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Strong-coupling theory of quasi-two-dimensional polarons
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A strong-coupling theory of the polaron is developed to study the electron-phonon interaction in

quantum-well structures consisting of strong polar crystals. By introducing a two-parameter trial wave

function to take care of the strong anisotropy, the Landau-Pekar theory is extended to investigate pola-
ronic effects in a quantum well. It is shown that the theory yields correct results in both the two-

dimensional and three-dimensional limits. The ground-state properties of quasi-two-dimensional pola-

rons are calculated as functions of the well width for two choices of the coupling constant a.

I. INTRODUCTION

There has been a great deal of interest in the electronic
properties of polar crystals of reduced dimensionality
such as quantum wells and heterostructures. In particu-
lar, the interaction between electrons and the lattice vi-
bration in such microsystems has been studied extensive-
ly, because the polaronic effects can strongly influence the
optical and transport properties of the materials under
consideration. Earlier works' discussed mainly the po-
laron properties near the surface. In the studies of inter-
face polaronic effects, electron interaction with bulk
longitudinal-optical (LO) phonon modes alone were first
considered, and the contribution of surface-optical
(SO) phonon modes was also included later. '

More recently, polaronic properties in a quantum well
have also received much attention' ' though the inter-
face phonon effects may or may not be included in the
calculations. In all these works, however, the weak-
coupling limit of the electron-phonon interaction is as-
sumed. This is all right for materials such as III-V com-
pounds in which the coupling constant of the electron-
phonon interaction as defined in the Frohlich Hamiltoni-
an is generally small.

Because of the rapid development of technology, the
growth of heterostructures based on II-VI compounds by
molecular-beam epitaxy has become more practical now.
These new materials are increasingly attracting attention
for their potential applications in optoelectronic devices.
Other strongly polar materials such as ionic crystals that
may also be of interest include thin films of alkali halides
and CuzO. Since these crystals are generally more polar
than III-V compounds, the electron-phonon coupling

may become so strong that the weak-coupling scheme
does not apply. Therefore it is of interest to study the
strong-coupling theory of polarons in a quantum well

consisting of materials of strongly polar crystals.
The strong coupling theory of polarons in the bulk was

developed by Landau and Pekar' in the 1940s. An alter-
native approach was discussed by Feynman. ' Both of
these theories have been applied in recent years ' to in-

vestigate strictly two-dimensional (2D) polarons as an ap-
proximate description of the quasi-two-dimensional
(Q2D) case. The strong-coupling polaron confined in a
harmonic-oscillator potential has also been discussed.

In this paper, we study the ground-state properties of a
strong-coupling polaron in an infinite quantum well of ar-
bitrary width. Only the bulk LO phonon modes are con-
sidered for simplicity. From what we have learned in the
case of weak-coupling free polarons in a slab of crystal, "
the contribution of SO phonon modes is expected to be
small and to become significant only for small widths. In
more realistic quantum-well structures of III-V com-
pounds, it is also known that the interface phonon modes
can be ignored unless there exists an external magnetic
field, which greatly enhances the interface phonon
influence.

In Sec. II, we choose the trial wave function with two
parameters to be determined by the variational principle.
The energy levels of the confined polaron are calculated
in Sec. III as functions of the well width and the effective
mass corresponding to each level is also found. In Sec.
IV, we first show that in the limits of small and large well

widths, our results approach those of 2D and 3D pola-
rons, respectively. Numerical results for two choices of
the coupling constant n are then plotted and discussed
for a wide range of the well width.
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II. THK TRIAL %AVE FUNCTION

We choose the geometry such that the xy plane is
parallel to the interfaces and the origin is at the center of
the well. The Hamiltonian for a system of a confined
electron interacting with LO phonon modes in a quantum
well of width L is, in the usual polar on unit
2' —fl —cop= 1,

H =pi+ V(z)+ g at&a&+ g [V& atone
'"'+ Vka&e'"'],

k k

with the potential of confinement

0, 21L &z(21L
Vz ='

oo, otherwise,

and the electron-phonon interaction energy

Vk=(4ma/Vk )'

(2a)

(2b)

in which we have defined the coupling constant with
standard notation

2

2Am)p

' I/22' COp

&p
(2c)

U= exp[ y (fkai, —f k )a]i,

where fk is the variational function. The electron trial
wave function is chosen as

4(r)= —q&(z)e t' ~ exp(ipo r), .

with

and the crystal volume is V. Here, and throughout this
paper, we adopt xiii/2mcoo and fic00 as units for length
and energy, respectively. The first two terms in (1}
represent the Hamiltonian of the confined electron whose
momentum and position are given by p=(p„,p~,p, } and
r = (p, z ) = (x,y, z }, respectively. The third term is the
free phonon-field energy, in which the operator ai, (ai, )

creates (annihilates} a phonon mode characterized by the
wave vector k=(tt, q) and frequency coo. It should be
noted that we have assumed dispersionless phonon modes
and an infinite well just for simplicity.

