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Polarons in quasi-two-dimensional structures
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A theory of quasi-two-dimensional (2D) polarons in semiconductor quantum wells is presented. %e
have derived analytical expressions for the energy-gap shift and effective polaron mass in the small-well-

width limit. The analytical results agree exactly with those obtained for an ideal 2D system in the limit

of zero well width. For larger quantum-well widths, we have numerically evaluated the values for the

energy-gap shift and effective mass of a polaron.

I. INTRODUCI. ION

There is currently great interest in the study of
electron-phonon interaction in semiconductor quantum-
well structures. ' This is because of the efFect of lattice
vibrations on the physical properties of low-dimensional
systems which are known for industrial applications
in optoelectronic devices. The usual materials for fabri-
cating the semiconductor quantum-mell structures are
weakly ionic III-V compounds such as GaAs-
Al„Ga& „As in which the interaction of electrons with
optical phonons is an important mechanism that needs to
be studied in detail.

It is well established that when an electron becomes
surrounded by phonons due to the distortion of lattice in-
duced by the electric 6eld of the electron, a polaron is
formed. The subsequent behavior of the electron accom-
panied by phonons (polaron) is then modified depending
on its strength of interaction with the phonon cloud. It is
also well established that the energy of a polaron is
lower and its efFective mass heavier than those of a free
electron in bulk crystals. In a semiconductor quantum
well, the thickness of the well layer is comparable to the
de Broglie wavelength A, , confining polarons to a very
thin layer. Hence their transport essentially becomes two
dimensional with characteristics not exhibited in bulk
semiconductors. The study of the properties of a polaron
modified by its confinement in a quantum well and the re-
lation between polarons in two- and three-dimensional
systems have been investigated in the last few years. ' '"
Devreese' has reviewed the behavior of two-dimensional
as well as three-dimensional polarons. In this paper we
present the calculation of the efFective mass and energy of
polarons in a quantum well as functions of the quantum-
well width. Using a unitary transformation, first we diag-
onalize the Hamiltonian consisting of the electron, pho-
non, and electron-phonon interaction energy operators in
a quasi-two-dimensional (2D) system, and then we calcu-
late the energy of a polaron using variational methods.

A rigorous treatment of the electron-phonon interac-
tion involves an accurate determination of the various
phonon normal modes which exist within a quantum
well. As has been shown by several researchers, ' '
there is a variety of phonon modes arising from the an-

isotropy of quantum wells, e.g., bulklike phonon modes, '

slab modes, "and interface or surface modes' which ex-
ist in a GaAs-A1„Ga& „As system. It is important to
note that although various phonon modes have been used
to treat the problem of electron-phonon interaction in
quasi-two-dimensional systems, the results have not been
consistent with each other, ' especially for the well width
dependence of the electronic properties. In this paper we
have assumed that the coupling of confined electrons to
bulk phonons plays the dominant role, and that the bulk
phonons are unaffected by the one-dimensional potentials
of a quantum-well system. The contribution of the slab
phonon modes is assumed to be negligible. This is
justified because the interactions of electrons with bulk-
like phonons is the most important one as the lattice and
dielectric constants of GaAs and Al„Ga& „As are nearly
the same. It is further supported by Mori and Ando,
who have applied a sum rule which states that the sum of
interactions of an electron with the various phonon
modes is approximately the same as the interaction with
the bulk phonon modes. Thus it is expected that the sim-
ple bulk-phonon model should project the dependence of
polaron properties on the quantum-mell width quite accu-
rately. The energy of a polaron thus calculated here is
found to be lower than that of a free electron, and it de-
pends on the quantum-well width. The effective mass of
a polaron in a quantum well is found to increase in com-
parison with that of a free electron, and is also a function
of the quantum-well width.

H. ENERGY OF POLARON IN A QUANTUM WELL

The electron wave function in a quantum well differs
from that in the bulk because of the effects of the
confinement. The state vector of an electron interacting
with phonons in a quantum well can be expressed as
~K~~, m;n(q)) which describes an energy state m of an
electron with linear momentum AK~~ in the XY plane in-
teracting with optical phonons, ~n(q)) =~ ,ne, n.

e.
. ) is

the phonon state vector, and n is the occupation number
of phonons. Here we consider that the XY plane is the
plane of confinement, and all vectors in this plane are
denoted with a subscript ~~.

