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We consider electrons tunneling through a double-barrier resonant-tunneling structure (DBRTS)
and interacting with a defect which has internal degrees of freedom. Usually such a defect has
two (or more) metastable configurations and can switch between them due to its interaction with
a thermal bath. Interaction between the tunneling electron and the dynamic defect creates a noisy
environment surrounding the DBRTS, and leads to Buctuations in time of the resonant level. Such
Buctuations result in inelastic tunneling and low-frequency noise. This paper is focused on the
problem of inelastic resonant tunneling. We have calculated the average transparency for various
relations between the switching rate of the dynamic defect, the escape rate of the electron from the
resonant level in the well, the coupling strength between the electron and the dynamic defect, and
the temperature. The results derived here are entirely different from those found in phonon-assisted
resonant tunneling, because phonons obey the Bose statistics but a two-level Quctuator behaves as
an effective spin.

I. INTRODUCTION

Since the work of Tsu and Esaki, the resonant tun-
neling through a double-barrier resonant-tunneling struc-
ture (DBRTS) has been investigated extensively. In the
last few years much effort has been devoted to the study
of the effect on resonant tunneling of the electron-phonon
interaction, the electron-electron interaction, an external
magnetic field, or a high-&equency ac electric field. All
these works are based on the assumption that the DBRTS
is perfect and does not contain defects which have inter-
nal degrees of freedom. Such defects are different from
the static imperfection of interfaces.

Defects with internal degrees of &eedom have been
detected in the surrounding of even very high quality
point contacts. 2 s Usually a defect has two (or more)
metastable configurations and can switch between them
due to its interaction with a thermal bath. As a result,
the so-called random telegraph noise appears. The role
of defects with internal degrees of freedom in the sur-
roundings of point contacts was extensively discussed in
the literature (see for review Ref. 6 and the references
therein). Recently new features of electron transport due
to Kondo effect in scattering by two-level impurities and
electron-electron interaction were considered.

It is quite reasonable to believe that such fluctuating
defects, or the so-called elementary fluctuators (EF's)
exist also in the surroundings of a DBRTS. Since EF's
behave as dynamic degrees of &eedom, their effect on
resonant tunneling is an interesting and important phe-
nomenon. In general, when the quasibound state in the

well is coupled to an EF, the resonant level co will fluc-
tuate in time, leading to both an inelastic tunneling and
a low-&equency noise in the conductance. The fluctua-
tions are induced by hops of the EF between its states.
These hops, in turn, are due to the coupling of the EF
to a thermal bath.

In this paper we study the inelastic resonant tunneling
due to the interaction between the tunneling electron and
a two-level EF. The aim is to calculate the time-average
transparency T(s) of the DBRTS for the electron with
the energy e which is directly related to the Ohmic con-
ductance cr cr = (e /2vrh)T(sp) where sp is the Fermi
level. The low-&equency noise originated &om such an
interaction will be treated elsewhere.

We use a simple model that the two-level EF is coupled
to a phonon thermal bath and to the quasibound state
in the well, but not to any state in either the emitter
or the collector. The model is described in Sec. II and
is schematically illustrated in Fig. 1. According to the
model, a hop of EF between its states leads to switching
of the electron level inside the well between the values

Eo + J, where J is the electron-EF coupling constant. As
a result, our problem is fundamentally different from the
phonon-assisted resonant tunneling ' because phonons
obey the Bose statistics, but the two-level EF's behave
as effective dynamical spins. It is also different from the
problem of direct electron interaction with a two-level
impurity. It should be mentioned that dynamical de-
fects with internal degrees of &eedom are intrinsic to
all disordered materials, and their properties have been
extensively analyzed both experimentally and theoreti-
cally (for a review see Ref. 6). In the present work we
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FIG. 1. A schematic illustration of the model system for
a double-barrier resonant-tunneling structure in a noisy en-

vironment. ez is the Fermi energy, V is the bias voltage, V„&

(V~„)is the tunneling matrix element between the emitter
(collector) and the well, E is the level split of the EF. The
energy ep + J corresponds tp upper (lower) state of the EF.
Consequently, J is the coupling constant between the EF and
the resonant level inside the well.

will use the theoretical approach which was developed
earlier. ' ' We will outline the main steps of this ana-
lytical method in Sec. II, keeping in mind that the details
of mathematical derivations have been published in Refs.
6, 13, 14, and the references therein. According to the rel-

ative values of relevant time scales in the system, the EF
will be classified as sip)o or fast The an. alysis for a slow

EF is simpler, and so we will treat this case in Sec. III
in order to illustrate a clear physical picture before we

study a fast EF in Sec. IV. In a large DBRTS there may
exist many EF's and the shape of the transparency spec-
trum will be sensitive to their spatial distribution. This
problem will be treated in Sec. V. In Sec. VI essential
conclusions will be discussed. To analyze the tempera-
ture dependence of the average transparency, one needs
to use the random process with different hopping times
from upper and lower states. The properties of such a
process ' are discussed in the Appendix.

