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Local-field study of the optical second-harmonic generation in a symmetric quantum-well structure
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A nonlocal analysis of the infrared second-harmonic generation associated with intersubband transi-

tions in a symmetric semiconductor quantum-well structure is presented. Taking as a starting point a
fundamental self-consistent integral equation for the local field, the p-polarized first-harmonic field inside

the quantum well is studied. By using the infinite-barrier wave functions and taking into account only

the two lowest subbands, analytical expressions are obtained for the local field. The result of the local-

field calculation at the first-harmonic frequency, in turn, is used to calculate the p-polarized second-

harmonic local field. The conversion efficiency of the second-harmonic generation from the quantum

well is thus determined. Numerical calculations of the frequency and angular spectra of the second-

harmonic intensities are presented for a symmetric GaAs/Al Gal „Asquantum well. The numerical

results show that strong second-harmonic generation occurs in the vicinity of the resonance frequencies

for both the first- and second-harmonic local field inside the quantum well. The inhuence of the dynamic

local-field interaction of the electrons on the optical second-harmonic generation is investigated. It is

demonstrated that the dynamic screening can lead to a notable upward shift of the locations of the reso-

nant peaks in the frequency spectra of the second-harmonic conversion coefficient.

I. INTRODUCTION

Recently there has been an increasing interest in both
the linear' and nonlinear ' optical properties of
semiconductor quantum-well (QW} structures. This is
mainly because of their possible application in areas such
as long-wavelength infrared detection, integrated optics,
and optical communications. One of the nonlinear opti-
cal phenomena, optical second-harmonic generation
(SHG) in asymmetric QW structures, has been extensive-

ly investigated both theoretically ' '" and experimental-
ly. ' ' In the previous theoretical treatment the
frequency-dependent second-harmonic (SH) susceptibili-
ties of built-in asymmetric QW structures, such as graded
band-gap QW's, asymmetric coupled QW's, and sym-
metric QW's with an applied'electric field, 7 were calculat-
ed on the basis of the electric-dipole interaction Hamil-
tonian (local approximation). Large second-order non-
linearities associated with the intersubband transitions in
the QW were predicted, and it was found that these de-

pend essentially on the geometry of the well. The
inhuence of the applied electric field on the SH suscepti-
bility of the QW was also studied. It was predicted that
the second-order nonlinear effects can be enhanced
significantly by applying an electric field across a syrn-
metric QW structure. Experimentally, extremely large
second-order nonlinear susceptibilities were observed in
asymmetric GaAs/Al„Gai „Asquantum wells in the in-
frared region near 10.6 pm. ' In the same frequency
range, saturation of the SHG in GaAs/Al„Ga& „As
asymmetric QW's has been also reported by the authors
of Ref. 9. In a recent paper by Lue, Lo, and Tzeng' the
optical SHG from unbiased single Al„Ga, „AsQW's
with symmetric structures was measured at 1.06 pm. It
was found that the contribution of SH waves from the
electron gas and dipole sheet in the near-infrared region

is negligibly small in comparison to the second-order
nonlinear effects of the bulk GaAs. '

It is well known that the second-order nonlinear effects
are absent in the electric dipole approximation in materi-
als exhibiting inversion symmetry. For a symmetric QW
structure, due to the definite parity of the wave functions
of the bound states, the nonlinear polarizability for SHG
also vanishes in the local limit. Thus, in order to ana-
lyze the optical SHG from QW's with symmetric struc-
tures, one has to make use of a nonlocal approach. In the
present paper we present a theoretical study of the opti-
cal SHG in a single symmetric QW based on a micro-
scopic local-field calculation. The basic framework of
our theory is the newly established electromagnetic
scattering-theory formalism for mesoscopic media which
incorporates both the electronic and electromagnetic
nonlocalities in a systematic way (for a review of this for-
malism the reader is referred to Ref. 13}. Recently, this
formalism also has been used to study the linear optical
diamagnetic' ' and paramagnetic' responses, the
photon-drag effect, ' and the optical SHG (Ref. 19) of
metallic quantum wells.

