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In this Monte Carlo simulation, we calculate the incoherent intermediate scattering function
¢q(t) for a three-dimensional dense polymer melt after having made long relaxation runs in order
to eliminate the history of the cooling procedure sufficiently. This function shows the signature
of a two-step process in the temperature interval T € [0.16,0.21] (the temperature is measured in
units of an energy parameter introduced in the Hamiltonian of the model) whose time evolution
was quantitatively analyzed in the framework of the idealized mode-coupling theory (MCT) within
the B-relaxation regime. As a result of this analysis the temperature interval splits into high- and
low-temperature parts. In the high-temperature part (T' > 0.19), the idealized theory accounts very
well for the decay of ¢;(t) over about three decades in time, whereas ¢j(t) relaxes much faster than
the idealized MCT anticipates in the low-temperature region (7" < 0.19). Since this discrepancy
between the idealized MCT and the simulation data can qualitatively be rationalized by taking
hopping processes into account, we try to estimate the critical temperature 7. from the fits with

the idealized MCT, yielding Tt ~ 0.150.

I. INTRODUCTION AND OVERVIEW

Glasses are materials that possess an amorphous short-
range order comparable to that of a liquid.!** There is
thus no sharp distinction between the fluid and the glassy
state on structural grounds, but they differ from each
other in the typical values of the structural relaxation
time, which might be measured by the shear viscosity 7,
for instance. Whereas the viscosity of a liquid in its or-
dinary state usually varies between  ~ 10~2 and 10!
poise, corresponding to a time scale of picoseconds,3*4
its value increases over many orders of magnitude when
the liquid is more and more undercooled. If the viscos-
ity enters the range of n > 102 poise, the associated
structural relaxation time 7 becomes macroscopic, i.e.,
T =~ 102 s or larger. Therefore the temperature, cor-
responding to 7 = 10'3 poise, has operationally been
defined as the glass transition temperature Ty and a lot
of experimental work®® has been invested in order to
elucidate the mechanism of structural relaxation in the
viscosity region close to and below 1 = 10'3 poise, which
means that one was primarily concerned with the time
window 7 € [1076,10%] s. However, in the past years
the interest has also been focused on the regime around
n =~ 10? poise, corresponding to a time scale of nanosec-
onds, where the plot of the viscosity versus temperature
typically changes slope for all fragile glass formers,”® due
to the development of the mode-coupling theory (MCT)
for the structural glass transition.%10

The central result of this theory is the assertion that
there exists a critical temperature T. well above T,
where the dynamics of the undercooled fluid qualitatively
changes from a behavior, which is typical of an ordinary
liquid to one which can be considered glasslike.® ! In
its original idealized version®!! the MCT predicts that
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for all temperatures T' < T, the particles of the fluid are
permanently trapped in the cages, which are formed by
their neighbors®* without any chance to escape so that
density fluctuations no longer decay totally, but level off
at a constant value, which can be interpreted as a mea-
sure of the solidity of the glassy material. Above the
critical temperature density fluctuations always decay to
zero, which means that the cages only succeed in localiz-
ing the captured particle for a finite time before it finds a
path to escape. Therefore, the critical temperature itself
is the distinguished point where a spontaneous breaking
of ergodicity occurs.?!? However, the idealized version
of the MCT overestimates the tendency of the liquid to
freeze, since the discussion of the fluid dynamics is ex-
clusively based on the cage effect® and thus ignores the
ability of a particle to leave its cage by an activated hop-
ping process. These hopping processes compete with the
localization property of the cages, and it is a major result
of the extended version of the MCT (Refs. 10 and 13) that
the inclusion of the hopping processes restores ergodicity
for all temperatures around the critical point. Although
the idealized MCT is thus incomplete from a physical
point of view it has initiated both many experiments!4™23
and computer simulations.?473% Therefore, the validity
of the idealized theory could be tested with very dif-
ferent techniques for a variety of liquids, ranging from
computer generated simple liquids,?42® lattice gases,?”
or polymers?® to real experimental glass formers such as
organic liquids,'® ionic salts,!%2° colloidal suspensions,4
migrogels,?! polymers,?2 or even proteins.?® Although the
structure of most of the experimental systems is con-
siderably more complicated than that of a simple liquid
for which the basic equations of the MCT were derived
an impressive quantitative agreement between the theory
and the experiment is partly found.%:20:21
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Especially in the research on the dynamical behavior
of undercooled polymer melts many of the features of the
idealized MCT were discovered.??:31:32 In comparison to
these experiments, computer simulations are still lack-
ing behind. Presumably one reason for this fact might
be that the relaxation time of a polymer in a melt ex-
ceeds the typical relaxation time of a simple liquid al-
ready in its normal state by many orders of magnitude
so that it is an exacting problem to equilibrate the melt
properly from a computational point of view. The prob-
lem becomes the more severe the closer the calorimetric
glass transition is approached because the structural re-
laxation time then tends to increase beyond any bound.
Since the mode-coupling approach to the glass transi-
tion is an equilibrium theory, any reasonable attempt
to check its predictions must guarantee that the system
has been relaxed long enough so that the signature of
the mode-coupling processes might not be blurred by
nonequilibrium effects.?” In the case of polymer melts
it is, therefore, not advisable to work with an atomisti-
cally detailed model. A lot of valuable computer time
would then be spent to relax all the microscopic degrees
of freedom such as the bond-length, the bond-angles or
the torsional angles,?® from which one does not know if
their explicit consideration is really indispensable to gen-
erate the dynamical features that the MCT describes.
However, an unprejudiced look at the variety of frag-
ile glass formers, mentioned above, which certainly dif-
fer extensively in their chemical structure, but all show
many aspects of the MCT, rather suggests that it is not
necessary to include all microscopic details in the sim-
ulation. Therefore, one can also work with a simplified
coarse-grained model, preferably a lattice model, which
only retains the essential properties of a polymer and has
the advantage of allowing a very efficient simulation by
the Monte Carlo technique. Then it becomes possible
to follow the dynamical evolution of the system over a
considerably larger time interval than in an atomistically
realistic off-lattice simulation and to obtain good statis-
tics, which might be necessary if one wants to attempt a
quantitative comparison with the MCT.