HEF-ph = g Mqox~I +qggbIc —q/2 ~2.. (4)

dg ds d~&(«') = w~(&)w. (&')
2

g(»» &)

xea(ev —e'v+e '
g —e s) (5)

p~ (or p„)is the escape probability of an electron from the
well to the emitter (or collector), and can be calculated
&om the matrix elements V„~ and V„„.The so-called
transmission Green's function is defined as

g( ... ~) = e(.)e(~)(.,( —.).,'( )..(~)",(0))„(6)

In the above equations, o. and o, are Pauli matrices, E
is the separation between the two levels of the EF, and bI,

(or b&) is the phonon annihilation (or creation) operator.
Due to the coupling H;„q,as EF changes its state through
one-phonon transitions, the electronic resonant level in
the well is co+ J when the EF occupies the upper state,
and is eo —J when the EF occupies the lower state. As we

have mentioned in the Introduction, the main function of
the EF is to transfer the high-&equency fluctuations of
the phonon bath into the low-&equency fluctuations of
the quasibound level in the well.

The transparency of a DBRTS for an electron with
incoming energy c and outgoing energy e' has been
derived as

II. MODEL AND ANALY'TICAL METHOD

With the effective-mass approximation and assuming
perfect interfaces, the simplest model for a DBRTS is
one dimensional (1D). This 1D model coupled to an EF
is schematically shown in Fig. 1. In terms of the nota-
tions in Fig. 1, when the DBRTS is decoupled &om the
environment, the electron Hamiltonian for the DBRTS is

II&:) Ep pc &cp p + E cppcp+ ) (V& pcpcp p + H c }
P»

where p is the momentum of the electron, v = l (or r)
refers to emitter (or collector), and subscript 0 refers to
the state within the well. In the present work we will set
h = 1 and so the energy is measured in frequency.

Corresponding to the 1D model shown in Fig. 1, be-
sides the electron Hamiltonian H, the total Hamiltonian

where e(s) is the Heaviside function, cp(t) and ctp(t) are
Heisenberg operators, and angular brackets mean quan-
tum and thermal average with respect to the total Hamil-
tonian including the environment

(. . .)v = Tr [exp( —8/knT). . .].
g(), s, )l) is in fact a two-particle Green s function with
special arrangement of times. Equation (5) is derived
under the assumption that an electron interacts with the
environment only when it occupies the quasibound state
in the well.

To avoid ambiguity, we use the term noninteraeting
system for the electronic part when the DBRTS is decou-
pled from the environment (namely, J = 0 in H; q). For
a noninteracting system, we have

g (, , &) = GR(&)[G~a( )]*,

where
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~a( ) = (t)(c(s)c (O)) o (8)

is the bare retarded Green's function, the average ()&p
being calculated with the Hamiltonian H, for the non-
interacting system. In the wide band approximation
where the escape rates p~ and p„are assumed to be en-
ergy independent, (8) becomes

G~(s) = —8(s) exp( —icos —ps),

where p = (p& + p„)/2. In this case it is easy to obtain
the transparency as

We are interested in the total transparency T(s)
J' de'T(s, s') of an electron with incoming energy e, as
well as in its form factor S(s) = T(s)/ J' dsT(s) For a.
noninteracting system, they are simply

To(,)
&t(&)& (&)

(s —«)' + h (s)]'

and

S'(s) =-
7r (s —sp)'+p' ' (12)

which is a Lorentzian.
Let us return to the complete coupled system illus-

trated in Fig. 1. Corresponding to T(s, s'), the reflection
probability R(c, s') can be written as~~

R(s, s') =, T(e, s') + b(s —s')
~.(")
x (1+2p)(s) Im [GR(s)]),

where

(14)

f
Ids', T(e, c') + 2p~(s) Im [G~(s)]s

= T(s) + R(s) —1. (15)

Consequently, in the wide band approximation, the rela-
tion

T(s) = — ' '
Im[G~(s)]

'Y
(16)

is equivalent to the conservation law T(s) + R(s) = 1.
Since approximations will be used in our calculation of
tunneling transparency, we have to make sure that the
so-obtained results will obey the above conservation law.
This is indeed the case as shown in the later part of this

is the retarded one-particle Green's function. The total
reflection probability of an electron with incoming energy
s is simply R(s) = I ds'R(s, s'). Integrating over the
energy s' in (13), we have

paper by checking the relation (16).
As mentioned in the Introduction, though the efI'ect of

EF's on resonant tunneling through a DBRTS was not
investigated before, a powerful method of stochastic dif
ferential equations~ 2 (SDE) has already been devel-
oped to study various phenomena related to dynamical
defects. This approach was introduced much earlier by
Anderson and Kubo to solve the problem in con-
nection to nuclear magnetic resonance, and was exten-
sively used recently to analyze the spectral dift'usion in
glasses. Let W be the energy separation between the
quasibound level co in the well and the top of the lower
barrier as indicated in Fig. 1. There exists a proof 72s

which, when applied to our problem, shows that the SDE
approach can reproduce all essential results derived from
the Green's functions method up to the second order in
(J/W) . The SDE approach is then an adiabatic ap-
proximation, which takes into account the inHuence of
dynamical fluctuations on the phase of the wave func-
tion, but neglects the interlevel transition caused by the
switching of the EF between its two states. While a com-
prehensive discussion of the validity of the SDE approach
can be found elsewhere, it is certainly valid for our sys-
tem shown in Fig. 1 because the ratio J/W is small.

