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Envelope functions for a three-band semiconductor in a uniform electric field
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The three-band effective Hamiltonian of k.p perturbation theory, which is relevant for nonparabolic
semiconductor conduction bands, is solved for the case of a uniform electric field along the heterostruc-
ture growth axis. The solutions are analytical and nearly exact, typically giving conduction-band eigen-
values to accuracies within a fraction of a percent. Good accuracy is obtained by considering the effects
of the split-oF hole band via an effective two-band interaction, which is obtained by linearizing the
valence-band term in the exact two-band subspace of the three-band Hamiltonian. A straightforward ex-
tension provides an approximate analytical account of the remote band perturbations as well. The solu-
tions are based on exact analytical results for the two-band model (electrons and light holes only), from
which a universal family of curves characterizing the subband shift versus electric field has been derived.
As a test case of the approximate three-band solution, the quantum-well Stark shift of the conduction
electron is computed and compared with exact numerical results.

INTRODUCTION

Analysis of semiconductor heterostructures with
abrupt transitions from one material to another is
profitably carried out by the envelope-function-
approximation method. Many incisive examples may be
found in the book by Bastard' and references therein. As
originally conceived, the effective-mass approach requires
that the external potentials be slowly varying in space,
and this requirement is never met in modern heterostruc-
tures. However, more recently it has been recognized
that the envelope-function approximation can be
rigorously justified when the envelopes themselves are
slowly varying, and this condition is easily met. Howev-
er, there is the important proviso that all relevant bands
be included in the envelope-function calculation. In
GaAs/A1„Ga, „As structures it is frequently possible to
consider only the conduction band at the zone center. In
contrast, in the interesting case of the InAs/(Al, Ga)Sb
material system, the conduction-band minimum of InAs
and the valence-band maximum of Al Ga1 „Sb come
near each other or even overlap, so that strong interband
coupling is observed. For these and similar situations,
the following contribution shows analytically how to ob-
tain approximate (but quite accurate) envelope functions
for three interacting bands —conduction, light hole, and
split-off hole —in the presence of a uniform external elec-
tric field. These solutions are useful in analyzing inter-
band tunneling experiments and quantum confinement
effects in narrow-band-gap materials. As a sample appli-
cation, the contributions to the Stark shift in an infinite
quantum well arising from the light- and spin-split-hole
bands are computed.

In a previous report, we gave envelope-function solu-
tions for a model system consisting of a symmetric two-
band semiconductor in a uniform electric field. Since
these solutions are the basis for the present three-band
analysis, a very brief restatement of these prior results is
necessary. The method of solution proceeds by analogy
with the relativistic electron (Dirac equation), which is

governed by mathematically identical relations. The
model problem solved first is the one-dimensional
Schrodinger equation for the two-band effective Hamil-
tonian of k p perturbation theory:
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The position-dependent conduction-band edge is given by
Ec(z)=EG/2 F(z —zo)—, where we are taking the
midgap as the energy zero point [E~(z)=Ec(z) EG]. —
The constant Fzo is arbitrary and may take any con-
venient value, such as zero. The free-electron kinetic-
energy term is for the time being ignored, and in any case
will be small in comparison to these terms when this
two-band model is itself applicable. The z axis is the
growth axis, and the electric force along this direction is
represented as F. The velocity v is that associated with
Kane's momentum matrix element p. System (1) can be
solved in terms of parabolic cylinder functions, by mak-
ing a change of parameters according to

2
' 1/2 I 2—E

x = (E+Fz), @=-
i fivF 2fivF
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A and 8 are the constants dictated by the boundary con-
ditions. Note that if the sign of x is changed in these ex-
pressions, the signs of the terms involving D, ,„also
must be changed. The result therefore is simply an ex-
change of the constants A and 8. Changing the sign of x
amounts to changing the signs of E and z, and since the
sign of dE/dk is unchanged in this operation, f, (

—x)
represents a carrier in the lower band, while f„(—x)
represents a carrier in the upper band. An asymptotic
analysis of the fundamental solutions indicates that the A
term contributes only a positive-going wave, but the 8
term has both positive- and negative-going parts. To ob-
tain (asymptotically) a purely negative-going wave re-
quires A +e "8=0.

