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Polar optical vibrational modes in quantum dots
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A macroscopic continuum model coupling the mechanical vibrational amplitude and electrostatic
potential is applied to obtain the optical vibrational modes in quantum-dot structures. A uni6ed
method of solution (valid for any type of nanostructure) that reduces the four coupled second-order
differential equations to Helmholtz's and Laplace's equations is described. Analytical solutions for
the vibrational amplitude and the Frohlich-type electron-phonon interaction are given for quantum
dots with spherical geometry. The existence of surface modes and their relation to the matching
boundary conditions are studied. A qualitative discussion of the ir and Raman activity of the
calculated modes is given together with a comparison with the few existing experimental data.

I. INTRODUCTION

The investigation of polar optical vibrations (phonons)
in semiconductor nanostructures has been a subject of
great interest in the last years. The theoretical treatment
of several physical properties, such as electron scatter-
ing rates, polaron effects, Raman scattering efficiencies,
hot-electron phenomena, etc. , requires a reliable descrip-
tion of phonon modes and electron-phonon interaction
potentials in such structures. A macroscopic treatment
of optical phonons in small spheroidal crystal has been
used in the past. The so-called Frohlich frequency
and surface modes2'3 in microcrystals with different ge-
ometries were calculated in the framework of dielectric
models which neglect the important effect of mechanical
boundary conditions.

Today, several advanced technologies permit the
growth of semiconductor microcrystals with quasi-zero-
dimensional properties (quantum dots). The diameter
of these microcrystals is in the range of a few nanome-
ters. Characteristic physical properties appear which

suggest a broad spectrum of device applications. Con-
sequently, the energy spectrum and optical properties of
quantum dots (QD's) of materials such as CdS, s CdSe,
GaAs7, InSb, s and Si (Ref. 9) are being extensively stud-
ied. Several spectroscopic techniques, including Raman
scattering, have been used to investigate confined LO-
phonon, ' surface optical phonon, and con6ned
acoustic phonon modes. ' ' However, few theoretical
treatments of ultrasmall spherical microcrystals have ap-
peared. The Frohlich polar electron-phonon interaction
has been evaluated in Ref. 16. Here the classical di-
electric model, neglecting dispersion of the corresponding
bulk phonon branches, was used to derive longitudinal-
phonon-like modes and the surface optic eigenfunctions.
Con6ned LO phonons, and the corresponding electron-
phonon interaction, have been obtained upon application
of spherical boundary conditions. However, those mod-

els do not take into account the coupling between longitu-
dinal and transverse modes demanded by the matching
boundary conditions. 4' ' The assumption of a vibra-
tional 6eld of purely longitudinal nature is, in general,
unjustified in systems with a surface discontinuity. 4

In this paper, we develop a long-wavelength macro-
scopic model for polar optical phonons in QD's. The
model takes into account phonon dispersion up to
quadratic terms in the wave vector and the coupling be-
tween the mechanical vibration displacement, u and the
electrostatic potential 4. This treatment requires the so-
lution of a complicated system of four coupled differential
equations for u and C in the quantum dots and the sur-
rounding medium. In what follows we shall describe a
method leading to generate analytical solutions of these
equations for the case of a material with isotropic dielec-
tric response and vibrational dispersion relations. The
general equations and matching boundary conditions for
a phenomenological description of long-wavelength po-
lar optical modes in nanostructures with arbitrary shape
have been given in Refs. 4, 20, and 21. We consider
a single quantum dot of radius R and assume that the
constituent materials are isotropic and homogeneous. In
such case, we have an equation of motion for the mechan-
ical displacement vector u which takes the form

p(r) ~ —~To(r) u = V p(r)pl(r)V' u

—v' x p(r) p7, (r) v' x u

+n(r) V'C,

where ~T~ is the TO bulk phonon frequency, p the
reduced-mass density, PL, and PT are phenomenological
parameters estimated from the experimental phonon dis-
persion relations of the corresponding bulk material, and
the coeKcient u is given by
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eo and e being the static and high &equency dielectric
constants, respectively. In Eq. (1) u = u+ —u is the
relative displacement of cation (+) and anion (—) for a
given mode. Simultaneously, we must fu1611 the equation
for the electric 6eld E = —V'4