Since the mathematical structure of the SDE approach
has been given in detail in several places,
here we will only outline the SDE approach in terms of
physical pictures. We are interested in the change of
the resonant level co in the well due to its interaction
with the EF. Within the framework of the SDE approach,
such fluctuations of ro are described by the replacement
sp M Ep + J((t), where ((t) is a stationary random pro-
cess which describes the switching of the EF between
the values +1 and —1. Consequently, the transmission
Green's function (6) becomes a random function of time,
and the transparency (5) needs to be averaged over this
random process. The final result depends on the statis-
tics of the random process ((t), which is determined by
the interaction HEF ph between the EF and the thermal
bath.

The random process ((t) is closely connected to the
switching rates between the states of an EF. For the
present work, we consider an EF of two levels with the
switching rate I'„for the upper level and I'g for the
lower one. At a given temperature T, they are related
as I'„/I'g = exp(E/k~T). As we have mentioned earlier,
in this paper we are interested in the high temperature
region such that the coupling between the EF and the
electrons in the emitter and the collector can be ignored.
However, even in this high temperature region there are
two distinguishable cases k~T )& E and k~T & E. From
now on we use the terminology higher temperature for
k~T )& E and loner temperature for k~T & E.

Besides the random process ((t), the transparency
spectrum also depends on the interplay of the three phys-
ical parameters: the total switching rate I':—I'„+I'~ of
the EF, the total escape rate p = (p~ + p„)/2 of the elec-
tron from the resonant level, and the coupling constant
J between the electron and the EF. If p )& I', we have

a slow Quctuator and the calculation of the transparency
spectrum is simple for both higher and lower tempera-
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ture. We will present this calculation in Sec. III.
However, for a fast fluctuator with I' & p, the ran-

dom process for lower temperature is very different from
the random process for higher temperature. We will
first analyze the simpler case of higher temperature. If
k&T )) E, then I'„ I'g I'/2 and the simplest ((t)
is the so-called dichotomic, or the random telegraph pro-
cess, which has been extensively used to study the nuclear
magnetic resonance. ' For this process, the variable

((t) switches between —1 and +1 randomly in time with
the characteristic rate I'/2. The static probabilities for
the states with ( = +1 and ( = —1 are equal. The
conditional probability Q((i, tiI(p, tp) to find the value

f(ti) = (i at time ti under the condition that at time tp
the value of the variable was ((tp) = (p is given as

IV. A PAST FLUCTUATOR

The situation becomes much more complicated when
I' ) p. In our problem the ratio J/W is small, where W
is the energy separation shown in Fig. 1. Then, for I' & p,
the only influence of EF is the phase breaking and there-
fore we can use the one-level approximation. ' Within
this approximation the phase destruction is taken into
account with the replacement of exp(+iapt) by

t

exp kiept + iJ t' dt'

As a result, the transmission Green's function (6) is ob-
tained as

g(r, a, g) = exp( —pa —pg + iapa —iapg)

xe(a)8(g)C)(r, s, g), (20)

III. A SLOW FLUCTUATOR

In this case with p )) I', in a period of lifetime 1/p
the electron experiences no change of the environment.
Therefore we simply calculate the transparency for a
given value of energy a + J(. Then with a given prob-
ability distribution Pi(() for the variable ( = ((t), we
readily obtain the average transparency spectrum

(T(s))t ——f d('P'(P)T (s + d() .

For a two-level EF, the probability distribution is

P, (() = p„b((—1) + p&b((+ 1),

where

(18)

exp( —E/2k~T) exp(E/2kgT)
2cosh(E/2k~T) ' 2cosh(E/2k~T)

Hence we obtain the average transparency

If we define ()f as a statistical average over the random
process ((t), then &om this conditional probability, it
follows that (((t))~ = 0 and the correlation function is

(((t)((t'))t = exp( —I'It —t'I). Thus the spectrum of
the random telegraph process is a Lorentzian with char-
acteristic width I'. We will return to this case in Sec.
IV A.

At lower temperature k~T & E, the random process
((t) can deviate drastically from the random telegraph
process because the hopping times from the upper state
of EF and from its lower state are considerably different
(see Sec. IV B).

where

OO

O(e, s, st)—:(exp id tt, „(t')f(t')dt'
0

(21)

e.,.,„(t)= e(t -r+.) —e(t -r) —e(t)+ e(t - ~).
(22)

By comparing these expressions with (7) and (9), it is
clear that the effect of the EF is represented by the func-
tion 4(r, s, )7). As a result, we have reduced the quantum
mechanical problem of the transmission Green's function
calculation to the statistical average over the random pro-
cess ((t).

The 8(t) function is discontinued at the times 0, r —s,
g and w. We shall use the notations t; for these times,
and arrange tq ( t2 & t3 ( t4. For our analysis it is
convenient to set the zero reference energy at c0 and to
measure all times in units 1/J. If we introduce the aux-
iliary function

t

P(e, s, st, t) = (exp ~

i d „e(t')e(t')dt'
l (23)

A. S(e) far E «kJdT

then O(r, a, g) is just 4'(r, s, g, t4), because 8,„(t)= 0
for t ( tq and for t ) t4. In the following we will calculate
the Green's function (20) via this auxiliary function for
both E (( k~T and E & k~T For the former. , f(t) is a
random telegraph process, and for the latter, one must
take into account the difference of the hopping rates &om
the EF's states.