As an application of the foregoing results, consider the
eigenvalue equation for a quantum well confined by
infinitely high barriers. In the one-band case, it is of
some value to note that the eigenvalues when normalized
to the confinement energy

Zm 'a (4)

are a function only of the normalized field, Fa/E, (Ref.
8). Therefore, a single plot of subband shift versus field
universally characterizes any quantum well via rescaling.
In the two-band model, however, there naturally arises a
second parameter, namely the band-gap energy. It makes
most sense to normalize all energies to half the band gap.
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FIG. 1. The universal family of subband shifts vs electric
field for the two-band model. The parameter QE„defined in
Eq. (4) of the text, is the confinement energy for a well of width
a in the one-band model. It is incremented in steps of 0.1 start-
ing from the curve labeled 0.1 at the lower left. All energies are
normalized to half the band gap; F represents the electric force
times the well width; that is, the electrostatic potential energy
difference across the well. The change to a dotted line in the
lower four curves marks the point where the valence-band edge
anticrosses the subband. This point is already well beyond the
threshold for impact ionization (at F approximately equal to 3)
and therefore is experimentally inaccessible.

Then the normalized subband energies are a function of
two parameters (E, and the product Fa ):

E=E fir/E, , fir/E, F Fa
1E

where the tildes represent normalization to half the
band-gap energy. It now becomes possible to generate a
universal family of subbands shifts, parametrized by the
ratio of confinement energy to the band-gap energy. This
family of curves is displayed in Fig. 1, in the form most
convenient for considering the shifts as a function of the
field strength. On the other hand, for a fixed field
strength, the abscissa on this graph can represent a varia-
tion in the confinement energy, for example, by varying
the well width. In this case, only one point on each curve
is relevant, namely the~oint at the QE, -axis value that
corresponds to the QE, value on the curve. Note that
the nominal threshold for impact ionization is
F = 3EG /2, so that much higher fields are not experimen-
tally realizable. In this two-band model, the valence-
band edge shifts up with field and anticrosses the sub-
bands shown at the points where the solid lines give way
to dotted lines. This region of anticrossing also is beyond
the experimentally accessible fields.

NEARLY EXACT ANALYTICAL SOLUTIONS
FOR THREE BANDS

To generalize the model system (1), a finite spin-orbit
splitting 6 should be included, as well as the coupling to
the heavy-hole band that occurs for nonzero in-plane
momentum. The present treatment considers nonzero 6
but no in-plane momentum. The main idea is to solve the
three-band problem as an effective two-band problem,
whose exact solutions are known from (3) above. For
zero crystal momentum in the plane of the layers, the
three-band model is essentially an exact account of the
conduction electron, lacking only small remote-band-
perturbation terms. To first order, the light and split-off
holes each interact with the conduction electrons, but not
with each other. Therefore, the conduction electron may
be viewed as approximately interacting with an average
valence-band state involving contributions from both
light particle types. For any given energy, the effective
interaction can be well modeled by a two-band form, and
the present analysis applies.

Note that various effective two-band models can be
conceived. For example, the dispersion relation in zero
field can be approximated with a "best-fitting" two-band
form. However, such an approximation mishandles cer-
tain dynamical effects that can be captured more accu-
rately with the approach presented here. The better solu-
tion procedure is to project the three-band Hamiltonian
onto a two-band subspace and then linearize the valence-
band term. The relative magnitude of the remaining ig-
nored terms may be estimated and lies in the range
1 —10% for representative values of the parameters.
Comparison of approximate and exact solutions shows
that typically the error in eigenenergies is a fraction of a
percent for conduction-band states.

The three-band effective Hamiltonian of k.p perturba-
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tion theory is first reduced to an exact two-band form by
introducing the valence-band envelope defined by

f (z)=Q ', fg,—(z) Q—,'f„-(z),
where the subscripts lh and so refer to light holes and
split-o8' holes, respectively. %'ith this definition, the sys-
tem (1}generalizes to

(
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dz
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In this expression, the quantity u measures the strength
of the spin-orbit interaction according to

X ~ =0, (7)I v

the only new feature being the presence of the factor

1g
5(E+Fz)=—1+ .