A = V - u and r = V' x u. (8)

Applying the curl operator to Eq. (1) and using the

vector identity V x V' x u = V'V' - u —V' u, the vector
equation

found with the help of an auxiliar scalar function A and

a vector function I', such that

V' e V'C = 4+V' nu . (3) (7'+ q') I' = 0,

In Eqs. (1) and (3) retardation effects are neglected and
a harmonic time dependence u(r, t) = u(r)e ' ~ is as-
sumed. %e note that the scalar potential 4 is a solution
of a generalized Poisson equation where V' (—au) plays
the role of a charge density. Thus, the potential 4 can be
thought of as created by the polarization field I which
is given by22

follows, where

2 2
q2 TO

2

Similarly, taking the divergence of Eq. (1) the equation
for A becomes

(V' +q )A=O,

4x (4)
with

The matching boundary conditions can be explicitly de-
rived from Eqs. (1) and (3),4'2~ which describe an in-

homogeneous system where the material parameters de-

pend on the position coordinate r. An abrupt interface is
an extreme case of such inhomogeneities. Equations (1)
and (3) are four coupled second-order partial differential
equations for u and 4. Thus we must require continuity
of the three components of u and of 4 at the interface
r = R of the spherical quantum dot.

"I.=R = uI.=R, c'I.=R

According to Gauss's theorem and for the case of piece-
wise continuous parameters with only interface disconti-
nuities, from Eqs. (1) and (3) follows the continuity at
the interface of the normal component of the mechanical

stress tensor 0 N

~LO
2 2

g

V'2 @ (13)

valid for each portion of isotropic and homogeneous ma-
terial with the appropriate parameters a and e

Comparing (11) and (13) we see that the general solu-

tion for the scalar potential is given by

(14)

and u&~o ——(sp/s )uT2O is the Lydane-Sachs-Teller rela-
tion.

After substitution of (8) into (3) the latter is trans-
formed into

++ 2
++~.&= — p(p, —2p~)& u I

ppT ) .(V'u~+ V~u*) N

and the electric displacement

(6)

where 40 is the solution of Laplace's equation

V2@H ——o

and the term proportional to A in (14) a particular solu-
tion of (13). The vector displacement u can be obtained
replacing Eqs. (8) and (14) into Eq. (1). After simple
manipulation it is straightforward to show that

D N = —(—4zo.u+ s V'4') N, A 1
u = —V', ,4R + —, +,V' x I'. (16)

where N is a unit vector normal to the QD's surface. It
is clear that the above matching boundary conditions to-
gether with Eqs. (1) and (3) couple longitudinal and
transverse 6elds. Moreover, the modes have a mixed
character involving a mechanical vibration u and an elec-
trostatic potential.

II. GENERAL SOLUTION

Here, we present a method for solving the above four
coupled difFerential equations. The full solution can be

The above results of 4 and u are completely indepen-
dent of the type of nanostructure (quantum dots, quan-
tum wires, etc.), provided it is composed of isotropic and
homogeneous parts separated by interfaces, and of its
geometry and matching boundary conditions. For each
particular case it is necessary to obtain the general solu-

tion of Helmholtz's equation for A and F and of Laplace
equation for C H within each medium and to match them
at the interfaces. For a spherical QD the bounded solu-
tions of 40 and A are given by
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and

Cgr', r (B
~'R = Yi (//, V ) C2r, r&B, (17)

4'(r, 0, p) = Yi (8, &p) &

4mo. g t

( )
&ii&(qir) + Cir

r&R

47t 0!2 {y)A2h, (q2r) + C2r
—/ —1

(2) 2E~ g2
r&R.

where Yi (O, p) with m = l, .—. . , l and l = 0, 1, . . .

are the spherical harmonics, j~ and h& the Bessel and
Hankel spherical functions, and C, , 2, (i = 1, 2) con-
stants to be determined through the matching procedure.
As already emphasized all material parameters entering
in (14) and. (16) change their value abruptly from one
medium to another, i.e. , they display steplike dependence
onr forr =R.