(T(s))~ ——p„TP(a+J) + AT'(a —J) . (19)

In general, the average transparency exhibits a double-
peak structure, which is well resolved if J & p. The
above results are valid for both the higher and the lower
temperature.

d2@ ( 1 d8l d4
, + I

I'+ ——
I

+ 6'4 = 0,t) dt (24)

For a random telegraph process, from the definition
(23) of 4(r, s, q, t) and its correlation properties, s'24 it
satisfies the differential equation
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with the initial conditions 4'(r, s, q, t q ) = 1 and

4(r, s, g, tq) = 0. Using the coupling (4) between the
EF and the thermal bath, the switching rate I' can be
derived as

I' = I'o coth (E/2k~T),

Then, the complete function 4' can be expressed as

4(t, t2, t3 t4) = L(t4)M '(ts)M(t2)L '(t, )4(t, ),
(31)

where

where I'o ——E /E, , and E, is a characteristic energy
depending on the coupling constant Mq. The typical
value of E,/k~ is 20—30 K. s The shape of 8(t) given by
(22) consists of two nonoverlapping pulses with the am-
plitudes 61, and hence 82 is 1 in the pulse regions and 0
in the gap regions. In both the pulse region and the gap
region, the term 8/8 in (24) vanishes. In the gap region
the solution of (24) is 4(r, s, g, t) = bq + b2e, and in
the pulse region it is 4 (r, s, g, t) = aq e "'+a2e " with

r (I'&' r (r&'»= —+
I

—
I

—1, s, = ——
I

—
I

—1 (26)
k2) 2 (2)

The coefBcients aq, a2, bq, and b2 are determined from
the continuity conditions of @(r,s, g, t) and 4(r, s, g, t).

The complete solution of 4'(r, s, g, t) will be derived
with the transfer matrix approach. Let us introduce the
vectors

/a, 't - (b, 't(

&b2) '

I,(t) =—ld(t), M(t) = q-'(t)m-'L(t) . (32)

f(a) + f( s)-
2m(sg —s2)

(33)

where

The Green's function will then be obtained from
4(tg, t2, ts)t4) by integrating over the proper time in-
terval. Depending on the relative values of T, s, and
g, the four times tq, t2, t3, and t4 are assigned accord-
ingly. As an example, for the situation s & g, various
assignments are listed in Table I. The case 8 ( g can
be treated in a similar way. Now we are ready to cal-
culate the form factor S(s)—:T(a)/ f daT(a) The .inte-
grated transparency T(E) = I da'T(a, s') is much simpli-
fied if the escape rate p is energy independent (as within
the wide band approximation ~). In this case, &om (5)
the integral f dk'T(s, s') yields a factor 8(rl —r). Conse-
quently, (22) reduces to 8(t) = 6(t r+s) ——8(t) and the
solution of (24) is @ = ld(t2 —tq)l . A straightforward
calculation leads to the form factor

4(r) s, rl) t) =
~

( 4(r, s, rl, t) l
~ 4 r, s, rl t (27)

(28)

Since a = l d (tq) 4(r, s, g, tq) and

In the pulse region, say tz ( t & t2, we also de6ne two
matrices

Syf a
s2 + 7 + za

82

8y+ f+lE (34)

With this approach we can also calculate the retarded
Green's function, and then using the expression (16)
to obtain the integrated transparency T(a), &om which
the form factor S(a) is again derived. The so-derived
S(s) has exactly the same form as (33). Consequently,
our approximation indeed satis6es the conservation law

T(a) + R(a) = 1.
To analyze these results let us restore the correct di-

mensions for the energies and write

0'(r, s, g, t z) =
I

we have for tq & t & t2

4(t) = ld(t)d '(t, )l '4(t, ). (29)

(1 1 1'1 0m—:10 I, g(t)=10 -n /.

Similarly, for the gap region we introduce two matrices

1 1., = -(r+ gr2 —4&2) . s. = -(r —gi 2 —4J2) .
2

'
2

For I' ) 2J, both sq and s2 are real. Therefore S(a) has
one peak centered at s = ao =0 (we have set so as our
zero reference energy), resulting &om the overlap of the
positive Lorentzian with characteristic width 82 and the
negative one with the width sq. Thus S(a) cannot be
represented as a single Lorentzian. In the limit I' )) J
and under the condition J )& pI', the height of the peak
1S

TABLE I. Arrangement of the times 7, s, and g for s ) g.

Condition
T)g

S(T (q
0&7 &S

T&0

0

T —S

T —S

g2

7 —S

T —8

g3
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1 I'+p 1 I'
SO

vr (s2 + p) (si + p) vr J2

This result is similar to the dynamical line narrowing in
the paramagnetic and the nuclear magnetic resonance.

If I' ( 2J, sq and s2 are complex and the structure of
S(e) consists of two peaks positioned at e = +J, with
equal peak height 2/7r(I'+ 2p) and equal peak width I'+

For E = 0.03k~T and p = 0.1J, the evolution of
S(e) from the single-peak structure to the double-peak
structure is illustrated in Fig. 2, following the variation of
r, which appears in (25). We see in Fig. 2 that S(e) splits
into two sharp peaks as ro/J decreases from ro/J = 0.1
(curve 1) through ro/ J = 0.01 (curve 2) to I'o/ J = 0.001
(curve 3).

We will close this analysis with a remark that the
present results differ entirely &om the emergence of a
phonon replica in the phonon-assisted resonant tunneling
through a DBRTS. ' ' The origin of this difference is
that a two-level Buctuator behaves as a spin rather than
obeys the Bose statistics.