Following Landau and Pekar, ' we write the trial wave
function

~%) =4(r)U~O),

where 4(r) depends only on the electron coordinates.
The phonon vacuum state ~0) is defined by ai, ~0) =0,
and the transformation U is a unitary displacement
operator given by

where A, and p are the variational parameters introduced
to reflect the anisotropic nature of the system. We note
that one variational parameter is suScient for the isotro-
pic case of an n-dimensional problem where n is any in-
teger. Since the translational symmetry in the z direc-
tion is destroyed in a quantum-well structure, it is natural
that the strong electron-phonon coupling in the z direc-
tion is different from that in the xy plane. Furthermore,
a variational vector pa=(p, „,po„,po, ) has also been intro-
duced in order to calculate the polaron effective mass.
The normalization constant is given by

'~2 -( 1.~)'N=1/[2L I e ~& i sin2[1~(t+ & )]dt}i/2, (7)

where we have made the variable change z =Lt for con-
venience.

III. ENERGY LEVELS AND EFFECTIVE MASS

In order that the polaron energy and effective mass can
be determined at the same time, we minimize the expec-
tation value of the quantity J=[H —u (P —Po)] in the
state ~% ). Thus, we have the variational problem

sJ=s[(q'IH u'(P Po)le)]=0, (8)

and its expectation value Po in the state
~
4 ), as we shall

see later. The vector u plays the role of the Lagrange
multiplier in Eq. (8), and can be identified as the polaron
velocity, as it turns out. The unitary operator u trans-
forms the phonon operators as follows.

U'a'„U=a„'+f „',
U a~U=a~+fk .

(10a)

(10b)

Inserting Eqs. (3), (4), and (9) in (8), we find the expec-
tation value

'2

J=A, +p [1—g&(}u)]+pa+

+g(1—u k)~f„(
k

+ g [Vi',fk (@(r)~e 'q'~@(r))+H. c. ]

u pp+u Pp,

where we have defined the integral

gi=2N L {p L I t e " ' sin [lir(t+ I/2)]dt
p

lir f t—e " ' sin[2ln. (t+1/2)]dt} .
p

where we have introduced the total momentum for the
system

P=p+ gkai, ai,

qr(z)= .

2 2/2 z 1We-~'' sin I.~ —+-
L 2

Iz I
(L /2,

0, ~z~ )L/2,

Minimizing Jwith respect to po and fk then leads to

fk= — „(C(r)~e 'q')4(r))

(12)

(13)
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and (4!P!4)=Po=mii uti+m, *u, . (16)

p0= —,'u=mu . (14)

From Eqs. (13) and (14), we can calculate the expecta-
tion value of the Hamiltonian up to the second order in
0, E, =A, '+p'[1 —gi(p)]+ ——ht(A, ,p), (17)

In Eq. (15), E, denotes the polaron energy in the subband
I and is given by

2

(ql!0!%')=El+ —,'m
ii

u
ii

+ —,'m,*u, ,

and the expectation value of the total momentum

(15)

where we have defined a new integral

hi=2 f ae ' " de f 2N L f sin [t~(t+ —,')]cos(qLt)e " ' dt .
0 a' +q 0

The polaron effective mass is in general anisotropic in a quantum well and is given by

2

2

f ae." dt's f 2X L f sin [lm(t+ —,')]cos(qLt)e " ' dt .
m m 0 a +q 0

(19a)

m*
z f ~e ' i da f 2X L f sin [ln(t+ —,')]cos(qLt)e " ' dt .

7T 0 z+q 0
(19b)

Equations (17) and (19) express the energy levels and
effective masses of the polaron in terms of the variational
parameters k and p, which are determined by minimizing
the energy. Since these parameters depend explicitly on
the coupling constant and the well width, they are calcu-
lated numerically later when we discuss the anisotropy of
the problem. From Eqs. (15) and (16), it is also clearly
seen that the I.agrange multiplier u represents indeed the
polaron velocity u = ( u„,u~, u, ) = (uii, u, ). The binding
energy of the polaron for the lowest state in the subband t
is therefore

2

choosing a two-parameter trial wave function, energy lev-

els and anisotropic effective mass are derived for the
strongly coupled electron-phonon system. They are all
expressed as functions of the well width L. In this sec-
tion, we show that these results yield correct limits in
both the 2D and 3D cases.

We consider the ground state (1=1). In the limit
L ~~, the confinernent in the z direction is released and
hence the electron is essentially moving in the bulk. Con-
sequently, we can set p=A, . Thus, we find from Eq. (17)
the ground state

2
'l1E = — —Eb L t (20) =3 2E=—

A,
—

1

2—aA, +
L

(21)

IV. LIMITING CASKS

We have established a strong-coupling theory for
quasi-two-dimensional polarons in a quantum we11. By

(22)

The effective mass now becomes isotropic and is given by
' 1/2

2 2
m =m =m 't 3

ll z CXA

40~

t

!
l

l
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FIG. 1. Parameters Q and pa~ for the pola-
ron ground state as functions of the well width
L. The solid line represents p and the dashed
line represents k . (a) a=5, (b) a=10.
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The parameter A, is determined by minimizing the energy
E„and we find

TABLE I. Numerical values of the length and energy units

for some selected materials.