The energy of a quasi-2D polaron can be calculated by
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solving the following Schrodinger equation:

Kli'm 'n (q) ~ =E(Ki'm) IKi m in (q) ~,
where the Hamiltonian 8 is given by

8=8„+8,„+8, , (2)

8,&
is the energy operator of an electron confined within

a potential well and written in the first quantization as

(10c)

b, U=b, exp(cq~~ r~~),

U 'b U=b exp( —
iq~~ r~~

q

Using Eqs. (10a), (10b), and (10c), we obtain the
transformed Hamiltonian as

2 2
" + '. +V(),

27tl ~ 2' ~

(3)

O'=U NU,

and the potential V(z) is assumed to be well defined at
the geometrical interface.

P~h is the optical-phonon-energy operator given by

8 h =+Ra)bqtbq,
q

where Ace is the energy of an optical phonon, and for
simplfication the zero-point energy term is omitted in Eq.
(5}. A'I is the electron-phonon interaction energy opera-
tor in a quasi-2D system involving LO-phonon modes,
and it is given by

P =g(Vb 'll
II

' +V bf
q

where
' 1/2

4ircz(fico) i'
AL, (qi +q, } 2m,'co

(6)

and a and A are the electron-phonon-coupling constant
which depends on the material of the quantum well and
the surface area, respectively.

In an exact 2D case, q, =0, and
I Vq I is given by'

2 1/2

As the interaction operator 81 in Eq. (6) is not in a di-
agonal form, it is difficult to solve the Schrodinger Eq. (1)
exactly. First of all, we try to eliminate the dependence of
81 on the electronic coordinate ri by applying a unitary
transformation U, given by'

Ui =exp iXqll rllb b
q

Applying U„one obtains'

(9)

where
p~~

and p, are the momentum operators of the elec-
tron in the XF plane and in the z direction, respectively,
and m,* is the elective mass of the electron which is as-
sumed to be the same in the transverse direction (XY
plane) as well as the z direction. V(z) is the potential-
energy operator which confines the electron within the
quantum well in the z direction. From here on, we con-
sider the infinite well approximation' for a quantum well
of width L„where

0, Izl ~L,
V(z)= '

me q 2m

+gfuub tbqq+g(V bqeq' +Vqbqe *
) .

By expanding the first term in (11),8' becomes

2 $2 2

pg pll +y ~+ qll

27Pl q 2'
2

+ +V(z)+g(V e b +Vqe bqt)
2@ie q+, gR q) q((bqbqb b ~ .. ~ t t
2me q q'

(12)

The last two terms in Eq. (12}are not in diagonal forms,
but these can be partially diagonalized by applying a
second unitary transformation given by'

Uz=exp gf(q)bq —f'(q)bq (13)
q

where f (q} is a variational parameter to be determined
below. Using Eq. (13), we obtain' '

U2 'p~~U2 =p~~, (14a)

Ui 'bqUi=b +f(q),
Uz 'bqUz=bt+f'(q) . (14c)

and then the transformed Hamiltonian U& 'O'Uz can be
obtained easily. The energy eigenvalue of the ground
state E „(0) [with zero-phonon population, i.e., n (q) =0]
can be evaluated using the transformed Hamiltonian thus
obtained as

(14b)

fiK Aq fiK q+g %co+ — f(q)f"(q)
2%i q 2EPI

+&Vqf *(q)& I le
' *

I
m &+E,

f2+ g q~~. q~~f(q)f(q')f *(q)f*(q' }2' q q

where E, is the energy of discrete electronic states due
to electron motion in the z direction. Using Eq. (4), the
energy E, is obtained as'

m fiHEz~= 2, m=123
2m, L,
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Minimizing E~&(0) with respect to f (q}, we can deter-

mine the parameter f(q} as

Substituting f(q) given in Eq. (16) into Eq. (15), E &(0)

is obtained as

f (q)=— V;(&le "*'Im&

2m m,

(16)
AK

Ep,i(0) = (1 vP—)+E, I,—
me

where

where g is expected to be a fraction defined by

gK =&if(q)l'q . (17)

I ~ql

2me me

By converting the summation into an integration, I can be rewritten as

I&, l'I&~le "'Im &I'

z

2m me

m =1,2, 3. . .