Combining Eqs. (14), (17), and (18) the scalar poten-
tial can be written as

The parameters a;, q, , and e '
(i = 1, 2) take values(&)

corresponding to each bulk constituent medium [i = 1

(2) inside (outside) the sphere]. The solutions for I' and
9'XI' are given in the Appendix. Hence, in the curvilinear
basis (e„, X~, e„x X~~), where X~~ is defined by Eq.
(All), the expression for the vector displacement u is
given by

Ai d . Bil(l+ 1) o.C„(ji)—+ gi —
s lr '

Y~ e„
dr r+ PPTV

.Q/(/+1) nCi, Ai . Bi d—i Q/(/+ l)g(Xi —i j( + —(rg() e„x Xi (2o)

where the function gi is defined in (A7) and Bi, Di are additional constants. A similar expression can be written

for r ) R. It is rather useful to express the stress tensor 0 as a function of A and F. By adding and subtracting

pPT, V, u;/2 to Eq. (6), it is easy to show that

p(pr, —2—pz)A —ppT [2V~&;+ &;~pl'i], (21)

where e;~s is the Levi-Civita tensor and g,~ the metric tensor. Einstein s summation convention has been used in (21).
The above equation has the same form in all orthogonal curvilinear coordinates. In the particular case of a spherical

quantum dot the components of o e„(e, represents the unit vector along r) refered to the curvilinear basis (e„, X~ /

(X~~(, e„x X~~/(Xi~(), where X~~ is defined in Eq. (All), becoxne

(P~ —2P~2. i d' Bi d g]
&1 — 2pTp

~
ji —— (jt)

~

4i + l(l + 1)
2P2 q2 dr2 ) Q2 dr

l(/ —1)r' Yj (8, (p),
p T

~~, =+ &iv'~(~+&)~ —
(
—') lx& (23)

Ai d ~gtl Bi d t'1 d
os„——+i2ppT'Q/(/+1) — 2, (/ —1)r' ' —,—

~

—
~ +, gt —2— (rgb)

~

~Xl- —
ppT, Q2 q2 dr gr) Q2 dr (r dr )

(24)

where the indices (1 or 2, 3) represent the components

along e„, X~, and e„x X~, respectively.
iil =R=0, (25)

III. COMPLETE SET OF CONFINED MODES
(~) 4
OO

v=R

(2) 04
Br

(26)

We consider next a quantum dot of GaAs in an AlAs
matrix where approximate, more restrictive matching
boundary conditions can be applied. Here, the conti-
nuity of 4 at the interface must still be imposed but the
conditions (5) —(7) can be approximately reduced to

This reduction follows from the large separation between
the optical branches of the two components. These
simpli6ed boundary conditions have been satisfactorily
tested against microscopic lattice dynamical calculations
in Ref. 23.
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Uncoupled solution .Using Eq. (20), the matching
boundary condition u(R) = 0 immediately leads to the
eigenvalue equation

( Tu„=A ——j, I
v„—

dT

Ji+i/2(p~) = 0, m = 1,2). . .

with the dispersion relation

2= ~To —4 ( & )
The mechanical displacement is given by

u= D, /~t(I+1) i, ( ) Xr (Hy). ,
Pm

(27)

(28)

(29)

l(l + I)+ Plgl P—

gl(l+ 1) . r i
u3 ———iA —ji

R&

+Pl ~
Tgl

(35)

(36)

where

v j i (v )I'i (p ) = l (l + 1)ji (v„)Gi (p„), , (30)

These solutions correspond to modes vibrating along

Xl, completely decoupled fxom the other curvilinear
components (along e„and e„xXi directions) and bear-
ing what one may call a purely "transverse" character
(with respect to the sphere radius and as exemplified by
the curvature P&2 of the bulk TO branches). Equations
(14), (17), and (18) indicate that these modes have no
electrostatic potential associated with them. If the con-

dition (27) is not fulfilled, then Di = 0 and the Xi
vibrational components are absent.

