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Persistent currents and conductance of a metal loop connected to electron reservoirs
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%'e have calculated the persistent current and the conductance of a normal metal loop connected to
two electron reservoirs in the presence of magnetic flux. The geometry considered here facilitates simul-
taneous measurement of the persistent current and the conductance. %'e show that, in general, the mag-
nitude of the persistent current in a loop depends on the direction of the direct current flow from one
reservoir to another, a feature that can be experimentally verified.

I. INTRODUCX'ION

The electronic and magnetic properties of mesoscopic
systems have recently received much attention in the
light of several experimental observations. ' In mesos-
copic systems typically of nm sizes, the efFective distance
the e1ectrons travel between inelastic collisions at low
temperatures (typically millikelvin) can exceed the sam-
ple dimension. In such a situation the electron maintains
the coherence of the single particle wave function across
the entire sample. Mesoscopic systems thus can be
modeled as phase coherent elastic scatterers. For systems
of size larger than the inelastic mean free path, inelastic
collisions disrupt the phase coherence of electron wave
evolution. This efFectively breaks the system into
different uncorrelated regions. These phase breaking
scattering processes can be included via averaging argu-
ments. In these mesoscopic systems, quantum interfer-
ence phenomena' observed and predicted include the
normal-state Aharanov-Bohm resistance oscillations and
persistent currents in metallic loops pierced by a magnet-
ic field, universal conductance fluctuations, sample
specific non-self-averaging fluctuations in conductance as
the magnetic field or chemical potential is varied, nonlo-
cal current voltage relations, violations of Onsager rela-
tionships, the Coulomb blockade effect in microtunnel
junctions, and several other efl'ects. The guiding theme
for mesoscopic systems is quantum coherence along the
whole sample.

Persistent currents in mesoscopic normal metal rings
have recently received much attention in the light of the
experimental observations of these phenomena. There
have been several theoretical attempts to explain the
discrepancy between the measured current amplitude and
the results based on the noninteracting electron mod-
els. ' ' Prior to the experimental observations,
Biittiker, Imry, and Landauer in their pioneering work
suggested the existence of persistent current in an or-
dered one-dimensional ring threaded by a magnetic
Aux. ' The persistent current has an amplitude of ev&/I-
(where v& is the Fermi velocity and L is the circumfer-
ence of the ring) and is periodic in magnetic flux. Gen-
eral quantum mechanical principles require that the wave
functions, eigenvalues, and hence all observables be
periodic with a flux P threaded by the loop with a period

Pogo=h c/cbeing the elementary flux quantum. This
current is an equilibrium property of the ring and is given
by the flux derivative of the total energy of the ring.
These currents can also be attributed to the sensitivity of
the eigenstates to the boundary conditions along the ring
(the magnetic field tunes the boundary condition). The
magnetic field destroys the time reversal symmetry and as
a consequence the degeneracy of the states, carrying
current clockwise and anticlockwise, is lifted. Depending
on the position of the Fermi level, uncompensated
current flows in either of the directions. For an ideal iso-
lated ring without impurities and at zero temperature the
nature of the persistent current depends on the total
number N of the electrons and the persistent current ex-
hibits a saw-tooth-type behavior as a function of the mag-
netic flux p. For N even, the jump discontinuities occur
from the value (2evI/L) —to (2ev&/L) at /=0,
+$0,+2/0, etc., and at P=+$0/2, +3/0/2, etc. for N
odd. Studies have been extended to include multichannel
rings, disorder, spin-orbit coupling, ' and electron-
electron interaction effects. ' ' For the multichannel
quasi-one-dimensional ring, the average amplitude de-
creases as a function of strength of the disorder. In the
presence of strong disorder (i.e., when the localization
length of electronic eigenfunctions is smaller than the
ring size L) the persistent current decreases exponentially
with L. The root mean square amplitude of the current is
calculated to be of the same order as the amplitude of the
current. In the case of weak disorder, i.e., when the elas-
tic mean free path of an electron is less than L, the per-
sistent current decreases algebraically (i.e., as 1/L) In.
this regime the main effect of the disorder is to open a
gap at each crossing point of energy levels, thus reducing
the slopes of the curves E(P). For the multichannel sys-
tems there is no correlation on the average between
different channels, in the absence of disorder. Conse-
quently the total current is &m times the one channel
current, where m is the number of channels. However,
the result differs in the diffusive regime due to the com-
pensation between currents in different channels. Inelas-
tic scatterings do not destroy the eff'ect. At finite temper-
ature T, for L less than the phase coherence length L&,
the main effect arises due to the mixing of contributions
of the levels in an energy interval kz T. This mechanism
reduces the current, since adjacent levels give opposite
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contributions to the current. In the case L &L&, the
current vanishes exponentially with L/L&. The typical
magnitude of the persistent current at T=O for L be-
tween 1 and 3 pm and for a Fermi wave vector kf be-
tween 10' m ' (metallic ring) and 10 m ' (semiconduc-
tor ring) varies between 1 and 5 nA. '