In this spirit we use the three-dimensional version of
the bond-fluctuation method34 3¢ combined with a suit-
able model Hamiltonian, which generates the glassy be-
havior of the polymer melt. Some basic properties of this
model were investigated in two previous studies,!:37:38
where we tried to understand how the choice of the cool-
ing rate influences the temperature variation of typical
quantities, such as the mean bond-length or the radius
of gyration, and the structure of the melt, when it is con-
tinuously cooled down from the liquid to the glassy state,
and to what extent the underlying lattice of the simu-
lation emerges in the results. These first studies were
indispensable in order to obtain valuable insight in the
relaxation behavior of the model, in order to discover the
interesting temperature region, where mode-coupling ef-
fects might be expected and in order to work out the
details of the calculation and properties of the collective
structure factor whose knowledge is a necessary input of
the MCT. Starting with this information, we determined
the incoherent intermediate scattering function and tried

to analyze its decay quantitatively in the framework of
the idealized MCT. The present paper is devoted to the
discussion of the results. It is organized as follows. Sec-
tion II will supply some details about our model, the
simulation method and the important question of equili-
bration. In Sec. III we review the theoretical background
of our analysis, whereas Sec. IV presents and discusses
our results. The final section, Sec. V, summarizes the
main conclusions and gives a short overview how we want
to proceed.

II. MODEL AND SIMULATION METHOD

In this Monte Carlo simulation we use the three-
dimensional bond-fluctuation model®* ™3¢ in which the
polymers are represented by mutually avoiding walks and
self-avoiding walks3?(SAW’s) on a simple-cubic lattice
and each monomer occupies a whole unit cell of the lat-
tice. In order to introduce the temperature in this a
priori athermal model we energetically favor long-bond
vectors®738 so that a competition between the energetic
and topological constraints of the chains is created, which
prevents crystallization, if the density of the melt is suit-
ably chosen. A possible choice is ¢ = 0.53,37:38 result-
ing from ¢ = 8NP/L3, where the degree of polymeriza-
tion N, the number of polymers per simulation box P
and the length of one side of the simulation box L are
N = 10, P = 180, and L = 30, respectively. In total,
the simulation box thus contains 1800 monomers. In or-
der to improve the statistics still further, 16 independent
configurations of this system were run so that the total
statistics of the data to be presented are based on 28 800
monomers.

As a starting point of this simulation we used the con-
figurations of our previous study, which we had gener-
ated during a cooling process from T' = co to T' = 0.05 =

—1 40 with the slowest cooling rate of I'q = 4x 1077
MCS’s™!,37 which means that we reach the smallest
T = 0.05 in 2.5x 10 Monte Carlo steps (MCS’s).

In order to get a feeling of how the abstract Monte
Carlo time unit can be related to conventional units of
time one has to take into account that a monomer of
the bond—fluctuation model stands for a group of chem-
ical monomers of a real chain. Since this group typi-
cally contains about five chemical monomers for simple
polymers, such as polyethylene,*?*? for instance, the mo-
tion of a monomer in the bond-fluctuation model should
correspond to bond reorientational jumps in the tor-
sional potential of a real polymer whose relaxation time
is of the order of 1071 s. Although this identification,
1 MCS = 107! s, is only a rough estimate, which may
depend upon the choice of the model Hamiltonian,3® it re-
veals that a simulation over 108-107 MCS’s corresponds
to a time scale, which is comparable to that of a neutron-
scattering experiment.??