1.6

1.2

0.8

0.4

FIG. 2. The average spectrum form factor S(e) in the pres-
ence of a fast Suctuator with 7/ J = 0.1 at higher temperature
E/ksT = 0.03. The value of I'0/J is 0.1 for curve 1, 0.01 for
curve 2, and 0.001 for curve 3. The zero reference energy for
8 1S Gp.

B. S(s) for E & knT

dz(t) = &(t)L'(t)*(t) + ~(t)~(t) (36)

When the interlevel splitting E of the EF is comparable
with k~T, the switching rate I'„ofthe upper level differs
much &om the switching rate I g of the lower level. To
solve for the function 4'(t) in (23), it is convenientis'2o'is
to express it as 4(t)—:(z(t) + I)&, where the random
function z(t) satisfies the stochastic difFerential equation

with the initial condition z(ti) = 0. To calculate the av-

erage (z(t))t of the solution of SDE (36), one can employ
the general procedure outlined in Refs. 15, 17, 19, and
20. The part of the calculations which is relevant to our
present problem is given explicitly in the Appendix. Us-

ing this method we readily obtain the Laplace transform
@L,(s) of ili(t) as

(37)

where g(s, ():—[s + r(() + igj i with I'(+1) = I'„and
I'(—1)—:rg. The static average (h(()), is defined as

(h(()), = p„h(+1)+ psh( —1), where p„(orpg) is the
static probability for the state ( = +1 (or ( = —1) of the
random variable ((t).

Let us define JV and n as, respectively, the Planck and
the Fermi function of argument E/k~T. We can then
easily derive the expressions rg = roJV, I'„=ro(JV + 1),p„=n, and pg ——1 —n, with the relation p„I'„=pgFd, .
Using the above definition of average to obtain (r(()), =
I'cosh (E/2k~T), from (37) we get the final form

1., = -(r —gr2+i4dr -4),
2

1., = -(r+ gr2+ i4dr —4).
2

(39)

As in the case E (( k~T, knowing 4'g(s), from (20)—
(23) we can derive the form factor S(e). When perform-
ing this calculation, one must keep in mind that for t (0,
certain quantities should be replaced by their complex
conjugates. The Gnal result can be expressed in a very
compact form

1
CL(s) =

Sy —S2

s —I'(1 —d2) —id
S+ Sy

1
S(e) = —Re @L,(p —ie) . (40)

s —I'(1 —d2) —id
8+ 82

(38)

where d = ps —p„=tanh(E/2k~T), and with energies
in units of J,

Under the condition I'„=I'g, d = 0 and then the
above equation reduces to (35) for e = eo =0. In the
limit J » r, the S(e) given by (40) consists of two
well-resolved peaks, one centers at r = +J with weight
p„,and the other centers at e = —J with weight pg.
Figure 3 demonstrates the evolution of S(e) when I'/J
and/or E/k~T vary. If we fix the value E/k~T = 0.3,
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3.2 A. Slow switching

2.4

1.6-

0.8-

0
-2

Let us consider the situation that p » I'i for all i. %e
start &om the situation where the distribution of J,. is
within a narrow range. To obtain all main results, we will
simplify the mathematical treatment by approximating
all Ji J. Let us at erst ignore the difference between
I'„and I'g for all the EF's, namely, we assume random
telegraph process for all random processes pl').

The essential problem here is to calculate the probabil-
ity distribution of the resonant level. This is most con-
veniently done by introducing the generating functional

FIG. 3. The average spectrum form factor S(e) in the pres-
ence of a fast Quctuator at lower temperature. The values of
(E/knT;Fp/J) are (0.3;0.1) for curve 1, (0.3;0.01) for curve
2, and (3.0;0.1) for curve 3. The zero reference energy for e
1S E'p.

N

K~(z) = (e **' )(~&. (43)

For N = 1 and for pq = p„,it is easy to obtain Kt(z) =
cos z. For N » 1 we can use the Holtsmark method to
perform the average in (43). In this way we gets2

S(s) changes from curve 1 for Fp/ J = 0.1 to curve 2 for
I'p/J = 0.01. On the other hand, if we fix the value
I'p/J = 0.1, the variation of S(s) is more dramatic from
curve 2 for E/k~T = 0.3 to curve 3 for E/k~T = 3.0.
Comparing Fig. 3 and Fig. 2, we see that at lower tem-
perature the double-peak structure of S(s) is more pro-
nounced.

As in the case E (( k~T, one can easily prove the
current conservation law T(s) + R(s) = 1 by direct cal-
culation of the imaginary part of the average Green's
function. Actually, the property responsible for the cur-
rent conservation is the possibility to express the function
6(t) defined by Eq. (22) as a system of two nonovertap
ping pulses. As a result, our model is consistent with the
relation (16) in general case.

KN(z) = exp N—dF 'P(F) [I —K (z)j, (44)

P~ (() = (I/V'2mN) ) b(( —k) exp( —k /2N) . (45)

where 'P(F) is the distribution function of the switching
rate I' with Jp dF'P(F) = 1. For our problem under
the approximation that all J, J, Kq(z) is simply I"

independent.
The average transparency spectrum can be calculated

with (18), provided a correct probability P~ (() is used

instead of Pq((). This probability P~ (() is just a
Fourier component of K~(z), and is a Gaussian distri-
bution

V. MANY FLUCTUATORS
Substituting this distribution into (18) and integrating
over k, we get for N » 1

1
IIEF = —) E,~~*) (41)

and

If a DBRTS is large enough to exhibit high 1/f noise,
it is important to consider the effect of many EF's on
the resonant level in the quantum well. Let us assume
N noninteracting EF's, and modify the relevant parts of
the Hamiltonian (2) and (3) as

S(s) = — dte ~" ' / cos(s —sp)t.
27r

(46)

It is clear that the resonant peak has Lorentzian wings
in the region ~e

—sp~ )) J~N, but a Gaussian central
part with characteristic width J~N. The typical trans-
parency spectrum is shown in Fig. 4 for —/2N = 2.0.