Coupled modes. The boundary conditions applied to
the other two components of u give a homogeneous sys-
tem of linear equations for the constants Aq, Bz, Cz, and
C2. For these states the following secular equation is
found:

Pl = &jl & P+1/+ 1+1'~ e ~ +PI, )+].

jl V It+1 l+ t

+~ 8'~ 8'~ gl P (37)

t = p vj,'(v) + (l + 1) e& &/e'& l j (v) / [ l

+(l + 1)s(2l/e('l ], (38)

(40)

co To (39)
&p)

In Eqs. (35) and (36) A is a normalization constant. It
can be proved24 that the eigensolutions (29) and (34) of
the difFerential equations (1) and (3) obey the following
orthogonality condition

+~(p) = ","I—
I

l[pgi(p)-lgi(p)]
Ep)

+ l+ (,)(I+1) [pgl(p)+gi(p)]
eQ, j

(31)

where the subindices n, m describe the diferent eigenvec-
tors obtained from the dispersion relations (27) or (30).
The set of functions (u„) can be normalized such that24

u„'(r) u (r)p(r)dv = h„ (41)

Gi(p) = ', "I—
I

"„, [lgi(p) pgi(p)l-
P~ &p)

+ l+ (i (l+1) gi(p, ) )(i)

The potential O obtained from Eqs. (14), (17), and (18)
leads directly to a Frohlich-type electron-phonon interac-
tion. Following the procedure presented in Ref. 24, the
electron-phonon Hamiltonian can be written as

p=qR, v=qR,

&Pi') .(~~o —~To).
&T) r with

oo l

H;„t ——) ) ) Cy —(2l + 1)i'~27r
l=0 m= —l

xO„„,(r) Yi (8, (p)(b „+bt „), (42)

u = u„(r)Yi (8, p)e„+ us(rge„x Xi (8, (p)

with

(34)

For the definition of gi see Eq. (A7). In this case, Di ——0
and the vector u have two components

(43)

'( „)+ (l+1)(e /e )ji( „) (
—")

l+ (I+ 1)c /e ji (v„~),

[ -j'( -) -lji( -)](-"„)
, T&B,



13 708 E. ROCA, C. TRALLERO-GINER, AND M. CARDONA 49

(44)

where b„and b„are annihilation and creation operators
for vibrational modes in the state v and Vo the crystal
volume. By resonant Raman scattering the spherical (l =
0) and spheroidal quadrupolar modes (l = 2) can, in
principle, be observed. 2s The spherical modes are excited
for parallel polarizations of the incident and scattered
light. The most important contribution to one-phonon
Raman scattering corresponds to 1 = 0. In this case the

Lop component is absent, thus, radial modes are only
obtained. The corresponding eigenvalue equation can be
obtained by setting the mechanical dispacement equal to
zero:

0 = Ajx v„—e„."R (45)

Using well known properties of spherical Bessel functions
this equation can be written as:

tanv„= v, n = 1,2, . . . .

The corresponding vibrational &equencies are of the lon-
gitudinal type, given by [see Eq. (12)]:

(47)

The Prohlich electron-phonon interaction Hamiltonian is

n (2)
o~;.& = g.&» —

i, )
~o(~.)-~o ~.—

x(bp„+ b —p„) . (48)

36
l=0

~ 32

3~ 2S
in AIAs matrix

24
10

[ [

20 30
I l

40 50

FIG. 1. The optical vibrational energies of the first three
t = 0 modes in a spherical QD as a function of R. The
parameters of Ref. 23 for GaAs imbedded in AlAs have been
used in the calculation.

Figure 1 shows the phonon energies of the Brst three
modes of a GaAs dot in AlAs for l = 0 as a function
of the quantum dot radius. Note that the n = l mode
occurs basically at the ~L~ &equency of the dot material,
except for radii R & 25 k The modes of higher n begin
to decrease in f'requency at larger radii.