. 2 +3+ +

Considering energies from the valence-band edge and
greater, this factor 5 is never greater than —,

' nor less than
1. The limiting cases 6—+0 and b ~ ao are subsumed in
the previous exact analysis. The presence of this factor,
however, apparently precludes an exact analytical solu-
tion.

An approximate solution may be obtained as follows.
By means of a Taylor-series expansion around
(E+Fz)=0 (the midgap at the origin of coordinates), the
valence-band term in the effective Hamiltonian can be
written as a polynomial in (E+Fz}, whose lowest-order
terms are

it is found that the functions 4 both satisfy the equation
r '2

d
Av +a(E+Fz) +P ,'Eo(—E+Fz)+y,'Eo—

a= 1+2u =1+u —
( —,'E) 'u

p=( —'E) 'u

y = —(a+p)k
iv'a
2p

(13)

There are two equivalent versions of Eq. (12) depending
on the si n chosen in the constant y. Correspondingly,
4„=+ a4, . We make the latter choice (minus sign) for
convenience and henceforth ignore this sign ambiguity.
Equation (12) has two independent solutions in terms of
the Weber functions D (kX), provided

' 1/2
2&a
ikvF

(E+Fz)+ ,'Eo-G

o =i@a a 1+—+cx, 2A

'2' (14)

It may be checked that these definitions simplify to the
ones given in (2) when 5=1 (that is, when u =0). Thus,
by combining (13} and (14), an approximate analytical
solution of the three band Hamiltonian is obtained:

f, (x)=— 1 — D ~(+x }
2(x

1/2

oD, (kx),

=0, (12)

with the constants a, p, and y calculated from

lg

1+—', 6 (10)
p a

v af„(x)= 1+ D (—kx)2'

(15)

and the tildes again indicate normalization with respect
to half the band-gap energy. The magnitude of the ig-
nored terms in expansion (9) increases as the band energy
approaches (Eo/2+26 l3), and —this approximation
scheme fails. However, for the interband tunneling ex-
periments in III-V materials, the spin splitting is sizable
and the approximation can be carried some way into the
valence band. For example, if h=EG, then in normal-
ized terms the ignored part is less than or about 0.2 for
energies from —1.2 to +2.4 (the band edges lying at
+1).

On introducing the transformation

' 1/2
L+a

p
oD, (+x) .

As in (3), the alternative sign choices yield two indepen-
dent solutions, which may be combined with arbitrary
constant coeScients to yield the general solution.

To gain further insight into the nature of this approxi-
mate solution, compare definitions (2) and (14). The ap-
proximate three-band solution can be interpreted in
terms of an e8'ective confinement energy, an efFective
band gap, and a subband ofFset. In other words, take
primed parameters defined by



13 666 R. BERESFORD 49

I

I+L3+ P
EG a 2(z

2 1/2 E, EG
El (16)

and then solve a two-band problem using the primed pa-
rameters. According to (14), the approximately correct
three-band eigenvalues are given by E =E' —hE, where

AE =—'EG
2(x

(EG/EG). (17)

Note that the normalized electric field di6'ers in the
primed system due to the changed energy normalization.
%hen the situation of interest involves propagating
states, the well width used in defining "confinement ener-
gy" amounts to arbitrary normalization of the spatial

(E ,'EG )—5(—E)= (A'vk ) (18)

On expanding the left-hand side up to second order in E,

coordinate z. Neither this length nor an actual mell

width are scaled in going to the primed system. Rather,
it is the factor 1/m* representing the interband interac-
tion that is considered to be rescaled in the primed sys-
tem.