Even for the above quoted smallest cooling rate of our
previous study the melt falls out of equilibrium in a nar-
row temperature range around T ~ 0.2. Since the MCT
assumes thermal equilibrium of the fluid and the criti-
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cal temperature of the theory seems to lie in the range
below T = 0.2 (see Sec. IV) one has to allow the melt
to relax in order to eliminate the history of the cooling
process as much as possible. To this end, long relaxation
runs of 4 x 108 MCS’s were made at every temperature
of the interval T € [0.16,0.21] before the incoherent in-
termediate scattering function was calculated. Although
even this amount of time is smaller than the Rouse time
Tr** and is thus too short to equilibrate the melt on
the length scale of the end-to-end distance of the poly-
mers smaller length scales, such as that of a bond-vector
or of the persistence length,** which are of prime impor-
tance in this simulation, have already relaxed sufficiently.
Without these long relaxation runs the signature of the
two-step process, which the incoherent intermediate scat-
tering function ¢;(t) exhibits in the above cited temper-
ature interval (see Sec. IV) and which is the necessary
precondition to justify an interpretation in the frame-
work of the MCT, might be blurred or even lost. This
effect is exemplified in Fig. 1, which compares the shape
of ¢ (t) recorded after a relaxation time of 4x 108 MCS’s
(crosses in Fig. 1) with that after an equilibration period
of 6x10® MCS’s (diamonds in Fig. 1) at same tempera-
ture of T = 0.16. Whereas the data used in the further
analysis clearly show a two-step process, this essential
prediction of the MCT is nearly completely hidden by
nonequilibrium effects in the curve with the small relax-
ation time. If one tried to describe the decay of ¢;(t)
quantitatively by the asymptotic expansions of the (-
relaxation regime [see (6) and (7)] the results of the fit
would be entirely wrong. For instance, the a-relaxation
time would turn out to be too small by more than an
order of magnitude, as a glance at Fig. 1 shows. This
example proves how crucial a sufficient relaxation time is
for a meaningful application of the MCT.
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FIG. 1. Comparison of the shape of ¢g(t) at the external
temperature T = 0.16 after the melt has relaxed for 4 x 10°
MCS’s (crosses) and 6 x 10° MCS’s (diamonds). Note that
the curve with the smaller relaxation time has much more de-
cayed than the other and that the two-step process is barely
visible. This indicates that the external temperature is con-
siderably smaller than the internal temperature of the melt
as a consequence of insufficient relaxation.

III. THEORETICAL BACKGROUND AND
FITTING PROCEDURE

As mentioned in the Introduction, the idealized MCT
elaborates the dynamical implications of the physical pic-
ture that the motion of every fluid particle is always con-
fined by the surrounding particles, which try to enclose
it in its cage. The trapped particle rattles in this cage
until it finds a way to pass over a distance of typically
one nearest neighbor to a new environment. The over-
all motion of the particles leads to local density fluctu-
ations around the average density of the system. If the
fluid is in its normal nonundercooled state the particles
can easily change their cages so that the density-density
correlation function will rapidly decay. However, if the
fluid freezes in a glassy state the particles will remain
in their cages for a long, eventually unmeasurably long,
time so that a certain residue of density-density correla-
tions could persist.” These physical considerations sug-
gest choosing the (normalized) density-density correla-
tion function, i.e., the density correlator ¢,(t), as the
appropriate coarse-grained variable to signal the onset of
the glass transition, which has the additional advantage
that it is directly accessible in experiments as the inter-
mediate coherent scattering function.® Using the Mori-
Zwanzig projection operator formalism3* it is possible
to derive an equation of motion for the density correla-
tor or for other correlators such as the tagged particle
density-density correlation function.® The tagged parti-
cle correlator ¢(t) or the incoherent intermediate scat-
tering function, as it is called in scattering experiments,
is of particular importance in this simulation, since the
analysis of the next section is based on it. For this quan-
tity the Mori-Zwanzig formalism produces the following
equation of motion®

02 k

5 04(0) + v o da() + ()7 ¢3(t)

t
/ 8 8 (41 /
+(9§)2/0 m;(t—t)gi;cbq(t)dt =0, (1)

whereby vy is the coefficient of a white-noise term, which
does not influence the interesting long-time behavior of
#g(t), Qg is the characteristic frequency, which defines
the time scale ¢o of the microscopic motion, where mode-
coupling effects are not yet dominant and mj}(t) is a mem-
ory kernel, which links the time evolution of ¢3(t) to the
history of its motion. The essence of the mode-coupling
approximation is to expand this memory kernel in prod-
ucts of ¢g(t) with ¢3(t).° The simplest possible expansion
adopts the following form?

