of the inverse
effective-mass tensor, and on the application of invariable
quantities of ellipsoidal constant energy surface under the
transformation of the coordinate system.

We have derived a complete set of formulas for the
absorption coefBcient in terms of the sample growth di-
rection [l, m, n] and have obtained the optimal absorption
conditions. Some optimal growth directions of the QW
have been suggested for the maximal absorption of the
normal-incidence radiation via the intersubband transi-
tion. The results obtained here are universal. They can
be applied to any indirect-gap semiconductor materials
and thus are of great help for the design of the highly
efficient QW infrared detectors to interact directly with
the normal-incidence radiation. The comparison of ab-
sorptions between the normal and the parallel incident
radiation has unambiguously explained many related ex-

perimental results.
It is easy to see that many conclusions about the se-

lection of the materials and growth directions of the QW
obtained in previous publications can be easily rederived
based on our general theory. For example, the discussion
about W„, W „and the absorption coefficient given in
Ref. 4 can be directly obtained from our Eq. (27). It
should be noticed, however, that we have not considered
the valley occupation in this paper and a further investi-
gation along this line is in progress.
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