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Magnetoplasma excitations in quantum-well wires
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The spectrum of the collective excitations of a magnetoplasma, confined in a quasi-one-dimensional

quantum-well wire is analyzed. The dispersion relations of the intrasubband and intersubband magneto-

plasmons are calculated with excellent agreement to experimental results. The calculations are done in

the random-phase approximation with no further simplifying approximation. We find analytical results

for the dispersion relations of the intrasubband and intersubband magnetoplasmons.

The spectrum of the collective excitations of a quasi-
one-dimensional electron gas (Q1DEG) in the absence'
and in the presence of a quantizing magnetic field ' has
been explored theoretically' and experimentally. '

Some fundamental questions about the many-particle
behavior of the Q1DEG remain open up to now. One of
these is the question of whether the Q1DEG is better de-

scribed as a Fermi liquid, or if the model of a Tomonaga-
Luttinger liquid is more appropriate. In fact, the strictly
1D Fermi system is a singular, strongly correlated many-

body system where any interaction between the electrons
leads to essential singularities. But on the other hand, ex-

perimental results' ' and theoretical investigations'
show that the Q1DEG is quantitatively well described by
the random-phase approximation (RPA}, i.e., in the
lowest order of the Feynman-Dyson perturbation series
of a Q1D Fermi liquid. Also in the case where
exchange-correlation eS'ects, ignored in the RPA, become
important the Fermi-liquid model treated within the
time-dependent Hartree-Fock approximation is appropri-
ate to describe the resulting effects.

In this paper, we present a quantum theory of Q1D
magnetoplasmons in quantum-well wires (QWW) within
the RPA, without further approximations on the RPA.
Hence, our theory is valid for all wave vectors,
magnetic-field strengths, and electron densities as long as
the RPA is valid. We study the single QWW by a model
in which the electrons are confined in a zero-thickness

I

x-y plane along the z direction at z =0. In the y direction
the electron motion is quantum-confined by an efFective

potential, assumed to be parabolic: V,s(y)=mQ y /2.
Choosing the Landau gauge A=( —y8, 0,0) for the
vector potential of the external applied magnetic
field B=(O,O, B) and ignoring the Zeeman spin
splitting, the single-particle Hamiltonian is
exactly solvable with the single-particle wave func-

tion (x~N, k„)=%zk (x)=1/QL„e " 4N(y —Yk )y(z),

where 4N(y —
Yk } is the shifted harmonic-oscillator

x

wave function. The corresponding energy eigenvalues
are 8 (Nk„)=A' co(N+ —,')+R k„/2m; N=0, 1,2, . . . . In
these equations the center coordinate is Yk =@Peak„,

where T~=(fi/mco, )'~ is the typical width of the wave

function and y =to, /to, . Further, co, =(co2+0 )'~ is the
hybrid frequency, co, =e8/m is the cyclotron frequency,
and m =m(to, /0) is the renormalized magnetic-field-

dependent mass.
The single-particle Hamiltonian of the electrons of the

Q1DEG in the presence of an external perturbation is
written as H=HO+H& where Ho is the unperturbed
Hamiltonian and H& = V"(x,t) is the self-consistent po-
tential. This perturbation induces an electron number
density which is related to the self-consistent potential by
the irreducible polarization function P"'(q„;x~,xt~co) of
the Q1D magnetoplasma

P'"(q„;xj,x~~m)= g QP&z. (q„,k„~m)4N(y —Yk +e }4n'(y' —Yk +e )@N(y' —Yk }4&.(y —
Yk }5(z)5(z'),

N, N' k„

with x~=(O,y, z) and where Pzz. (q„,k, ~to) is the RPA
matrix polarization function at T=O K. In the presence
of a quantizing magnetic field, applied in z direction the
wave function describing the electron motion in y direc-
tion depends on k„. If we proceeded in the standard
manner of the linear-response theory to derive the disper-
sion relation of the Q1D magnetoplasmons we would
have to solve an infinite-dimensional secular equation ac-
cording to k„. Hence, to obtain the exact RPA disper-
sion relation in the subband space we use the following
representation of the shifted harmonic-oscillator wave
function: @~(y—Yk ) =QL", OCL~( Yk )@L,(y), where