Our paper is organized as follows. In Sec. II, we

present a nonlocal treatment of the optical SHG in a sin-

gle symmetric GaAs/Al Ga, As QW. From the basic
integral equation, the local field inside the QW at the fun-
damental frequency is derived. By using infinite-barrier
wave functions, and by taking into account in the
analysis only the two lowest levels within the conduction
band, analytical expressions are obtained for the local
field in the case where this is p polarized. The results for
the local field at the first-harmonic (FH) frequency are
used to calculate the local field inside the QW at the SH
frequency. The conversion efficiency of the SHG from
the QW in turn is obtained. In Sec. III, we present de-
tailed numerical calculations of the conversion efficien
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of the SHG for different parameters such as the funda-
mental frequency, the angle of incidence, and the
impurity-doping concentration. The numerical calcula-
tions demonstrate that there exist two pronounced reso-
nance peaks in the frequency spectra of the SH conver-
sion coefficient. These originate from the local-field reso-
nances at the FH and SH frequencies. Finally, by vary-
ing the donor concentration of the QW system, the effects
of the dynamic screening of the electrons on the reso-
nance frequency of the SH reflection spectrum are inves-
tigated.

II. THEORETICAL TREATMENT

A. Local field at the fundamental frequency

Let us consider the situation where a monochromatic
plane wave is incident on a symmetric quantum-well
structure consisting of a GaAs layer embedded in an
Al„Ga, „Asmatrix, and let us assume that the QW sys-
tem exhibits infinitesimal translational invariance parallel
to the plane of the GaAs/Al„Ga, ,As boundaries. In a
Cartesian xyz-coordinate system, the surfaces of the
GaAs slab are placed parallel to the xy plane, and the
boundaries of the slab are located at z =0 and z =d, as il-
lustrated in Fig. 1(a).

Due to the assumed translational invariance of our sys-
tem parallel to the well (xy plane) all vector and tensor-
field components (F) appearing in the analysis have the
generic form

F(r, t }=F(z)e

(a)

iqII+e
Bz

lqII+eg
Bz

where U and e, are the unit tensor and the unit vector in
the z direction, respectively, e (co} is the relative dielec-
tric constant of the assumed isotropic and local back-
ground medium without the contribution of the conduc-
tion electrons in the QW, and c is the speed of light in
vacuum. The tensor P(z,z'} appearing on the right-hand
side of Eq. (2) is the appropriate linear nonlocal conduc-
tivity response function of the quantum well. By intro-
ducing a tensorial Green's function via

2'"' G' '(z, z')=U5(z' —z), (4)

where 5 is the Dirac 5 function, we find that the local
electric field E'"'(z) has to be determined from the fol-
lowing self-consistent inhomogeneous integral equation'

E' '(z) =ED(z) —ipoco

X f f G"(z,z') o'(z', z") E'"'(z")dz"dz' .
Qw

where co and qII=(qII, O, O) denote the angular frequency
and the wave-vector projection along the quantum well of
the incident electromagnetic wave. Space points are
denoted by r and t is the time. Thus, within the frame-
work of the parametric approximation, the z-dependent
local electric field E'"'(z) at the fundamental frequency
(co) satisfies the following wave equation:

7'"' E' '(z)= i—poto f o (z,z').E' '(z')dz' . (2)
QW

The tensorial operator X'"' entering Eq. (2} is given on
dyadic form by

a'X'"'=U e (co) —
q +

2 II g2

= z

The incident field (pump field} appearing in the equation
above, and satisfying the homogeneous part of Eq. (2), is
given by

AlGaAs GaAs AlGoAs

Al GaAs GaAs AlGoAs

CB

(b)

Eo(z) =Eoe

where
' 2

e (co) —q
II

1/2

is the wave-vector projection perpendicular to the sur-
face. The dyadic Green's function defined in Eq. (4) is
given by the following well-known expression:

VB iq~ Iz —z'I

G"(z,z')= e

2lgy
[e e +B(z—z')e,.e,

FIG. 1. (a) The Cartesian xyz coordinate used in describing
the Al„Ga, „As/GaAs/A1„Ga

& „Asquantum-well structure
having a GaAs slab thickness of d. (b) Schematic illustration of
a quantum well with two bound states (energies e& and e2 )
within the conduction band (CB). The Fermi energy (e+) of the
system and the valence band (VB) are also indicated.