The variation with the spin splitting of the scale factors
(16) and the oS'set in (17) are plotted in Fig. 2. It is of in-
terest to compare these factors with an alternative purely
"static" approximation obtained from the three-band
dispersion relation in zero field. From (7) and (8), the
zero-field dispersion relation is given implicitly by
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FIG. 2. Graphs showing the variation with the normalized spin-orbit splitting of the three factors used to model the split-off hole

band effects. The effects are accounted for quite accurately by an effective two-band problem in which the band-gap energy (a) and

the interaction (represented by the reciprocal effective mass) (b) are rescaled. In addition, the energy zero point is offset as shown in

{c). A11 three quantities depend on the choice of expansion point, a fixed energy in or near the range of energies of interest in a given

problem, around which the valence-band term of the effective Hamiltonian is linearized. In each case, three expansion points are
shown for illustration, the valence-band edge ( —1), the midgap (0), and the conduction-band edge {+1).
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an effective two-band form can be extracted. The result-
ing approximation is found to be distinctly inferior to (16)
and (17}, the difference being that in this case neither
band is treated exactly, whereas in the former case only
the valence band is treated approximately. On the other
hand, if both the conduction and light-hole bands are
treated exactly and the split-off band factor is taken as
approximately constant, 5=1+u, the relations (13) and
(16) are obtained with a= 1+u and P=O. This approxi-
mation is again inferior, the interpretation being that the
dynamical influence of the split-off hole band is ignored.

1.4

1.2-

0.8-

BAND-STRUCTURE INFLUKNCK
ON THE QUANTUM-CONFINED STARK EFFECT

The quality of the approximate three-band solution
embodied in (15)—(17) is tested by computing the shift of
the lowest subband energy versus electric field for a quan-
tum well with infinitely high barriers. Exact numerical
results are found to be higher than the approximate
values found from (16), with the relative error ranging
from fractions of a percent to a few percent, depending
on the field strength and the size of the spin-orbit split-
ting. The good agreement between the exact and approx-
imate results justifies the analysis of the conduction-band
electron in the three-band model in terms of an effective
two-band interaction.

As a starting point, consider the universal curve in Fig.
1 corresponding to QE, =0.6 as the exact result for a
three-band model with 6~0. In the limit h~~, a
two-band system with QE, scaled by Q( —,

'
) is

obtained —that is, with QE, =0.4899—and this case
also may be computed exactly. The two curves that arise
from these limiting cases (see Fig. 3) bracket all of the re-
sults for intermediate values of the spin-orbit splitting.
The intermediate values shown (6=1 and 5) are chosen
for convenience and to approximately span the bracketed
range.

The exact eigenvalues are determined by a relaxation
algorithm, ' using the approximate wave functions as an
initial guess. The well width is divided into a mesh of

0.5 1.0

Electric field JE, F

1.5 2.0

FIG. 3. Comparison of exact (solid) and approximate (dotted)
computations of the subband energy shift vs field for several
values of the spin-orbit splitting. The conduction-band edge is
used for the expansion point in the approximate solution. The
exact results come from a relaxation algorithm solution of the
exact three-band effective Hamiltonian.

equal size steps, and the envelope function values are ob-
tained at the mesh points. The differential system (7} is
replaced by a finite-difFerence system. Note that complex
arithmetic is unnecessary if a relative phase of m /2 is fac-
tored out of one of the envelope functions. For each ei-
genvalue computation, three different sizes are tried (50,
100, and 200 steps). Extrapolation to the limit then gives
the final estimate of the eigenvalue. To make a consistent
comparison, the same relaxation code was used to corn-
pute the approximate eigenvalues by setting 6=0 and ad-
justing the parameters as specified in (16). Computations
using Weber function evaluations from a commercial li-
brary" yielded essentially identical values for the approx-
imate eigenvalues. For selected values of the field, a pre-
cise comparison of the exact and approximate results is

TABLE I. Comparison of exact and approximate eigenvalues for several values of the field and two values of the spin splitting. All
energies are normalized to half the band gap. E' '. approximate value using the midgap (E =0) for the expansion point [see Eq. (25)].
E'": approximate value using the conduction bnad edge (E =1) for the expansion point. E '": approximate value using E"' as the
expansion point (first iteration). Values in parentheses give the relative errors in percent.