I

I@N(y)I is a closure set of undisplaced wave functions.
Li and Das Sarma proposed a different perturbation ex-
pansion scheme, the a expansion. Differing with the rep-
resentation used here the a-expansion scheme is restrict-
ed to very small electron densities and weak or strong
magnetic fields. Unfortunately, this expansion is not val-
id in the range of the parameters, used in experi-
ments, 'o '3 e.g., it breaks down for a typical QWW with
AQ=2 meV and n&DEG=1X10 cm ' between B=0.3 T
and B=20 T.

In the RPA and neglecting retardation effects the in-

duced density is related to the induced potential by
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Poisson's equation. Assuming a constant background
dielectric constant E, in the region of the Q1DEG, the
dispersion relation of the collective excitations of the
Q1D magnetoplasma follows in the form

[fiLL fiL'L L L LL'(q. ~)]

where =L l. LL, (q„co)=AL L LL(q„,co) if L=L', and
1 2 1 2

L L LL' q ~) AL L LL'(q ~)+AL L, L'I. ('q

L AL '. In this equation we have defined

with

&r.",I.I. I.,(q ai) = X X I'x'x (q
NN' k

XCL ~(Yk +q )Ci'~(Yk +q )

x CL, ,~.( Yk )Cl* ~.( Yk )
x 4 X

(4)

AL L LL'(q. ~}= X VI. L L I(q». L LL'L
L)L4

and the matrix elements of the Coulomb interaction po-
tential read

2 +
VL L L L (q„)= ( —1) ' 'e'O'L, !L2!L3!L4!

2mcoc

L4

m =0m =Ov=0
2 4

a C„(2A,—I }!!K,(a)
m 2!m 4!(L2 m2—)!(L~—m& )!(Li L2+ m—

2 )!(L3 L4+ m—
4 )!(A,—v)!

with a =(l~q„/2), A, =m2+m&+(L i L2+L3—L4)/2, —
C, =

—,
' for v=0 and C„=1/[(A, + I ). . . (A, +v)] for

v@0, and K„(y) is a modified Bessel function.
For numerical work we have chosen a

GaAs —Gai „Al„As QWW (GaAs: e, = 12.87 and m
=0.06624mo) using a three-subband model, i.e., N, N'

=0, 1,2 from which the lowest is assumed to be occupied
in equilibrium.

In Fig. 1 the full RPA dispersion relations of the mag-
netoplasmons of the three-subband model are plotted for
a QWW using Eq. (2), in dependence of the wave vector
[Fig. 1(a}]and of the magnetic field [Fig. 1(b)]. The (0-0),
(1-0), and (2-0} magnetoplasmons are coupled excitations,
with one intrasubband branch co and two intersubband

I

branches, ~' and co „. The shaded areas are the corre-
sponding single-particle intrasubband and intersubband
continua in which the modes become Landau damped.
The frequency co of the intrasubband magnetoplasmon
increases with the increasing wave-vector component q
but decreases with the increasing magnetic field. Such a
behavior is known from the edge modes of a spatially
confined Q2DEG. Hence, the Q1D intrasubband magne-
toplasmon behaves like an edge mode. Further, it is seen
that the two intersubband branches are depolarization
shifted. The dispersion curves of the intersubband mag-
netoplasmons co approach, for large magnetic fields,
multiples of the cyclotron frequency. In the same limit
the single-particle intersubband continua degenerate to

nIL)EG = 1x10 em

hA = 2.5 meV

B=25T
~20

~~my
20

(a)

2
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0
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0
0

B (T)

FIG. 1. Dispersion relation of the mixed (0-0)—(1-0)—(2-0) magnetoplasmons calculated in RPA (solid lines) of a