+8(z' —z )e„e„]
2

+ [e (co) ]
' — e,e,5(z' —z ),

where e =(0, 1,0), e;=(ciao)(q~, 0, —q[~)l+e, and
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e„=(c/co)(—qj, O, —
q)) )/"(/e are the relevant unit vec-

tors and 8 is the Heaviside unit step function.
In the present work we restrict ourselves to a study of

the nonlinear optical processes associated with the inter-
subband transitions in the quantum well. In order to
focus our attention on the conceptual physical aspects we
incorporate in the analysis only the two lowest bound
states within the conduction band. Of these one is locat-
ed above and the other below the Fermi level [see Fig.
1(b)]. Thus, within the framework of the random-phase
approximation and in the long-wavelength (q)~~0) and
low-temperature (T~O) limits, the nonlocal linear con-
ductivity tensor P(z, z') takes a diagonalized form, and
the diagonal elements are given by '

o„„(z,z') =ory (z,z' )

ie (e2 el )(eF e))2

2
f(z)P(z'),

2rR rz) [R(co+i /r)] —(e2 —e, )

with

2/2 2

n =1,22' (14)

where d denotes the width of the quantum well.
Due to the fact that the z and z' dependence of the

linear nonlocal conductivity tensor takes a separable
form, it is realized that exact solutions for the local elec-
tric field E(")(z) can be obtained. ' In the following we
limit ourselves to the case where the fundamental field is

p polarized, i.e., E' '=(E„'"',O, E,' '). We do so because
the local-field effects to be studied are by far most
significant for p-polarized incident fields, these being ac-
companied by appreciable charge oscillations across the
well. By inserting into Eq. (5) the explicit expressions for
the conductivity tensor given in Eqs. (9) and (10), one ob-
tains the following results for the FH local field inside the
QW (0 &z & d ):

(9)

ie (e2 el )(eF el )o„(z,z') = C)(z)4(z'),
2nm'co [R(co+i/r)] (e2 e—))

E,' '(z) =E()„(z)+F„,(z)N„+F„(z)N,,
E,' '(z) =ED, (z)+F„(z)N„+F„(z)N,,

where

(15)

(16)

with

(10)

iI}(u)= %,(u)%2(u), u =z,z'

d% (u) d%, (u)
4(u) =1I(,(u) —%2(u), u =z,z' . (12)

dQ dQ

(13)

In the above equations %„(z)(n =1,2) denotes the (real)
wave functions of the two energy eigenstates, e„(n= 1,2)
are the corresponding eigenenergies, e+ is the Fermi ener-

gy of the system, ~ is the relaxation time of the electrons
associated with the intersubband transition between state
e, and state e2, and finally e and m * are the charge and
effective mass of the electrons, respectively. To keep the
calculation of the local field inside the quantum well at an
analytical level, we shall make use of infinite-barrier wave
functions and eigenenergies, viz. ,

'
1 /2

2 . n&z0' (z)= — sin
d

n =1,2

with

F„„(z)=a' ' f G(„)(z,z')P(z')dz',

F„,(z) =b' ' f G„',"'(z,z')4(z')dz',

F,„(z)=a' f G,'„'(z,z')(I)(z')dz',

F (z)=b' ' G'"'(z, z')4(z')dz',
QW

(17)

(18)

(19)

(20)

and

( )
tuoe' (e2 —e])(eF—e) )'

a' '=
[R(co+i /r) ] —(e2 e) )2

(21)

tuoe (e2 e( )(eF e) )$(~)—
2vrm * [R(co+i /r)]2 (e2 e) )2— — (22)

By inserting into Eqs. (17)—(20) the explicit expression for
the Green's function in Eq. (8), one obtains, after some
tedious calculations,

F „(z)=
9~ —(q) 1 )

3mz
2 cosa~)gqd

2c co

2 cos

m. —(q)d)
1 1 iqI(d —z) iq~z

(e '
9m —(q) d ) vr (q) d )— (&3)

3&b( )e2q
F

2l E' dCO

37TZ
2 cos 2 cos

9m —(q~d ) ~ (q) d)—1

9~ (q1d)—1 iq&(d —z) iq&z

vr (q) d)— (24)

3~z
3 sin

1TZ
sin

F, (z)=
a'"'c'qllqld 2

2
—

2 2
+

2e a1 iq) d 9~ —(q(d ) w —(q) d )

1

9m. —(q, d)' vr' —(q, d )'
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~b(-)&2
F (z) = „sin

Ed6)
7rz

3 sin

3~z ~z
sin 3 sin

3~ b'"'c q 2q~d
II

'

iesqidcoz 3&~ 9n (q—id ) m (q—id )