0.2

0.5

1.0

2.0

E(0)

1.278 93
(—0.34)

1.273 15
( —0.35)

1.243 57
(—0.41)

1.14649
( —0.59)

0.833 947
(—1.3)

E(&)

1.283 23
( —0.0070)

1.277 55
(—0.0085)

1.248 47
(—0.016)

1.152 78
(—0.046)

0.843 161
(—0.24)

E[E(1)]

1.283 32
(0.000)
1.277 64

(—0.0013)
1.248 58

(—0.0068)
1.152 93

(—0.033)
0.842 759

(—0.29)

Eexact

1.283 32

1.277 66

1.248 67

1.153 31

0.845 216

E(0)

1.240 62
(—0.49)

1.23406
(—0.51)

1.200 71
(—0.63)

1.093 28
(—0.99)

0.757 426
(—2.5)

E(&)

1.246 60
(—0.013)

1.240 22
(—0.017)

1.207 79
( —0.041)

1 ~ 102 82
( —0.13)

0.771 811
(—0.62)

E[E(1)]

1.246 76
(0.000)
1.24041

(—0.0028)
1.208 05

(—0.020)
1.10309

(—0.10)
0.770281

( —0.82)

Eexact

1.246 76

1.240 44

1.208 29

1.104 21

0.776 639
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given in Table I. In most cases of interest, both the nor-
malized field strength and the normalized spin splitting
are around unity. In this range, the approximate solution
is quite good, giving accuracies of a percent or better.

FURTHER DISCUSSION

Expansion (9) need not be carried out at (E+Fz)=0,
but rather can be made around some point known to be
closer to the energies of interest. For example, in trans-
port problems, wave functions at a specified energy are
desired, and this energy could serve as the basis for
selecting an expansion point. In the computation just
presented of the quantum-confined Stark e8'ect, the ener-
gies of interest lie in the conduction band, so the
conduction-band edge makes a sensible expansion point.
In general, if one chooses (E+Fz)=ED as the expansion
point, then u is to be redefined as

1+

1+Eo+—', 6
(19)

and the parameters of (13) should be modified to

P=( —,'b ) 'u (I+Eo) (20)

with the others remaining as before. If the value
Eo =EG /2 corresponding to the conduction-band edge is
used to find the subband shifts, the results are substantial-
ly improved compared to using the midgap as the expan-
sion point (see Table I). In the graph of Fig. 3, the dotted
curves represent the results of this improved approxima-
tion and are barely distinguishable from the exact results
at the resolution of the plots.

It might be thought that an even closer approximation
could be obtained by iterating these results; that is, using
the approximate eigenvalue as the expansion point and

continuing until the result converges. This scheme was
tried and the results of the first iteration are included in

Table I as well (further iteration did not change the
values shown). For smaller values of field and spin split-
ting, the iteration indeed improves the approximation,
but once the eigenvalue falls below unity, the iteration
moves the result the wrong way. Therefore, it is suggest-
ed that the simpler approach of a fixed expansion point in
the energy region of interest gives a more practical solu-
tion. For the computations shown, the relative error nev-

er exceeds 1% under this approach, and this level of ac-
curacy is considered more than adequate. Note also that
when the conduction-band edge is used as the expansion
point, the approximate subband energy shifts downward
only, consistent with the correct behavior and with the
approximate computation using the midgap as the expan-
sion point.

Because the split-o8' band is treated nearly exactly, it
becomes reasonable to consider whether the remote-band
perturbations and, at the same level of correction, the
free-electron kinetic energy can be accounted for, even if
only approximately. For these purposes, the three-band
efFective Hamiltonian is augmented by diagonal terms of
the form a, k, where i =c, lh, or so for the conduction,
light-hole, and split-off-hole bands, respectively. These
terms in principle are energy dependent, as they involve
perturbation sums over remote bands. However, this en-

ergy dependence is safely neglected, on the grounds that
the terms are small to begin with and the variation with
energy is gradual. The values of the a, are therefore fixed

by requiring that the three-band dispersion relation pro-
duce the correct (experimental) efFective masses m; at the
band edges. Since the three-band dispersion relation in-
volves four parameters (the Kane matrix element as well
as the a, ), one further condition is required, and for this
one may use the sum rule o.,=a,h+n„. Then it may be
shown that

a)i, ——ais —,'EG/(Rv) = 1+b, /3
1+5/2

1 1—
2

1

3+6

—1m lh

m~ +m p, +mgo

a„=a„—,'Ea l(fiv) = 1+hy3
1+5/2

1 1

2 3++

—
1

mso

m, '+m&„'+m, , '