Most of the theoretical treatments to date have been
done on isolated systems. In an isolated system the num-
ber of electrons is fixed and the statistical mechanical
treatment must be based on the canonical ensemble. Per-
sistent currents in open conductors have found little at-
tention in the literature. ' ' It was Buttiker who first
gave a treatment' of a small normal metal loop coupled
to an electron reservoir (open system). The reservoir acts
as a source and sink for electrons and is characterized by
a well defined chemical potential p, and by definition
there is no phase relationship between the absorbed and
emitted electrons. Thus the reservoir acts as an inelastic
scatterer and as a source of energy dissipation. Since the
reservoir keeps the chemical potentia1 in the loop fixed,
the statistical mechanical description for this system cor-
responds to a different ensemble, namely the grand
canonical ensemble. This implies that the open and
closed loop systems belong to different statistical treat-
ments. The exact description of the system is important,
as the dependence of the current on Aux has a different
behavior if the chemical potential is held fixed or if the
number of electrons is fixed to an odd or even number. '

In our recent treatment ' we have extended Buttiker's
discussion to a case wherein electrons from the reservoir
enter and leave the ring in a subbarrier regime character-
ized by evanescent modes throughout the circumference
of the loop. In such a situation the persistent current
arises due to two nonclassical effects, namely, the
Aharonov-Bohm effect and quantum tunneling. The
dependence of the current on the length of the ring is
similar to that arising due to states 1ocalized by a static
disorder.

In our present treatment we consider a one-
dimensional metal loop of length L coupleJ to two elec-
tron reservoirs as shown in Fig. 1. This idealization to
one-dimension corresponds experimentally to a network
of high-mobility quantum wires with narrow width such
that only the lower subband is filled. Our calculations are
for noninter acting system of electrons. In such a
geometry the Aharonov-Bohm effect manifests itself not
only in a transport phenomenon such as two terminal
conductance but also in a persistent current. The left and
the right reservoirs are characterized by chemical poten-
tials p& and JM2, respectively. We consider here a free
electron network and we have introduced a 5-function
impurity at a length lz to the right of the junction J&
(shown as X in Fig. 1). If pi) pi the net current flows
from the left to the right (along R,J,R2 ) and vice versa if
p& &pz. At the junction J2 an ideal wire of length /, is
connected to the metallic loop. Except at the 5-function
impurity of strength V the potential is taken to be zero
(free electron network). The scattering of the electronic
wave function occurs at the junctions J„J2 and at the
impurity site. The metallic loop is isolated from the
direct current How. However, in general it is not essen-

R)",

f, 2

R2

FIG. 1. An open metallic loop coupled to two electron reser-
voirs via an ideal conductor.

tial. Such a geometry facilitates measuring the persistent
current in a loop and the conductance of an entire net-
work simultaneously. In our model we have complete
spatial separation between elastic processes in the loop
and the inelastic processes in the reservoirs. These inelas-
tic processes in the reservoir are essential to obtain a
finite conductance. Now consider a situation wherein
steady Aux of electrons with an energy E is injected from
the reservoir 1. These electrons moving to the right are
first scattered at the junction J, and subsequently at Jz
and I (along with multiple reflections at J, ,J2, and I).
The electrons emitted by the reservoir 2 are first scattered
at I and subsequently at J, and J2. Consequently for
these two different cases the electron wave functions will
have different complex amplitudes at the junction J2.
This effectively corresponds to a different boundary con-
dition at the junction point J2. As already stated, the
persistent current in a metallic loop is sensitive to the
boundary condition, and hence we observe that the
magntiude of the persistent current depends on the direc-
tion of the current Bow. Obviously the conductance of an
entire network (calculated via the quantum transmission
coefficient) does not depend on the direction of the
current flow. This suggests that there is no simple scaling
relation between the persistent currents and the conduc-
tance of the entire network. In Sec. II we present the
theoretical treatment, Sec. III is devoted to results and
conclusions.