1

9m —(qid )

1 iqz(d —z) iq&z

.
( q—id)

(26)

To obtain the final expressions for the local field inside the QW one has to calculate the two so-far undetermined con-
stants

and

z" E„'"'z" z"
Qw

(27)

N, =f 4(z"}E(")(z")dz".
QW

(28)

By multiplying both sides of Eqs. (15) and (16) by P(z) and 4(z), respectively, and integrating the two resulting equa-
tions over z across the QW, one obtains, after a tedious but straightforward calculation

S (1—a'"')+S a'"'
N„=E " 22 z 12

(1—a '"' )(1—a '"
) —a '"'a "'

+ —E x 21 z 11S a'"'+S (1—a'"')
c

(1 a(al) )(1 a(aJ) } a(cu)a(cu)

where

(29)

(30)

a' 'c'q,'d
a( '=—

26 N

'2
1 + +2iqid(1+e ' }

1 lqj d 1 1

9n (qid ) —n (qid ) — 9n. (qid ) n— (qid ). — (31}

b(~) 377 b ~g q
+ (~) — + (~) II" a(~) 2ie~dco'

1 1

9m 2 —(qid )2 m
—(qid )

+ 2iqid (1+e '
)

9m
2 —(q) 1 ) m. —(qid )

,

2

(32)

e d3co2 iesqid2co2 3&~ 9vr2 (qid )z —n2 (qid ) — 9m. —
(qid ) ~ (qid )—

(33}

S„=iqidcos8(1+e '
)

Jqgd 1 1

9m —(q) d ) n (qid)—
r

3~' iq&d 1 1S,= — sin8(1+e '
)

d 9m. —(qid) n (qid)—

(34)

(35)

Eo and 8 being the amplitude of the incident field and the
angle of incidence, respectively. From Eqs. (29}and (30),
one notes that the local field inside the QW is proportion-
al to the amplitude of the incident field, as it must be. In
addition, Eqs. (29) and (30) show that the local field inside
the QW is resonantly enhanced when the common
denominator of N and N, approaches zero.

B. Local field at the second-harmonic frequency

(36)

The wave equation describing the local electric field
E' '(z) at the SH frequency (0) is

'.E' '(z) = i poQJ (z)—
ipoQ f —o(z,z') E' '(z')dz',

Qw
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~[@) .
where the dyadic operator X' ' is obtained by replacing
co and q(( in Eq. (3) with 0=2co and Q((=2q((, respectively.
The forced nonlinear current density J is related to the
FH local electric field by the following constitutive equa-
tion:

J (z) = f f X(z,z', z"):E'"'(z")E'"'(z')dz"«',
Qw

(37)

where X is the second-harmonic nonlocal conductivity
response function of the quantum well. Since in this
work we are mainly interested in the p-polarized SH
wave, in writing Eq. (37) we have neglected the contribu-
tion to the second-harmonic current density from the
bulk nonlinear susceptibility. This is justified because the
III-V compound semiconductor has only a nonzero local
second-harmonic susceptibility y', 4', and a p-polarized in-

cident light thus generates only a s-polarized SH wave. '

Within the same approximations as those adopted to ob-
tain the linear conductivity tensor given by Eqs. (9) and
(10), the nonvanishing elements of the nonlocal nonlinear
conductivity tensor are given by

X,„,(z,z', z" )=X,(z,z', z")

(eF —e, )(co+i /r)

2~m *co' [fi(co+i /r)] —(e~ —e()'

X ()(t(z)5(z' —z )@(z"),
(z,z', z")=X,~~(z, z', z")

(38)

(eF e,—)(2co+i /r)

4~im "co [fi(2co+i /r)] (e2 —e()—

X 4(z)(}It(z')5(z"—z'),

X„,(z,z', z")=X„,(z,z', z")+X„,(z,z', z") .