To investigate the temperature dependence of the shift
of the resonant level in this limit case, one should use the
explicit temperature-dependent expressions of p„andpg.
Then, for N = 1 we obtain from (43)

N

Hj~t ) JqcpcpcTz
('t) (42)

Kq (z) = cos z —i (pd —p„)sin z.

Since the EF's are assumed to be independent of each
other, the associated random processes $l') are also inde-
pendent of each other. In reality the distribution of the
coupling strength Ji can be quite sharp, while the dis-
tribution of E; and the distribution of the corresponding
switching rate I'i are broad. VVe will again treat sepa-
rately the two cases distinguished by the switching rates.

x.,(r) =—j' szzzzr
cosh (E/2k~T)

(47)

The physical meaning of N fr(T) is the number of EF's

Substituting this expression into (44), we found that at
lower temperature the only effect of p~ g p„is, in all
relevant equations, to replace the actual number N of
EF's by an effective number
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4(ti t2 t3, t) = d(d cos((dt)
8y —82

82 8y

Ct) —Z8y 4) —182

1 —exp ——I'ti')
r .x cosh It + —sinh It
2I (50)

-8 -4

FIG. 4. The average transparency spectrum T(s) in the
presence of N slow Buctuators with J/2N/p = 2.0 at higher
temperature. The zero reference energy for e is eo.

bs (T) = dEdI"P(E, I') (E/k~T). (48)
2J

efr T

A finite be'p(T) will cause a temperature dependence of
the resonant-tunneling current through a DBRTS.

B. Fast switching

that can switch states at the given temperature T. If the
probability function 'P does not depend on E, then we

have simply N, rt(T) oc T. It is important to point out
that because of p~ g p„,there is a net average shift of
the resonant level due to the switches of EF's. This shift
consists of a temperature-independent part, which can be
absorbed in the renormalization of eo, and a temperature-
dependent part

where I = g(I'/2)2 + idl' —1. Again, calculating the
imaginary part of the retarded Green's function by a pro-
cedure similar to the one described above and cocmparing
the result with (49) one can check the current conserva-
tion law in the case of many EF's (the calculations are
straightforward but rather cumbersome).

The t dependence of @(ti,t2, ts, t) is determined by the
distribution function of J, and I';. We remind ourselves
that in (40) the energies are in units of J. With the
quantity d:—pg —p„included in the renormalized energy
shift, for Jt &(1 we can easily derive the result

@(ti,t2, ts, t) 1 —J t /2.

Consequently, if the distribution function P(J, E, I') de-
creases rapidly with the increasing J such that a cut-
ofF value J, (as well as cutofF values I' „and I'
for the I' distribution) can be introduced, T(s) will
consist of a Gaussian kernel with characteristic width
J,QN, ir(T) and Lorentzian idiings in the regions ~e-
sp~ && J.QN, rr(T). This spectrum has similar structure
as that for the slow switching case, where N, rt(T) plays
the role of the actual number N of elementary Huctua-
tors.

The case of fast switching requires much tedious calcu-
lation. Here we will outline the general procedure of anal-
ysis. Our previous equation (21) is obtained for a single
EF. We first use this equation to calculate the 4;(w, s, rl)
for the ith EF. Then we de6ne the function CN as the
product of all these 4;(7, s, ((l)'s for the N EF's. Using
the Holtsmark procedure we arrive at the following ex-
pression for 4~.

e ( e, q)Ce=eexp —f dddEdf' V (J, E, r)
cosh (E/2k~T)

C. Crossover region

%'e have seen that for fast Buctuators, the crossover
in the spectrum T(s) &om the Gaussian shape to the
Lorentzian shape is determined by the maximal coupling
J,. Therefore, if the distribution of J is smooth and
exhibits no cutoff behavior, the spectrum will be entirely
different. In particular, this is the case when the coupling
between the resonant level and the EF's is due to a dipole
force which decays in space as A/Rs. In such a situation,
if there is no geometrical cutoff for the nearest-neighbor
distance, the distribution function is characterized by

x [1 —(Id (t i, t2, ts, t) j

where the auxiliary function %(ti, t2, ts, t) is given by
(31). This expression is similar to (44) for the case of
slow switching.

We are interested in the integrated transparency T(s)
Since the escape rate p is energy independent within
the wide band approximation, ii from (5) the integral

f ds'T(e , E') yields a factor 'b'((7 —w). Making use of this
simplification and (40), 4(ti, t2, ts, t) reduces to the form

'(o(d, e, T'C oc f d'Rd(d —AR 'C oc d '.