(21)

with a, analogously defined and necessarily equal to a&&+a„. For InAs and GaSb as examples, the dimensionless a pa-
rameters are, in absolute value, on the order of 0.01—0.05. The velocity parameter is now

v= —,'Ea —,'(m, +m,„+m,, )
1 +6/2
1+5/3

Proceeding as before, the Weber equation (12) is still approximately correct, provided the coefficient of the derivative
operator is modified to be

Rv 1+a, 1+u+(1+2u )Eo + —',
& (la+iu) + —,'a„(1 2u) (Eo——1) (23)
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In other words, to lowest order the remote-band effects
are included simply as an effective v', that is, as a
modification of the interband coupling.

As a test of this approximation, the problem treated
above of the quantum-well Stark shift is computed again
for the particular case of InAs, using the parameters
QE, =0.6, b, =0.37 eV, m, =m&h =0.023mo, and
m„=O. 14mo. The results are displayed in Table II. For
comparison, results for the same problem without consid-
ering the remote band perturbations are also shown. The
conduction-band edge is used for the expansion point in
the approximate solutions, and the relaxation code is
used to find the exact eigenvalues. For the exact relaxa-
tion computations, the appropriate boundary conditions
are that the conduction-band envelope and the deriva-
tives of the light-hole and split-off-hole envelopes all van-
ish at both endpoints. That this condition is the correct
one is checked by observing that as the field strength is
reduced, the exact eigenvalues approach the zero-field
value, which may be computed by iteration from the
dispersion relation (18), modified to include the remote-
band perturbation terms.

At zero field, inclusion of the remote-band perturba-
tions lowers the exact eigenvalue by 1.9%. Approxima-
tion (23) produces a value only slightly different
(+0.47%) from the exact result. At normalized field
strength of unity, the remote-band terms lower the exact
eigenvalue by 3.7%, but the approximation misses by—1.3%. In comparison, when the remote bands are re-
moved from the problem entirely, the error in the ap-
proximate solution is only —0.091 %. The difference is
ascribed to the neglect of terms proportional to the prod-
uct of the field and the first derivative of an envelope
function. As the field increases, these terms eventually
are comparable to the ones included in (23), which arise
from the product of the energy and a second derivative.
For weak or moderate fields, the approximation gives a
good account of the remote-band perturbations.

TABLE II. Comparison of exact and approximate eigenval-
ues for several values of the field, with and without considering
remote band perturbations. All energies are normalized to half
the band gap. E"': approximate value using the conduction
band edge (E = 1) for the expansion point. Values in
parentheses give the relative errors in percent.

0.2

0.5

1.0

2.0

a&h
= 0.050 65'

a„=+0.019 11
(1)E Eexact

1.243 791.249 58
(+0.47)

1.225 36 1.237 02
(—0.94)

1.190 18 1.202 63
(—1.0)

1.077 53 1.091 97
(—1.3)

0.727 658 0.746 686
(—2.5)

alh aso
(&)E Eexact

1.26709
(—0.011)

1.261 14 1.261 32
(—0.014)

1.230 74 1.231 13
(—0.031)

1.131 36 1.132 39
(—0.091)

0.812 930 0.816651
(—0.46)

1.267 23

CONCLUSION

Realistic calculations of quantum-well Stark shifts
have usually relied on numerical techniques. However,
as shown here, quite accurate analytical approximations
exist. The approximate solutions are physically motivat-
ed, deriving from the observation that the light particles
of the valence band to first order interact only with the
conduction band and not with each other. As a conse-
quence, the conduction electron essentially feels a sort of
composite or averaged valence-band state, which we have
captured analytically by means of an effective two-band
interaction and an effective band gap. For typical prob-
lems, the accuracy of this method is within a percent or
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