(39)

(40)

By inserting Eqs. (38)—(40) into Eq. (37), one immediately
finds

ie N, (eF e()(co+i/r)J (z) =
2 2 P(z}E,' '(z)

2am 'co [A(co+i /r ) ]
—(e2 e) )

(41)

and

(eF e, )(2co—+i /r)
JNL(z)= f P(z')[[E„' '(z')] +[E'"'(z')] ]dz'

4mim 'co [A(2co+i /r)] —(ep e2 } Qw

ie N, (eF e, )(co+i—/r)
2mm 'co [A(co+i /r) ] (e2 e,—)— (42)

By use of the electromagnetic scattering-theory formal-

ism it readily follows, cf. the treatment of the local-field
problem at the fundamental frequency in the preceding
subsection, that the local field inside the QW at the SH
frequency is governed by

E'"'(z}=Es(z)
—ipoQ G' ' zz' o z'z" E' ' z"

Qw

X dz "dz',

and

S.'a,", '+S,'(1 —a(,n)
)

(1 a(n) )(1 a(n) ) a(n)a(n)
11 22 12 21

(46)

In the equations above a', ", ', a', z', az", ', and azz' can be
obtained simply by doubling co and q(( in Eqs. (31)—(33).
S' and S,' are related to the background field via

S„'=f y(z)E „(z)dz (47)
QW

where

Ee(z)= ipoQ f— G' '(z, z') J L(z')dz'

(43) and

(44)

S,'= f 4(z)E„(z)dz .
Qw

(48)

S'(1—azz
' )+S,'a )2'

(1—a' ')(1—a' ') —a'"'a' (45)

is the so-called background field, originating in the driven
part of the nonlinear current density of the QW, and G'
is the Green s function describing the propagation prop-
erties of the electromagnetic field at the SH frequency.

By taking advantage of the fact that the FH and SH lo-
cal fields inside the QW satisfy the same type of integral
equation [see Eqs. (5) and (43)], it is realized that the SH
local field readily can be obtained by replacing co and

q~~

in Eq. (7}and Eqs. (23)—(26) with 0 and Q(( and by substi-
tuting N„and N, in Eqs. (15) and (16) with the following
two new numbers:

C. Second-harmonic field outside the quantum well

E' '(z)= 1 0 E' '(0)et t g
(49)

where

Once the local field inside the QW has been obtained,
one can easily obtain the field distribution outside the
QW. In the following we shall calculate the SH field gen-
erated in the half space z &0. To this end we recall Eq.
(43). By inserting the Green's function into Eqs. (43) and
(44), and by letting the observation point z be located out-
side the QW in the half space z (0, one finds that the SH
field takes the following form:
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'2 1/2 is the z component of the wave vector of the propagating
SH wave outside the QW. The x component of the am-

plitude of the SH field is given by

E' '(0) = — e '
[Q~J„"(z')+QJ, "(z')]dz'+1 ig, z N„, N„, , c (1+e )

26 Bg q~ II 2E.Bg2d

91r —( Q1d ) n' Qj—d
(51)

where ep is the vacuum permittivity.
The intensity of the optical SH wave is calculated by

the time-averaged Poynting vector S' '=Re[E' '(r)
XH' '(r)']/2, using the relation H' '(r)=(1/ip&Q)VX
E'"'(r). With the help of Eq. (49), one finds that the SH
intensity I' ' is given by

I'"'= 'e c[e —(Q)]' 'IE"'(0)I'

eo[e (Q)]' Q IE„"'(0) I',
2 Q2

(52)

so that the conversion efficiency (the SH energy reflection
coefficient) of the optical second-harmonic generation can
be written as

2 Q [e'(Q)]'" IE."'(o)I'
71= [I'"']2 e c cQ e (~)

(53)

III. NUMERICAL CALCULATIONS AND DISCUSSION

In this section we present various numerical calcula-
tions of the conversion efficiency of the optical second-
harmonic generation from a single symmetric
GaAs/Al„Ga1 „Asquantum well. The parameters used
in the calculation for this structure are d =100 A,
m*=0.0665m„m, being the mass of the free elec-
trons. The dielectric constant of the background medium
is taken to be

where D denotes the total thickness of the doped layers.
Note that in obtaining Eq. (55), we have assumed that
only the lowest level e& is occupied. In the calculations
we have taken D = 100 A.