Using the infinite well approximation as given in Eq. (4), the electron wave function can be expressed' as

K -r '1/2
e II II 2 mmz

(z) = sin
A Lz z

(19)

(20)

«r 0~z ~L, . Using Eq. (20), one can define Im &
= I1(~(z) &, and then I(l le

'
lm & I' in Eq. (19) can be evaluated for

the case of l =m =1 as

G(q, L, )=I(lie '
lm &I'= exp

(q,L,)—
—iq, L,

q,L,
sin

q,L,
2

(21)

Using Eq. (21) in Eq. (19) we obtain

I=—(%co)
a 2 fi

7r 2me Q7

' 1/2

Aq
Ra)+ II

2m q, ~(l
—g)

me

2 '1/2 (22)

where F(q~~, L, ) is given by

F(q,~, L, )=f"dq, I
G (q,L, }I'

(23)
(q~~+q, )

Assuming [~+(&'q~~ ~2m,')]»«'~m;)&~~q~~(1 —n»
the denominator of the integrand in Eq. (22) can be ex-

panded, and then the integral I can be split into two
terms as

I =—(A'a)}2
2me N

z
3

~~

0 ~+
2me

m e

(26)

I=I,+I2,

I, =—(fm)
a

and

where I, and I2 are given by

- dq[[q[[ (qg

2m co 0 A'2q 2

m+
2me

(24)

(25)

The integrals in Eqs. (25} and (26) can be evaluated nu-
merically for any general L„but one can evaluate these

analytically only for very small L„approximating
F(qI,L, ) as

F(q(~(, Lz ) = (27)
qII & qll

which is known to be a good approximation' having an
error of about 5% for values of

q~~ up to
q~~

=4/Lo where
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Lo='it/A/2m, 'co .Then, using Eq. (27) in Eqs. (25) and
(26), I, and I2 can be evaluated analytically to give

3D
P

m*
e

(1—
n3D }——(1—n3D)'

(35)

and

uhco —+L * lnL *
2

(1+L* )

2 2
A E))

I2 = a(1 —g)
2me 8 2

(28)

(29)

where L ' =L, /4Lo.
Using Eqs. (24), (28), and (29} in Eq. (18), the ground-

state energy of a quasi-2D polaron at small well widths is
thus obtained as

Ep,t(0) =Ep, ( +E,~ AE, —

where

(30)

E t
= (1—ri ) —a(1 —r))

and

—+L* lnL*
2

hE =akim (1+L' )
(32)

m*=
P

m e

(1—g )
—a(1 —g)

8 2

(33)

It is obvious from Eqs. (32} and (33}that both AE and
m' depend explicitly on the quantum-we11 width. The
kinetic energy E,&

of the polaron is less than that of a
free electron, and the total polaron energy is lowered by
an amount AE. The decrease in the kinetic energy is ac-
counted for by the increase in its effective mass as given
in Eq. (33).

III. RESULTS AND DISCUSSION

where E
&

and hE represent the kinetic energy and
energy-gap shift for a polaron, respectively. Writing
E „=PiEl /2m', we obtain the effective mass of the
quasi-2D polaron from Eq. (31) as

where g3D is defined for bulk material in the same way as

g in Eq. (17). The essential difference between E,t in Eq.
(34) and E~«(0) in Eq. (18) is that the latter depends not
only on a and g, but also on the quantum-well width.
The expression for g in Eq. (17} cannot be evaluated
analytically for general quantum-well widths. However,
for an ideal 2D system with a zero quantum-well width,
Eq. (17) can be evaluated analytically to give g2D=ma/8.
On the other hand, for bulk crystals, g3D is obtained ap-
proximately as' r)3D=(a/6)/(I+a/6). It is interesting
to note that although g3D is never greater than unity, g2D
may become larger than one for a ~ 2.5. This means that
g2D=tra/8 is valid only for very weak coupling with
a &2.5. This agrees very well with the values of a &&0.5,
known for semiconductor materials.

For any general quantum-well width, the energy-gap
shift AE and increase in polar onic mass given by
b,m~'/m, ' = [(mz'/m, ') —1]X 100% can only be calculat-
ed numerically using Eqs. (25) and (26). For numerical
evaluation, we consider the case of electrons in a GaAs-
Al, As system, and the values of the physical parame-
ters are taken as' m,*=LQ67m„a =0.068, and
%co=36.8 meV. The energy-gap shift b,E is plotted as a
function of the quantum-well width in Fig. 1. It can be
seen that AE decreases monotonically with increasing
well width. For example, b,E decreases by 23% at a well
width of 30 A, by 33% at a well width of about 90 A, and

by approximately 35% at well widths +200 A. From
Fig. 1, it is also obvious that in the two limiting situations
of L, ~O and ao, AE approaches the well known values
for ideal 2D and 3D (bulk) systems, respectively.