The &equencies of the coupled modes are more dificult

to obtain since they require the solution of the rather
complicated Eq. (30). In the limiting case of R large [this
means p, and v large but R smaller than the wavelength
of light corresponding to the (u~~, ur, o) frequency range]
it is easy to see that Eq. (30) reduces to

Ji'(~R)a(&R)
T

+Q 1+ (l + 1) = 0 for R m oo. (49)

From the above equation and (10) it follows that

gaol

+ s (t + 1)(2)

[s~'ll + s~ l(l+ 1)]

According to Eq. (50) a series of modes with frequen-
cies between ur~o and ~r,o is obtained. (for a review see
Ref. 3). For / = 1 the so-called Friihlich frequency

~&2 ——u&2O(so +2m )/(s +2m ) is derived. The three
degenerate Prohlich modes correspond to a uniform po-
larization of the sphere. The modes with l ) 1 are usually
called surface modes. Note that the modes of Eq. (50),
obtained in the limit R m oo are not affected by the
mechanical boundary conditions: they are basically the
same as obtained by imposing only electrostatic bound-
ary conditions on 4. If R is not much larger than Q
and q

~ the effect of the mechanical boundary conditions
becomes important and Eq. (50) is no longer valid.

IV. DISCUSSION

In Sec. III we have obtained two kinds of modes, one of
them is relatively simple, its displacement u being given
in Eq. (29) in terms of X~ (8, p) [defined in Eq. (All)].
It is easy to see that the vector U = Xi {8,rp) has, upon
inversion with respect to the center of the sphere, a parity
opposite to that of Yj (8, y): it is even for / = 1, 3 and
odd for / = 2, 4. These "uncoupled" modes correspond
to the torsional modes of Ref. 25 where, however, only
elastic vibrations of a sphere with a zero stress bound-
ary condition were considered. Although the case under
consideration here, i.e., optical modes of a GaAs sphere
imbedded in AlAs, is rather different, the symmetry con-
siderations are similar: the solutions of Eq. (1) must
belong to the irreducible representations of the three-
dimensional rotation-inversion group O(3) labeled as D&~

and DP (g and u mean even or odd upon inversion). The
uncoupled modes belong to Dz, D2, D3 while the mixed
(spheroidal) modes belong to Do, D~, D2s, . . . .

The dipole operator responsible for ir absorption be-
longs to D~ while the Raman transition operator for
dipole-allowed scattering (a second rank tensor) belongs
to Do and D2. Hence the torsional modes are not ex-
pected to be optically active.

The discussion above is valid for the solutions of Eqs.
(1) and (3) which are only an approximation to the
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z.pz
~ 7- ~

cuR

Typical bulk values of v = 10 ~ sec and P = 3.5 x
10s cm sec ~ yield ( = 200 A for B = 25 A.. Hence for
such small spheres the l = 0, n = 1 mode should be
coherent. Figure 1 indicates that the &equency of this

macroscopic vibrations of a zinc-blende-type material.
Even within the quadratic expansion of the bulk dis-
persion relations versus wavevector, Eq. (1) does not
re6ect the cubic, Tg symmetry of a material like GaAs
or even silicon (Oh) [some of the data in the literature
have been obtained for hexagonal, wurtzite-type materi-
als such as CdS and CdSe. A generalization of Eq. (1)
to cover this case is also possible]. The first noticeable
problem in the case of Tg symmetry is the lack of in-
version symmetry. Furthermore among the operations of
O(3), only those which bring a tetrahedron onto itself are
symmetry operations of Tp. the sphere has preferred axes
which correspond to the crystal axes of the base material.
The lack of inversion symmetry corresponds to the fact
that the [111]direction is not equivalent to [111],repre-
sented in our treatment by the finite value of o. and its
sign introduced in Eqs. (2) and (3). Note that a reversal
of the sign of a produces, according to Eq. (3), a reversal
of the sign of 4.