In Fig. 2 is shown the SH energy reflection coefficient g
as a function of the normalized fundamental frequency,
co/coz, , for three different angles of incidence, i.e., 8=20',
40', and 60'. The characteristic frequency co2& is related
to the energy separation between the two subbands by
co2, =(e2 —e, )/1ri=2. 58X10' s '. A donor concentra-
tion of ND =2.0X10' cm was used. It appears from
Fig. 2 that the SH energy reflection spectrum exhibits
two pronounced resonance peaks in the frequency range
of 0.4N2 ] 1.4&02

&
~ One is located somewhat above the

characteristic frequency co2, . The other lies a little above
the half of the frequency co2&. The two resonance peaks
stem from the local-field resonances inside the QW. The
one having the highest frequency originates in the FH
local-field resonance, and the other one is due to the SH
local-field resonance. Note that the FH local-field reso-
nance does not appear at the exact frequency of co2&,

whereas it occurs at a frequency somewhat higher than
co2, . This is because of the dynamic local-field interaction
of the electrons in the QW. ' ' ' An exhaustive and
heuristic discussion of the general role of local-field
effects in mesoscopic systems, as well as a detailed

1p -15

2 2
CO COLp

e (co)=e„
N COyp

(54)
1p -17

with e„=11.1, A'coLp =36.7 meV, and ANyp =33.6
meV. For simplicity, we have neglected the small col-
lision frequency of the optical phonons in Eq. (54). For
the relaxation time of the electrons associated with the
intersubband transition between the two lowest bound
states, we have chosen A/~= 5.0 meV. The Fermi energy
of the QW system is determined as is usually done' from
the charge neutrality condition. Assuming that, by use of
the modulation doping technique, the barrier layers of
the QW structure are uniformly Si doped with a doping
concentration of ND, and that the donors in the QW are
fully ionized, we find that the Fermi energy is determined
by

1P -"

10
O

1p -20

10

1P 0.4
1

0.6 1.2

7rR2
eF —e)+ NDD,m* (55)

FIG. 2. The SH energy reflection coefticient, g, as a function
of the normalized fundamental frequency, co/co&„ for three an-
gles of incidence, viz. , 60' (1), 40 (2), and 20 (3).
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analysis of the inherent physics, is given in Ref. 13. In
the present context the origin of the local field resonances
can be explained in simple terms as follows. %written
in vectorial form Eqs. (15) and (16) become
E'"'=Eo '+F-N, where F is a two times two matrix
(with elements F„„,F„„F,and F„)and N=(N„,N, ).
Subjected to the optical field the wave function (and
hence the current density) of the two-level quantum well
oscillates between the wave functions %„(n=1,2) of the
lower and upper eigenstates. The oscillations are driven
not only by the external field (Eo"'), but also by the field
(F.N) created by the current fiow accompanying the
change in the wave functions. In mesoscopic systems this
field (F N) can be

corn~arable
to the external field and is,

hence, not negligible. ' In dynamic local-field calcula-
tions the correction of the microscopic current density
flows stemming from the radiative reaction of the field
generated by these currents on the current themselves are
thus considered [cf. the radiative reaction of the field ac-
companying a moving electron (or an oscillating electric
dipole) on the motion of the particle]. A local-field reso-
nance is expected when the current flows are self-
sustaining. To obtain a self-sustaining flow, the local field
E' ' must be finite in the absence of the external field

Eo '. This requires that N approaches infinity, and hence
that the common denominator of Eqs. (29) and (30) is
essentially zero (not completely because irreversible
dampings hidden in w are present). Taking as a func-
tion of co, the local-field resonance will not be located at
cu2, in general (co2, enters the denominator of N but does
not give rise to a pronounced minimum in this denomina-
tor). The SH local-field resonance possesses the same
character as that of the FH local-field resonance. One
also notices from Fig. 2 that the SH energy reflection
spectrum does not exhibit any resonant behavior at the
two frequencies co=a&2& and —,'co2„although the second-
harmonic conductivity response function is resonantly
enhanced at these frequencies [see Eqs. (38) and (39)].
The lack of this kind of simple resonance is due to the
fact that the conversion efficiency of the SHG is mainly
determined by the local field inside the QW. By a com-
parison in Fig. 2 of the SH energy reflection spectra for
different angles of incidence, one sees that although the
resonant peak locations are almost independent of the an-
gle of incidence, the magnitude of the conversion
efficiency depends strongly on this angle. In addition, it
appears from Fig. 2 that there exists a notable minimum
in the SH energy reflection spectra for 0=20' and 40' and
that the minimum position is displaced when changing
the angle of incidence. This is so because for a given an-
gle of incidence, at a certain frequency this angle equals
the Brewster angle of the QW structure.