1/2
CK 2

A, ——
3

(23)
Material

12.9
90

21.8
21.5

6.3
53.28

MnO TiCl Cu20 KI KC1

10.0 9.1

18.11 25.46
Substituting Eq. (23) back into Eqs. (21) and (22), we ob-
tain finally the polaron ground-state binding energy and
effective mass in the 3D limit as

'r
b

CK

3n- '

16 4Q
81m

(25)

E, (A, )=A. +p 1+—— aA, +&2m

4 2

r 2

(26)

These results are in complete agreement with what can be
found in the literature for 3D strong-coupling polaron
theory. "

In the limit L ~0, no motion in the z direction is possi-
ble and u, =0. Following the same procedure as above,
we find

V. RESULTS AND DISCUSSION

5E( 5E(

M,
'

5p

which implies

(31)

For quantum wells of arbitrary width, numerical calcu-
lation is inevitable. The procedure is outlined as follows.
For a given sublevel l, we choose a particular a value. E&

in Eq. (17) is then minimized to determine the variational
parameters A, and p for a fixed L. Repeating this varia-
tional calculation for various L leads to A,o and po as func-
tions of a and L.

Vfe consider in this paper two choices of a, namely,
a =S and 10 for /= 1. %'e first apply the variational prin-
ciple

m'= aA,
2

(27) n hI
2X—— =0,

m 5A,
(32a)

7rE= — —E=—ab L 1 8
(29)

m* a4.
m 16

(30)

Again, these results agree completely with what has been
obtained in Ref. 24 for the 2D case.

Minimizing the energy yields the parameters

~i~
Po o 4

Inserting Eq. (28) into (26) and (27), we find the ground-
state binding energy and effective mass

'2

5g( ~ 5hl
2m [I—gr(V) l

—V'
5p, ~ 5'

(32b)

It is not interesting to reproduce the explicit forms as
they follow by direct differentiation of Eqs. (12) and (18).
Equations (32) are solved numerically for variational pa-
rameters A,o and po. The parameters thus determined are
plotted versus L for a given a in Fig. 1. The difference
between the two curves serves as a measure of the anisot-
ropy. It is observed that the problem is practically iso-
tropic for large L, as it should be in the 3D limit. %e re-

call that the unit for length is gR/2m coo which depends

strongly on the material. Its numerical value for some
selected materials is listed in Table I. The anisotropy

10 40
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3D

CL

20

10— 3D

FIG. 2. Ground-state binding energy Eb of
the confined polaron as a function of I (solid
line). The corresponding polaron binding en-
ergies in the 2D and 3D cases are represented
by dashed and dot-dashed lines, respectively.
(a) a=5, (b) a= 10.
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FIG. 3. Anisotropic effective
masses of the polaron in its
ground state. The solid line
represents m~~ /m and the dot-
dashed line represents m, /m.
(a) a=5, (b) a=10.
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starts to show up at about L —10, where the curves begin
to split. The splitting increases rapidly as L becomes
smaller than 1. When L decreases further, the system ap-
proaches the 2D limit, and @0~0 as expected. Figure 1

also indicates that the smaller the coupling constant n,
the quicker the change of behavior from 3D to 2D.

The polaron binding energy Eb is plotted as a function
of L in Fig. 2. The corresponding binding energies for
2D (dashed line) and 3D (dot-dashed line) are also shown
for comparison purpose. The binding energy of a Q2D
polaron is seen to approach the 3D value for L ~ 10. It
increases with decreasing well width, but the rate of
change is much faster for weaker coupling (a=5) than
for stronger coupling. This is understandable because a
stronger coupling implies a smaller size of the polaron.
Thus, a well of width L =1 is practically 2D-like for po-
larons with o;=5, but remains 3D-like for polarons with
a=10. It is also of interest to note from Figs. 1 and 2
that there exists a region of dimensionality crossover.
This is particularly clear for a =5 for which the crossover
region is 1 L ~4, corresponding to about 30 A for such

materials as MnO and ZnO.
In Fig. 3, we plot the anisotropic effective masses. The

behavior of the parallel effective mass as the width
changes is similar to that of the binding energy. The z-

direction effective mass, on the other hand, increases
monotonically as the well width decreases, and eventually
blows up at small widths. The infinite m,'/m simply
rejects the fact that the confinement becomes so strong
that the polaron motion in the z direction is completely
frozen.

It would be interesting to investigate the strong-
coupling theory of polarons confined in quantum-well
structures of finite barrier height. Then the contributions
from surface or interface phonon modes should also be
included in the consideration. This is now being carried
out and results will be reported elsewhere in the future.
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