GaAs —Ga, Al„As QWW for a three-subbaud model, where one subbaud is occupied as a result of dependence on the wave-vector

component q (a) and the magnetic field (b). The shaded areas correspond to the single-particle intrasubband and intersubband con-
tinua with the boundaries co, i= ~!+fikFt 'q /m+iriq„/(2m )+¹,~.
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nq~@G 2.4x10 cm
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FIG. 2. Dispersion relation of the intrasubband magneto-
plasmon branch ap ~ as a function of the magnetic field. The
calculated full RPA dispersion relation is given by the solid line.
The symbols indicate the experimentally observed FIR
transmission positions of Ref. 11. For the comparison of the
theoretical and experimental dispersion curves, we fit
co~ (8 =0) on the experimental value.

single lines at Nco, .Following, the Q1D magnetoplasma
behaves like a 2D magnetoplasma, where the (1-0) inter-
subband branch goes over to the principal mode and the
higher intersubband branches to Bernstein modes. For
very large magnetic fields all modes are free of Landau
damping because of the complete quantized situation. It
is important to note that there are additional modes in
the spectrum of the intersubband magnetoplasmons not
plotted in Fig. 1. These modes have smaller depolariza-
tion shifts than the plotted modes, i.e., are slightly above
the intersubband continua. Further, the additional inter-
subband magnetoplasmons depend on higher order on
the magnetic field: co „a:¹,+0(8 ).

In Fig. 2 the RPA dispersion curve of the intrasubband
magnetoplasmon co ~ is plotted versus magnetic field.
The edge mode behavior of this branch is evident. In ad-
dition to the calculated dispersion curve the experimental
results of Demel et al." are plotted. The quantitative
comparison of the theoretical results for the (0-0) in-
trasubband magnetoplasmon of a three-subband model
with experiments on samples where between one and six
subbands are occupied, depending on the magnetic field,
is possible because the dispersion relation of the (0-0) in-
trasubband magnetoplasmon only depends on the total
electron density. ' It is seen from Fig. 2 that the
developed model well describes the experimental results.

Figure 3 shows dependence of the RPA dispersion rela-
tion of the (1-0) intersubband magnetoplasmon co' on
the magnetic field. Further, in this figure the results of
inelastic light-scattering experiments on a QWW of GoIli
et al. ' are plotted. It is remarkable that for the used
sample the case of one occupied subband is realized for
magnetic fields larger than 1.5 T. If one compares the
theoretical RPA dispersion curve of the (1-0) intersub-
band magnetoplasmon with that obtained from resonant
light scattering it is obvious that the RPA well describes
the magnetic-field dependence of the measured curve. It
is seen that the theoretical curve fits the lower field exper-

24
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= 2.5me
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imental results nearly perfect, but the theoretical curve
does not approach the cyclotron frequency co„ i.e., the
2D limit, so abruptly as the experimental results do.
There are several reasons possible for this behavior in the
experiment. Our model is based on a single QWW with
an ideal parabolic potential of infinite height. In the ex-
periment a lateral multiwire structure is used with a
confining potential of finite height. Two additional
effects arise: (i) the Coulomb coupling between the
different wires and (ii) the finite width %of the confining
potential restricts the center coordinate to Yk ~ W/2.
These two effects could be reasonable for the deviation of
the theoretical curve from the experimental results at in-
termediate magnetic fields. The simple formula'
co' (q„=O)= I [co' (q„=O)] +co, j

'~2 used by GoIii er al.
for the magnetic-field dependence of the intersubband
magnetoplasmon branch is of pure empirical nature for
an effective ideal parabolic potential exact only for 8 =0
and 8 = ~. For a bare ideal parabolic potential this for-
mula is an exact result for dipole-allowed transitions in
far-infrared (FIR) transmission experiments but with
co' (q„=O) equal to the bare subband difference.