To investigate the influence of the dynamic interaction
of the electrons on the optical SHG in the QW structure,
we have calculated the SH energy reflection spectra for
different doping concentrations. In Fig. 3, we present the
conversion efficiency g as a function of the normalized
first-harmonic frequency, ~/~2„ for Gve different values
of the donor concentrations, namely, ND=0. 5X10',
1.0X10', 1.5X10', 2.0X10', and 2.5X10' cm . An
angle of incidence of 60 was taken in all cases. It ap-
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FIG. 3. The SH energy reflection coeScient g as a function
of the normalized fundamental frequency, ~/~», for five values

of donor concentrations (in 10" cm '), namely, 2.5 (1), 2.0 (2),
1.5 (3), 1.0 (4), and 0.5 (5).

1.5

1.P

E

I

C)

0 15 30 45 609 (des)
75 90

FIG. 4. The SH energy reflection coeScient g as a function
of the angle of incidence, 8, for the following three fundamental
frequencies: 0.55co» (1), 1.10'» (2), and 1.17'» (3).

pears from Fig. 3 that the resonance frequencies in the
SH energy reflection spectra decrease when the doping
concentration is decreased. This is to be expected since
the current density oscillation of the quantum we11 de-
creases in magnitude when less carriers are available to
contribute. For a smaller current flow the field stemming
from this current in turn becomes less and, hence, smaller
relative to the external Geld. Altogether, the local-field
effect decreases in importance when the doping is re-
duced and displacements of the peaks towards coz, and

co2i /2 emerge. The magnitude of the conversion
efficiency of the SHG also increases with increasing
donor density.

In passing, we should stress that the local-field reso-
nance frequency is strongly affected not only by the dy-
namic screening, but also by the electrostatic screening
effects of the electrons ' when the electron density in the
QW is sufficiently high. Hence, the direct Coulomb in-
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teraction and the exchange interaction of the electrons
modify the wave functions and the corresponding
eigenenergies of the electronic system in the absence of
the optical field. This modification leads to an additional
shift of the local-field resonance frequency. The electro-
static screening effects are neglected in the present work.
However, in order to make a quantitative comparison be-
tween theory and experiment, it is in general necessary to
take into account both electrostatic and dynamic screen-
ing effects in the QW system. We shall deal with this
problem in a forthcoming paper.

In Fig. 4 is shown the angular spectra of the SH energy
reflection coefficient for three different frequencies, i.e.,
ro/ro2, =0.55, 1.10, and 1.17. A donor concentration of
N&=2. 0X10' cm was used. One sees from Fig. 4
that the angular spectra of the SH energy reflection
coefficient show their usual behavior, i.e., the SH
reflection coefficient is very small at near-normal in-
cidence and at the large angles of incidence near 90'. In
between these limits an often pronounced maximum of
the SH energy reflection coefficient occurs. It also ap-
pears from Fig. 4 that a change of the fundamental fre-
quency results in a significant effect on the peak height
and some effect on the peak location. The maximum is
especially pronounced when the frequency of light lies in
the vicinity of the local-field resonance. Although the
frequency position of the local-field resonance in general

depends on the angle of incidence, this dependence usual-

ly is weak (cf. the results of Fig. 2, and the discussions in
Refs. 13, 18, and 19).

Before closing the present paper, we would like to
stress that the upward frequency shifts of the peak loca-
tions of the SH energy reflection spectra treated in this
work originate solely in the local field mechanism. It is
known, however, that, e.g., band-filling effects can
lead to blueshifts of resonance peaks. In the band-filling
mechanism absorption of light leads to a change in the
occupation probabilities of electrons and holes in the con-
duction and valence bands. This change blocks a number
of electronic transitions in the quantum well and thus
effectively gives rise to an increase in the position of the
electronic resonance. Band filling is known to play a role
for third-order nonlinearities (Kerr effect, etc.} near inter-
band transitions. In the present calculation the band-
filling effect was not incorporated, and to our knowledge
such an effect has never been taken into account in the
analysis of the optical second-harmonic generation asso-
ciated with intersubband transitions in quantum wells. It
is also known that local heating of a material by the laser
beam itself can cause a change in the refractive index,
and hence a shift in the position of the various resonance
lines. ' Although thermal-index changes might play a
role experimentally in some circumstances, these have
not been considered in this paper.
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