On the other hand, the quantity 1 —4(ti, t2, ts, t) in the
right-hand side of (49) is proportional to J2t2 only if
Jt (1, but is oscillating in the region Jt )1. Conse-
quently, the integral of J in the exponent of (49) is esti-
mated as

t
dJ—J2t~ oc t.J2

With this estimation, we can show that the transparency
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spectrum is a Lorentzian with the width proportional
to ~A~. This behavior is similar to that discussed by
Anderson in connection with the problem of ESR
spectra.

We can analyze the problem in more detail with the
7 (J, E, I') of the dipole interaction for which the distri-
butions of J and I' are broad. We will use the form

'P (J, E, I') = —8 (I' „—I') 8 (I' —I';„),Pp(IAI)- 1

where r .„=rp coth(E/2k~T) and I'
r~ coth(E/2k~T), with r~ being some minimal value of
the switching rate. In the above equation, Po is the
density of states for EF's, and () means an aver-
age over the direction of dipole. The factor 1/I' re-
Qects the exponentially broad distribution of switching
rates. Using the procedure given in Refs. 25, 33, and
34, one can prove that for such distribution and for
rp « vd —Pp(~A~) „k~T,the function O(~, s, g) in (49)
has the simple form

e(r, s, q) = exp( —~t~~„). (52)

Therefore it is straightforward to show that the trans-
parency spectrum T(e) is a I orentzian with the charac-
teristic width p + vg. The crossover from the Gaussian
spectrum to the Lorentzian one takes place when the dis-
tance between the DBRTS and its nearest EF becomes
less than (Ppk~T)

Thus the shape of the transparency spectrum is sensi-
tive to both the spatial arrangement of the EF's, and the
interaction mechanism.

VI. DISCUSSION AND CONCLUSION

The in8uence of an EF on the resonant tunneling de-
pends strongly on the relation between the switching rate
I', the resonant level shift J due to the change of EF state,
and the electron escape rate p. If I' (( J and I' &( p,
electrons can tunnel resonantly through two static levels

eo 6 J and result in a split of the transparency spec-
trum. The amount of split is proportional to J, and the
width is proportional to the larger one of I' and p. Hence
a two-peak structure is well resolved if J is larger than
both p and I'. On the other hand, if I' )) J )) p, be-
tween switching the electron does not have enough time
to form two separate levels co 6 J. In this case the trans-
parency spectrum is a broad peak, the width of which is
the larger value of J /I' and p.

Since I' increases with temperature, the temperature
dependence of the width may change from one parame-
ter regime to the other. The exact form of the tempera-
ture dependence is determined by the mechanism of EF
transition. In the case of quantum tunneling, I' oc T
if the EF interacts with phonons, and I' oc T if the
EF interacts with electrons. In the case of activation,
I' oc exp( —E /k~T). Therefore a certain crossover tem-
perature should exist at which the temperature depen-
dence of I' changes drastically. To estimate this crossover
temperature as well as the activation energy one needs a

microscopic model of EF. So far it is not clear what kinds
of localized modes interact with tunneling electrons. It
could be disorder-induced soft atomic vibrations which
are responsible for many dynamical properties of amor-
phous media. There is a relatively good model for this
kind of modes, which allows one to estimate roughly
the crossover temperature (about 10—20 K) and the ac-
tivation energy (about 100—300 meV). Another possible
mechanism is the hopping of localized electrons in the
doped region between donor states, which can create Huc-

tuating fields inside the quantum well.
In general it is very diScult to estimate the rate I

and the shift J. It is known that in any disordered mate-
rial there exists an exponentially wide range of relaxation
rates. Thus, if the defect is originated &om an amorphous
region, one can And practically any value of I'. The quan-
tity J is determined by the microscopic structure of the
defect and by its spatial position. In any case, to observe
EF one should study small DBRTS with thick barriers
so the escape rate p is small.

If the size of the DBRTS is big, many EF's contribute
to the spectrum of resonant tunneling. The typical shape
and width of the spectrum have been shown to be de-
pendent on the spatial distribution of EF's and on the
interaction mechanism. If the distribution of J exhibits
a cutoff' feature, the shape is a Gaussian of width JQN, s,
where N, g is the effective number of EF's which can
change states at a given temperature. This quantity de-

pends on both the quality of the DBRTS and the mi-

croscopic nature of the EF. If the spatial distribution of
EF's is uniform and the interaction obeys the dipole law

AR, the spectrum is a Lorentzian with width of the
order (~A~),„.

As a conclusion, we want to emphasize that an attempt
to work out a theory of resonant tunneling in the presence
of soft dynamical modes has been made. The model used
allows one to analyze qualitatively the current-voltage
curve of a DBRTS. To get more quantitative informa-
tion a microscopic model for defects as well as new ex-
periments are required. It would be extremely useful to
perform experiments on structures of difFerent sizes and
at di8'erent temperatures to observe the crossovers from
tunneling to activation and the crossover &om a single
EF to many EF's. Based on such information a realistic
model can be constructed for quantitative studies. The
implication of the phenomena investigated in this paper
to the low-frequency noise will be considered in a sepa-
rate paper.
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APPENDIX
ANALYSIS OF THE STOCHASTIC PROCESSES

WITH DIFFERENT HOPPING RATES

Here we outline the scheme of calculation which is very
similar to the one discussed in Ref. 20. Assume that a
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random quantity ((t) has a discrete set of values (cg}.
The rate of hopping r(() from the state $(t) depends on
the value of ((t). Note that r(() is defined as the total
rate for tunneling out of state ((t) to any other possible
states. The transition probability density to hop from
the state (' to the state ( during the infinitesimally small
time interval dt can be expressed as

(Al)

where p(() is a steady-state distribution of the ran-
dom quantity (. If $ is a discrete quantity having the
values (c),}with static probabilities (p), } then p(()
g& p), b((r; —cg). The static average (F), of a determin-
istic function F(t, f) is defined as (F), = f F(()p(() df
The quantity r(()p(()/(r), has the meaning of the prob-
ability of the value ((t) = ( after at least one jump.