In Fig. 2, the increase in polaron mass b,m'/rn, ' is

plotted as a function of the quantum-well width. Like
b,E in Fig. 1, b, m '/m, " decrease monotonically with in-

creasing well width. Here we find that the decrease in
polaron mass is by 50% at a well width of 30 A, and by
approximately 44% for well widths ~ 180 A. The pola-
ron mass also approaches its values for ideal 2D and 3D
systems for L, ~O and Dc, respectively. The approxima-

4 00 t I I I I i

3.84

Here we have calculated the energy and effective mass
of a polaron in 2D quantum wells. As in the case of bulk
crystals, the energy of a polaron as obtained in E „(0)
[Eq. (30}]is less and the effective mass heavier than those
of a free electron. However, there are some notable
differences obtained in the properties of polarons in bulk
crystals and quantum wells. The energy of a polaron in
bulk (3D) is obtained as
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2.40
0 30 60 90 120 150 180 210 240 270 300

Quantum-Well Width (tt )

FIG. 1. Polaron energy-gap shift as a function of quantum-
well width.
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tian in Eq. (27) proved to be very useful, because it en-
ables one to obtain an analytical expression for the
energy-gap shift and an increase in polaronic mass at
small quantum well widths.

From our calculation, it is found that analytical values
and numerically computed values for hE and hm'/m, '
agree very well for L, &30 A . Moreover, as stated
above, tl~ma/8 for an ideal 2D system and, for such a
system, rl is expected to be very small (rl((1). Using
this result in (33), we find that

m ' =(1+rl2D)m,',
which leads to the increase in polaron mass as

Amp'

m' 92D
e

(36)

(37)

The energy-gap shift can also be estimated for an ideal
2D system in a similar way. We thus obtain

ma
AE2n= Re .

2 (38)

The expressions obtained in Eqs. (37) and (38) are well-
known results for an ideal two-dimensional system. ' '

Recently Mari et al. ' have measured km~'/m, ', and
found it to be about 13% for a well width of 100 A in
GaAs-Al„Ga& „As systems. This value is much larger
than even the maximum possible value of na/8 for
hmz'/m, ' obtained in the exact 2D case, as shown in Fig.
l. In order to explain such a large discrepancy between
experimental and theoretical results, we have calculated
the increase in polaronic mass hmz /m, as a function of
g, using Eq. (33) for a particular value of L, = 100 A, and
shown it in Fig. 3. From Fig. 3, we find that
Am& /m, '=14% for L, =100 A and g=0.35. This is a
much larger value for g than what one obtains from
n a/8 for a -0.068. ' Hence the analytical result
g-~a/S obtained for parabolic bands may not be app1i-
cable for quantum wells. The point that the above
discrepancy may be due to nonparabolic characteristics

of the electron energy band has also been suggested ear-
lier.

As stated earlier, we have calculated the polaron ener-

gy using only the bulk-phonon modes and assuming that
the contribution of the surface modes is negligible.
Liang, Gu, and Lin" have calculated the polaron energy
using both types of phonon modes, and the results show
the contribution of the surface modes to be much less
than that of the bulk modes. In addition, the results also
show that the contribution of the surface modes does not
decrease monotonically like that of the bulk modes,
which represents a qualitative behavior brought about by
surface phonon modes. Our results agree very well with
those of Liang, Gu, and Lin obtained for bulk modes,
which makes the maximum contribution to the polaronic
efFect. Also, recent theories' seem to suggest that bulk-
phonon modes play the most significant role in determin-
ing the properties of an electron interacting with phonons
in a quantum well. In this view, our assumption to
neglect the surface-phonon modes seems quite appropri-
ate.

We have calculated the polaron energy by considering
that the height of the quantum-well potential is infinite.
This is a common approach to the problem of an electron
confined in a single quantum well and interacting with
phonons. " However, the assumption of an infinite quan-
tum well implies that it is not possible for an electron to
escape the potential well if the well width is reduced.
The efFect of the electron escaping may be important to
consider in the case of a superlattice, but it seems to be of
no consequence for a single quantum well.

In conclusion, we have obtained expressions for the
energy-gap shift and the increase in polaronic mass in
quantum wells. It is shown that, for small well widths,
one can obtain analytical expressions for hE and
hm '/m, '; however, for larger quantum-well widths,
these values can only be obtained numerically. We have
also addressed the problem that the assumption of a para-
bolic electron energy band may not be very suitable for
quantum wells.
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