In the case of a silicon sphere imbedded, e.g. , in ger-
manium, o. = 0 and no electrostatic effects occur nor are
there dipole-allowed ir modes (in the spirit of the micro-
scopic model we neglect, of course, symmetry breaking
at the interface which may induce ir activity: note that
the Ge-Si bond is ir active). 2s The Dog modes correspond
to the I'+& 0& symmetry and are Raman active, the scat-
tering being fully polarized independently of scattering
configuration. A calculation of the Raman cross section
for these modes would be rather interesting but is be-
yond the scope of this paper. A microscopic calculation
based on the electronic band structure and a supercell
with the sphere at its center would, in principle, be
possible but rather formidable. One based on bond po-
larizability models would probably suKce to unravel the
main features of the phenomenon. It is clear that the
l = 0, n = 1 mode should have the strongest cross sec-
tion. Like in the case of planar superlattices, higher n
modes should be weaker because of the scattering am-
plitude cancellations which result from their oscillatory
nature.

We should emphasize the fact that the fully polarized
scattering of the Dos (Fz+) modes has no counterpart in
bulk crystals which exhibit Fzs (diamond) or Fqs (zinc
blende) symmetry scattering with a depolarization ratio
of 0.75. The question, thus, immediately arises of when,
upon increasing R, the sphere will behave as a piece of
bulk material. The treatment given here implies coher-
ence of the vibrational mode throughout the whole sphere
and, for zinc blende materials, over some region outside
of the sphere. Hence, the qualitative answer to the ques-
tion just posed is that the radius R must be smaller than
the vibrational coherence length (, a quantity which can
be estimated &om the phonon lifetime 7 and their group
velocity vs ——P q/~,

P'e

mode should lie only 0.4 meV (3 cm ) below the bulk
LO frequency. If the vibration is coherent throughout
the whole sphere one can also ask what happens to the
I'q Raman activity as the sphere radius becomes larger
(while keeping coherence). This question becomes more
acute when one considers that a Ge tetrahedron imbed-
ded in Si has I'i Raman activity, while bulk germanium
does not. It is clear that the I'i Raman activity of a
Ge sphere must arise &om the changes in surface bonds
cut by the sphere boundary (Ge-Si bonds), which are dif-
ferent &om the Ge-Ge bonds inside the sphere. Hence,
the I'q activity must be, in this case, a surface effect. It
should depend on the exact nature of the spherical in-
terface, e.g. , on whether an atom or a midband is at the
center of the sphere.

The corresponding I'i modes of a GaAs sphere are
LO-like [Eq. (47)] and the Raman scattering amplitude
should have a component produced by the Frohlich inter-
action represented by Eq. (48) since the corresponding
charges (i.e., C~'s) are opposite for electrons and holes. ~s

A net effect results only &om the fact that the con6ned
electron and hole states of the GaAs dot penetrate dif-
ferently into the AlAs barrier because of the different
effective masses. This may explain the observation of
bulk LO &equencies in small polar semiconductor par-
ticles imbedded in glass, which until now has not been
understood.

Let us consider the Raman active D2 modes. Upon
lowering the symmetry to the Oh of silicon Tp of GaAs
the Ds2 representation of O(3) becomes F2+s, (Fqs). These
symmetries are also Raman active in the bulk and, as
mentioned above, lead to partly depolarized scattering.
A closer investigation of the &equencies and cross sec-
tions of these modes is beyond the scope of this work.
We should mention, however, that the ir-active Dz dipole
and surface modes also convert into I'i5 in zinc blende
and are thus Raman active. The corresponding electron-
phonon interaction can occur either through the electro-
static potential 4 [Frohlich Hamiltonian of Eq. (42)] or
directly through u (deformation potential interaction).
The polarization selection rules should be the same as
those of the bulk: they could be investigated by studying
the scattering of a coherently oriented array of quantum
dots. These modes should also be strongest for n = 1. In
the case of randomly oriented spheres, such as those fab-
ricated in glass matrices, one should be able to observe
the average depolarization ratio of 0.75.

In the limit of large radius the l = 1 modes should
occur at the Frohlich frequency [Eq. (50) for / = 1]:

~Lo + 2~To2 2

Cd@ =
3

where we have made the assumption e e, vahd iD(2) (i)

the case of GaAs imbedded in AlAs.
The Frohlich &equency is usually seen in ir

absorption but not in Raman scattering.