II. THEORETICAL TREATMENT

In this section we derive an expression for the per-
sistent current and the transmission coef6cient by solving
a scattering problem. Except for the point I (where we
have introduced a 5 function potential) the electronic po-
tential is assumed to be identically zero throughout the
sample. We do not assume any particular form for the
scattering matrix for junctions J, and J2, but rather we
derive them from the first principles using the quantum
waveguide theory on networks. Since the two reser-
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$3(x, )=te

$4(x2)= Ae '+Be
ikx3 —)kx3

g, (x3 )=Ce '+De

(3)

(4)

(5)

voirs are mutually phase incoherent, we have to solve the
problem separately for the electrons emitted from the left
and the right reservoirs. First we consider the case
wherein electrons are emitted from the left reservoir.
The reservoirs emit carriers with the Fermi distribution
f (E)=(exp[(E p~—)/k~ T]+1) '. This results in a
current flowing from the left to the right. The appropri-
ate wave function in the absence of magnetic field in the
ideal lead and in the region R

& J& is given by

ikx1 lkx )
g&(x& }=e '+Re

This wave function represents the carriers injected from
the reservoir 1 and reflected towards the same reservoir.
Here k is a wave vector and the energy of the injected
particle is given by E =Pi k /2m. Throughout our calcu-
lations, we have set units of h, e, and m to be unity.
Wave functions in other regions can be written down ex-
plicitly as

lkx )
—ikx )g~(x, )=Ee '+Fe

The above scattering matrix is very specific to the free
electron junction. If we assume an additional scatterer at
the junction (say, by assuming potential barriers at the
junction) we will get many other choices for the scatter-
ing matrix, which are unitary and symmetric. For sim-

plicity, in the present analysis we have not considered
other cases. The boundary conditions at the point I due
to the 5-function potential of strength V are given by

t/i2(lz )=$3(l2 )

(l2 ) d pz(l2 )

dx dx
=2VQ3(l~) . (9)

In the presence of a magnetic field in the loop we can
choose a gauge for the vector potential in which the field
does not appear explicitly in the Hamiltonian. The mag-
netic field manifests itself only in the boundary condition.
The boundary conditions (6) and (7) for junction J2 do
not change, however the electrons propagating from the
junction point J2 and back to the same point along the
ring pick up an additional phase a=2m//$0 for a clock-
wise and a phase —a for an anticlockwise motion.
Here P and $0 are the magnetic ffux and the fiux quantum
(hc/e), respectively. Using all the boundary conditions
mentioned above and using Eqs. (1)—(5) we get

where Eqs. (2)—(5) are for the regions J&I,IRz, J&J2 and
for the loop, respectively. The coordinates for the re-
gions R,J,IRz,J,J2, and the loop are x&,x2, and x3, re-
spectively. We will assume the origin of the coordinates
x& and x2 to be at the junction point J& and for x3 to be
at the junction point J2. At J2,x2 takes a value l2 and x3
takes values 0 and L, the circumference of the loop. We
have to use the Grimth boundary conditions at the
junctions. These boundary conditions are due to the
single-valuedness of wave functions and conservation of
the current (Kirchoff law). For example, at the junction
J) we have

1+R = A +B=E+F,

1 —R —A +8 —E+F=0,
ikl —ikl

Ae i +Be i C +De —sa Ce ia+ ikL+ De ikL

e ' —Be ' —C+ CeikL ia De
—ik~+De —ia 0

ikl )
—ikl )

e +

ikl2 —ikl~ ikl~Ee '+Fe ' = te

(10}

(12)

(13)

(14)

and

1( )(0)=f2(0) =fg(0) (6)
ikl2 . ikl2 . —ikl2 ikl~

ikte ' —ikEe '+ikFe ' =2 Vte (15)

gdf;/dx;=0 .