Yang and Aers used the time-dependent Hartree-Fock
approximation to calculate the magnetoroton minimum
which also was found in Ref. 13. It is found that the
dispersion curve of the (1-0) intersubband magneto-
plasmon is below the single-particle intersubband contin-
uum, in differing from the experimental observation and
our results. This could only be possible if the so-called
excitonic shift of vertex corrections is larger in magni-
tude than the depolarization shift. But this is not to be
expected for the density used.

Our theory is also in a good qualitative agreement with
the recent observations of Drexler et al. ' In this experi-
ment the intersubband resonances (q„=O) are detected
by FIR transmission spectroscopy. Because in the sam-
ple used between five and ten subbands, depending on the

B (T)
FIG. 3. Dispersion relation of the intersubband magneto-

plasmon branch co'
p as a function of the magnetic field at q„=0.

The calculated full RPA dispersion relation is given by the solid
line. The symbols represent the measured peak positions of res-
onant inelastic light-scattering spectra of Ref. 13. For the com-
parison of the theoretical and experimental dispersion curves we
fit co~ (8=2 T) on the experimental value.
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where the Fermi velocity is vF '=fikF '/m and

kF '= [2m(EF —Co)/fi ]' is the Fermi wave vector.
For vanishing magnetic field the expression (6) gives the
known results for the intrasubband plasmon
co~ =coo(B =0). The second dispersion relation is that of
the (1-0) intersubband magnetoplasmon

magnetic field, are occupied, the three-subband model
used here cannot be applied for a quantitative compar-
ison. In this experiment a splitting of the mode co' „ in
three modes above and below the frequency co=&2co, is
observed. In our opinion this behavior is caused by the
nonparabolicity of the confining potential at higher gate
bias.

In the long-wavelength limit it is possible to derive
analytical expressions of the dispersion relation. To do
this we use a two-subband model, i.e., N, N'=0, 1. If
gkF(

' « 1 (g= yTo/'(/2) it is possible to restrict the repre-
sentation of the displaced center wave functions on two
terms, L =0, 1 only. Using the long-wavelengths expres-
sions of the matrix polarization function derived in Ref.
15, valid for realistic electron densities and in a broad
range of the wave vector q„/2(kP' —mco/A'q„) «1, and
the long-wavelength expressions for the matrix elements
of the Coulomb potential ( q„~To &&1) in the dispersion
relation, Eq. (2), we obtain two explicit dispersion rela-
tions. One describes the (0-0) intrasubband magneto-
plas mon

10
( 1+ )1/2@
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2
1DEG

+10
27TE0E %co

(1Tn,DEoylo )
2
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4

(8)
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The extra term in Eq. (8) is due to the depolarization
effect. The depolarization shift increases with increasing
magnetic field if the frequency 0 of the confinement po-
tential is larger than the critical frequency

Q, =ir n&nEoi)i/(2m). But if Q&Q, is fulfilled, aioni,
has a minimum at co, =(Q,~ Q ~ —Q )'~ . For a GaAs
QWW with n, DEo=1.9X10 cm ' we have fiQ, =2
meV and, hence, from the resulting minimum it should
be possible to determine 0 experimentally.

In summary, using the RPA for a QID Fermi liquid
we have developed a perturbation scheme, free of any ad-
ditional small parameter. This theory is able to describe
well recent far-infrared transmission and inelastic light-
scattering experiments with a good quantitative agree-
ment. We have improved the theory of Li and Das Sar-
ma with which we are in qualitative agreement but our
theory is valid in the whole experimental range of the pa-
rameters. The fairly good agreement of the RPA results
with the experiment is evidence that the QIDEG in the
experimentally realized QWW's is adequately described
as a Fermi liquid. Because the RPA results obtained here
for the dispersion relations of the modes are always
slightly above the measured curves, exchange and corre-
lation could be responsible for this difference. In a forth-
coming paper, we will use the scheme developed here for
a theory of a collective excitation beyond the RPA to in-

clude exchange and correlation effects.
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