One can easily derive the linear equation for the con-
ditional probability Q((, t~(', 0),

(&" ) = f F(' Oq(r 'l(r') (s'))"~((r') (s'))

»(M*} (t'})« d$;, (A7)

where

d 0
{FA—i)( = —(FAi)t + B,

dt Bt

f s, , „,oqN 'I(&') ('))
Bt

(A8)

g,}is the set of values of the random quantity (, and

(t;}& t is the set of times. The quantity Q((, t]((;},(t;})
is the multievent conditional probability to find the
value (s at time t under the condition ((t;) = (;, while

p(Q';}, (t;})is the multievent distribution function. Con-
sequently the product Q((, t~((;},(t;})p((g, },(t;})is the
joint probability to find ((t) = (, ((t;) = (,. Taking the
time derivative, we get

where

= SQ, (A2)
x&((&'} (t'})d& (A9)

sq = —r(r)q+ "„o(r)f r(r)q(r„s~r', o)sr, (As)
8

has the meaning of a master equation. Knowing the S
operator it is possible to derive an equation for an arbi-
trary average of the type U(t) = (F(t, ()Ai [((r)])t, where

F(t, () is an arbitrary deterministic function of its vari-
ables, while Ai[((r)] is an arbitrary function of t and a
functional of the process ((r) for r & t. This functional
is a retarded functionaL The equation to be derived has
the form

Using the master equation (A2) one obtains

B= EAgS p;, t, d d;

8+I't, A& p;, t; d d;

= ([S'F(t &)]Ai)t (Alo)

+ ([S'F(t 4)]Ai[4(r)])~. (A4)
Now we apply this formalism to the calculation of an

average over the random process in question of a set of
stochastic differential equations. Consider a set

Here S+ is the operator conjugate to 8, which operates
on a function f (t, f) as z = D(()z + f, (All)

where the dynamical variable z is an n-dimensional vec-
tor [zi(t), z2(t), . . . , z„(t)],and f is an n-dimensional
random force which can depend statistically on the ran-
dom process ((r) for r & t. The n x n matrix D depends
also on ((t).

We will first average (All) over the statistics of the
process ((t), and then average it over the statistics of the
random variable f The second. average will be defined
as ()y. The first average leads to

(A5)

Indeed,

srf(rslr o)sq = f, or'q, (rslr'o)&'f, ,

(A12)(*)~ = (D(&)z)t+ (f)~.

in agreement with the definition of a conjugated operator.
Combining (A5) and (A2) one obtains the probability
density as

dU(t) (9V
)

(I'F),=
at ' ' + (r). (A6)

We outline the derivation of (A4) as follows. is 2q In the
definition of the statistical average

It is important that the solution z(t) is indeed a re
tarded functional of the process (. Then, one can ap-
ply the (A6) to decompose the correlation in the average

(D [((t)]z(t)). Inserting F = D and Aq ——z into (A6),
we get
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—(Dz)g = (—I'Dx)g + '(I'x)g + (Dx)(
d - - (I'D),
dt. (F).

= —(rDz-), + '(I'x), + (D'z-)~+ (Df
(I'D)
(r).

(A13)

1 I' 1
(x)g =

~ - zoi+ „-f(I'). —„,+ I' —D —„",+ I' —D
S

(A17)

As a result, the average (Dx)g is expressed in terms of
the averages (I'z)g, (I'Dz)k, and (D z)t. . This procedure
can be continued. Introducing the notations (A18)

zk = (I' D"z)(, fk = (I' D"f)(,

(I m+1Dk)

(I').

we get the chain of equations

(A14)

One can see that the "force" f enters the equations lin-
early. Consequently the average over its statistics does
not change the results and one can include it in the def-
inition of ( ), .

It is convenient to make the Laplace transform over
the variable t. Finally, we have

zkm = Dkmzol + fkm + zk+i, m zk, m+1~ (A15)

with the initial condition z(0) = 0. One can show that
for all Ic and m, we also have zk (0) = 0.

Now let us introduce the inverse operator I as

t

Ig = g(ti) dti,
0

(A19)

Xo, = ( . ) Xo&(sI + ( .F(s))

(A20)

and iterate the term (zk+i zk +i) on the right-hand
side of (A15). At fixed values ck of the variable ((t),
such iteration generates a geometrical progression. As a
result, one obtains

for the Laplace transforms X(s) and Xoi(s) of the vari-
ables (z) and zoi, respectively. The average over the
statistics of f can be included in (), as

( s(~)) ff f&=(~ flO~(() &(&f (A21)

(A16)

Finally, we arrive at the following set of equations for
the coupled quantities (z) and zoi.

The relation 4{t) = (z(t) + 1)g introduced at the
beginning of Sec. IVB corresponds to the case of one-
component vector z and D = f = i6(t)((t). With the
help of the outlined procedure the expression (37) is read-
ily obtained.
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