Here all the derivatives are either outward or inward
from the junction. Using the Griffith boundary condi-
tions one can easily verify that the junction scattering
matrix is given by

—1/3 2/3 2/3
S= 2/3 —1/3 2/3

2/3 2/3 —1/3

Here L is the length of the loop and 1„l2 are the lengths
of the segments J&J2 and J&I, respectively. Using Eqs.
(10}—(15) we can solve for the coefficients C,D, and t.
These solutions have been obtained analytically using
mathematica.

III. RESULTS AND DiSCUSSIONS

The persistent current in the loop in the energy inter-
val dE around E is given by'

dj „=k(/C/ —
/D/ ),

16sin(a)sin(kl) [ 4V 2k —+4V c—os(2kl) 4Vk sin(2k—l) ]
dgL+ /k =

(16)

(17)

where
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0= [114V +87k —(21V +12k2)cos[2kl] —(66V'+27k )cos[4kl] —27V cos[6kl]

—(32 V +24k )cos[2kl]cos[2a]+ 16Vksin[2kl]cos[2a]
—24V cos[4kl]cos[2a] —(176V + 136k )cos[kl]cos[a]

+(104V +72k )cos[3kl]cos[a]+72V cos[5kl]cos[a]

+(56V +40k )cos[2a]+47Vksin[2kl]+48Vksin[4kl]

+27 Vk sin [6kl ]+24 Vsin[4kl ]cos[2a ]—48 Vk sin [kl ]cos[a ]

5—6Vksin[3kl]cos[a] —72Vksin[5kl]cos[a] I . (17a)

For simplicity we have taken 1, =l2=L =I, the equa-
tions are too complicated to reproduce here otherwise.
As expected the current varies cyclically with the flux,
where the period is given by Pii and is antisymmetric in
the flux P. It also has components of higher harmonics.
The current also oscillates between the positive and nega-
tive values as a function of the energy.

The expression for the transmission probability T = tt '
is given by

8k [4sin(kl)cos(a) —3 sin(2kl)]T= 0 (18)

—32k sin(a)sin(kl)
JRR (19)

with 0 as in Eq. (17a). The expression for T remains un-

where 0 is given in Eq. (17a). The quantum mechanical
transmission probability is related to the two probe con-
ductance 6 of the network by the Landauer formula
G =(e /A) T, or the dimensionless conductance g is given
by G/(e /iri). The Landauer formula expresses the con-
ductance in terms of scattering properties at the Fermi
energy The .conductance also oscillates with a period Pp
and is symmetric in the flux P.

We have also set up a problem wherein electrons enter
the lead from the right reservoir (this results in a direct
current flow from the right to the left). Following the
earlier procedure, the persistent current in this case is
given by

changed [Eq. (18)]. One can easily notice from Eqs. (17)
and (19) that the magnitude of the persistent current car-
ried by an electron with energy E depends on the direc-
tion of the direct current flow. Only in the special case,
where we set the strength of the 5-function potential
V =0, do we get identical persistent current (independent
of the direction of the direct current flow). This is be-
cause we restore the symmetry between the left and the
right with respect to the loop. The magnitude of the per-
sistent current vanishes for /=0 as it should. At temper-
ature T=O the total persistent current is obtained by
adding all contributions from levels with energies less
than the chemical potential. Hence, if p, & pz, we

have the total persistent current J, =j 'n(E)(dj LR
P)

1 g

+dj„R)dE+ f n(E)djIRdE, and for ju, &ju2 we have
P2

the total current Jz = fz'n(E)(djLR +dj RR )dE
+ f"„'n(E)djRRdE. Here n(E) is the density of states in

one dimension. ' Thus by keeping ~pi
—

p2~ fixed (i.e.,
fixed applied voltage) we get a difFerent persistent current
depending on the direction of current Bow. The same ar-
gument can be extended to the finite temperatures by in-
cluding the Fermi functions.

In Figs. 2 and 3 we have plotted the dimensionless per-
sistent currents dj /k and the dimensionless conductance

g as a function of k/, for a fixed value of magnetic flux to
flux quantum ratios a=2m.g/pc=0. 7 and VI=10.0, re-

spectively. In Figs. 4 and 5 we have plotted the persistent
currents and conductance, respectively, for fixed kl =7.0
and Vl =10.0 as a function of a. Persistent currents and
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FIG. 2. Persistent current versus kl for a fixed value of Aux

a =0.7 and Vl = 10.0. The dashed curve represents djzz /k and
the solid curve represents dj« /k.