V. CONCLUSION

We have developed a systematic treatment of the long-
wavelength polar optical phonons and the electrostatic
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electron-phonon interaction in quantum dots. Our treat-
ment involves a complete formulation of the matching
problem and of the mechanical and electrostatical fields.
Explicit solutions of the 4 x 4 system of di8'erential
equations for spherical quantum dots have been studied
and analytical expression for the Prohlich type electron-
phonon interaction derived. We have shown that the
model gives (i) transverse uncoupled modes (Xl compo-
nent) below the bulk TO frequency uTo, and (ii) modes
with mixed LO-TO character involving two components
of the vibrational amplitudes (e„and e„x Xl compo-
nents) and the electrostatical potential. The l = 0 modes
have been investigated in detail for any value of the ra-
dius R and also the mixed modes with l g 0 in the limit
of large R. The dielectric model for surface phonons has
been rederived as a particular case (B -+ oo) of the gen-
eral dispersion relation given in Eq. (30). A qualitative
discussion of the implications of our work for Raman and
ir spectroscopy of spherical quantum dots has been given.

('7 + Q )v; = 0 (i = 1, 2).

Hence, the vector I' is equal to

(A4)

I'=M+%. (A5)

v - g, (qr)Yi (~, p), (A6)

(A7)

where ir is the modified spherical Bessel function. For
further calculations the following vectorial identities

M = (7'vi) x r", 7' x N = Q(Vv2) x r",

V' x V' x N = V'V' N + Q N

(AS)

(A9)

In a quantum dot (r ( 8), the solutions of (A4) which
are bounded for r m 0 can be written as
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are needed. It is convenient to write the operator V' as

8V'=e„———e„x L, (A1o)
OT

L being an operator given by L = —ir x V' and e„a
unitary vector along the r direction. We have used the
notation

APPENDIX

Xl =, l $0.
gl(l + 1)

In spherical basis Xt is given by

(All)

(A1)

Hence, if (e;j (i = 1, 2, 3) is a curvilinear basis, only two

components of I' are independent, because of Eq. (Al).
Thus, it is enough to obtain general solutions for two of
these components I;e; of I . I';e; should be a solution of
Eq. (9) and, due to (Al), I',e; must be the rotational
of certain vector field. It can be shown that we may
choose2

and

M=Vx(vir) (A2)

1-
N = —V x V x (v2r") (A3)

We consider here the solutions of the vectorial Eq (9).
and introduce the most convenient basis for the treat-
ment of a spherical quantum dot. The vectorial charac-
ter of Eq. (9) leads to two kinds of difFiculties: first, the

structure of V2I" is very complicated in curvilinear coor-
dinates; second, owing to the fact that I' = V' x u, the
components of I' are not independent but are related by
the equation

Ql(l + 1) (2l + 1)

M = —iBi gl(1 + 1)giXi~)

7' x N = iqDigl(l +—l)glXi~
(A13)

The evaluation of V' x M can be simply performed using

(A10) in (A13) while the vector N is derived using the

vectorial identity (A9). The final expressions for I' and
V' x I' are

I' = iB,/l{l—+ 1)g,x,

—iD1 gl(l + ].) i/i(l + 1)giY)~er

,

/'1 —m+1 l+m
l+i l l —1)

(A12)

For t = 0, because Ypp is a constant, we de6ne Xpp = 0.
For calculating u it is necessary to obtain M and V x N.
These vectors can be found from Eq. (AS) making use of
Eq. (Alo):

as independent solutions of Eq. (9) and Eq. (A1.), where

vz and v2 are solutions of the scalar Helmholtz equation and

d+„(rgl)e. X Xl— {A14)
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T x I' = —iaq [i/i(l+ 1)gtYt e„gl(l + 1)

d+ —(rgb)er x X&~ ] —iqD&gl(l + l)glXbn
(A15)

Hence, the curvilinear basis (e„, Xtm, e„xXtm) appears
naturally. Substituting Eqs. (17), (18), and (A15) in Eq.
(16) the mechanical displacement vector for the optical
modes of a spherical quantum dot [Eq. (20)] is obtained.
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