FIG. 3. Conductance g versus kl for a fixed value of fiux
a=0.7 and Vi=10.0.
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FIG. 4. Persistent current versus flux a for a fixed value of
kl =7.0 and Vl =10.0. The dashed curve represents dj&&/k
and the solid curve represents dj« /k.

the conductance are flux periodic. The electrical conduc-
tance exhibits resonances as a function of kl, i.e., the
transmission probability T exhibits a peak transmission
(T= 1) for certain values of kl. This occurs whenever
the incident electron energy coincides with one of the
eigenenergies of the ring attached to an additional stub
J]J2 ~ The deviations from the values of the exact energy
states of the closed ring follow from the fact that the cou-
pling to the reservoir via J, and J2 causes additional
scatterings (or perturbations) and shifts the energy levels.
It is the flux dependence of these resonances which gives
rise to a strong oscillatory behavior in g (for details, see
Refs. 25 and 26). The Aharonov-Bohm oscillations in
magnetoconductance (or resistance) have been observed
experimentally. The actually observed magnetoresis-
tance exhibited irregular oscillations as a function of the
magnetic field. These reproducible oscillations vary from
sample to sample and are not time dependent and are also
called magnetofingerprints. The irregular behavior of
these oscillations is associated with the multichannel case
in conjunction with the disorder.

One can also notice from Figs. 2 and 4 the difference
between the values of the persistent current carried by
electron emitted by the left reservoir (solid line) and emit-
ted by the right reservoir (dashed lines). This shows

clearly that persistent currents in a metal loop connected
to two reservoirs depend on the direction of direct
current flow from one reservoir to the other. Electrons
emitted by the reservoir enter the loop via junctions J,
and J2. These electrons in the loop will eventually reach
the reservoirs via junctions after some time delay. Thus,
coupling of the loop to the reservoirs gives rise to the
finite lifetime broadening of the electron states in the
loop. Consequently the persistent current shows a
broadened feature as a function of kl compared to that
for an isolated ring. In Fig. 6 we have plotted the per-
sistent currents djL+ and djzz as a function of dimen-
sionless impurity potential Vl, for a fixed value of kl =7.0
and a =0.7. The magnitude of djzz decreases monotoni-
cally to zero as Vl goes to (x). This follows from the fact
that, in this limit, electrons emitted from the right reser-
voir do not enter the loop. The absolute magnitude of
djL~ increases monotonically to an asymptotic value.
This asymptotic value corresponds to the geometry trun-
cated at the point I and effectively the metallic loop is
connected to a single reservoir. %'hen the metallic loop is
connected to two reservoirs the electrons emitted by a
single reservoir partially enter the loop and partially get
transmitted directly to the other reservoir, whereas for a
metallic loop connected to a single reservoir all the elec-
trons emitted by it will enter and leave the loop. This
manifests itself as an increase in persistent current for a
loop connected to a single reservoir as compared to that
of a loop connected to multiple reservoirs.

In conclusion, we have shown that the magnitude of
the persistent current in a normal metal loop connected
to two reservoirs depends on the direction of the direct
current flow, which should be an experimentally
verifiable feature. There is no simple scaling relation be-
tween the persistent currents and the conductance of the
entire network. This follows from the fact that, unlike
the persistent currents, the conductance does not depend
on the direction of the direct current flow. However, for
a closed ring there exists a relation between the persistent
current carried by an eigenstate and the conductance
(transmission amplitude) of the loop. Here the transmis-
sion amplitude for a ring is to be calculated by cutting a
ring at any point and connecting the two end points to an
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FIG. 5. Conductance g versus flux a for a fixed value of
kl=7. 0and Vl =10.0.

FIG. 6. Persistent current versus impurity potential Vl for a
fixed value of a=0.7 and kl =7.0. The dashed curve represents
dj&& /k and the solid curve represents dji& /k.
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ideal wire. Such a unique relation does not exist for the
open system considered here. The difference between the
magnitudes of the persistent currents (on the direction of
the current flow) can be made significant by adjusting the
impurity potential. This can be achieved experimentally

by having a gate in one of the leads connected to the
reservoirs and by appropriately varying the gate voltage.
Such an experiment can also be useful for separating the
persistent currents from all other parasital currents (or
signals) associated with measurements.
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