myt) =5 3 V(@R sOann. @)

k+p=q

In (2) V in the prefactor of the sum stands for the volume
of the system and the expansion coefficients V* (q, p, k)
are called the coupling constants of the theory. They
depend upon the density and the temperature of the



138 JORG BASCHNAGEL 49

system through the static structure factor and related
quantities.® Since the density does not change during
a Monte Carlo simulation in the canonical ensemble
the temperature is the only relevant control parameter,
which can drive the melt along a path in the space K
of all coupling constants from the liquid side, where the
coupling constants are small, to the strong-coupling re-
gion of the glassy states. A major result of the MCT is
that the weak and the strong-coupling region are sepa-
rated by a critical surface S., where the central equation
(1) possesses a solution with a nonzero long-time limit,
which is called nonergodicity parameter

fe (Te) =: f4° (3)

Although the MCT has been derived for simple liquids,
a test based on a polymer model does not only seem to
be justified by the numerous experimental examples in
which polymer data were used to confirm the predictions
of the idealized MCT,?231:32 but it can also be ratio-
nalized by the theoretical argument that the existence
of the critical surface S; in K is a result of the asymp-
totic solution of (1), which is independent of the details
of coupling vertices in (2) and thus of the precise na-
ture of the interparticle interaction. This interaction will
certainly modify the topology of the coupling space. It
will influence the path followed by the system during the
cooling process and determine the point of impact on the
critical surface so that the critical temperature and the
exponent parameter A, to be defined below, depend upon
the interaction potential of the fluid particles. However,
no new singularities are introduced by it.° Due to this
property of the solution of (1) it was supposed that the
applicability of the MCT is not exclusively confined to
simple liquids, but that the theory approximately grasps
the essential universal features, which are responsible for
the glass transition of all fragile glass formers. In order
to exemplify this theoretical conjecture one should there-
fore try to look for the signature of the MCT in systems,
which are much more complicated than simple liquids,
such as in a dense polymer melt of absolutely monodis-
perse and linear chains, for instance, whose interactions
with each other (hard-core interaction) are much simpler
than in experimental systems so that subtle contributions
to the dynamical behavior due to the specific chemical
properties can be excluded.

One of these universal results of the MCT concerns
the form that the tagged particle correlator has to
adopt in the [-relaxation regime close to the critical
temperature®13

ba(t) = 3¢+ haG(t). (4)

This so-called reduction theorem implies that ¢(t) con-
sists of a time-independent term given by the nonergod-
icity parameter [see (3)] and a time dependent term in
which the whole wave vector dependence is carried by
the critical amplitude hj, whereas the dynamical evo-
lution of the fluid in the (-regime and its temperature
dependence is exclusively determined by the correlator
G(t) for all length scales in the system. In the frame-
work of the idealized MCT the (-correlator G(t) obeys a

one parameter scaling law
G(t) = ceg (t/tc), (5)

where e, the so-called separation parameter, denotes
the reduced distance to the critical temperature, i.e.,
€ := (T.—T) /T., and the scaling function g (t/t.) can
be expanded on the liquid side (¢ < 0) in the following
way:4°

g(t/te) = (t/1)* — Ar(t/te)® + Aa(t/t.)>
—A3(t/te)®® for to <t <t, (6)

and
g(t/te) = =B(t/t.)® + (B1/B)(t./t)*® for t. <t <T.
(7)

The short-time part of this expansion (6), which is gov-
erned by the exponent a (a €]0,0.5[), describes the relax-
ation of the fluid particle in its cage, whereas the long-
time part (7) physically corresponds to the escape of the
particle from it and thus to the onset of overall structural
relaxation, i.e., to the a process.® The first term of (7) is
usually called the von Schweidler law, and it introduces
a new exponent b (b €]0,1]), which is related to the crit-
ical exponent a by the exponent parameter A = A (7,)
through the following transcendental equation:

_T(1+b)? TI(1-a)?
T T(1+2b) T(1-2a)

(8)

where T stands for the gamma function and A can adopt
all values from the interval A € [0.5,1[. In Ref. 45 it
was shown that the short- and the long-time expansion
of g (t/t.) match with an accuracy of about 1% on the
intermediate time scale t. so that one can use them to
construct the full scaling function. In addition to the
prefactor c. of the 3 correlator in (5) the two time scale
t. and 7, which are the relevant scales for the 8 and
the a process, respectively, also depend critically upon
temperature by virtue of the following expressions

Ce = \/m’ 9)

_ . T—TC —1/2a
to = tole| "M% = to <—T ) : (10)

and

_ T-T.\ "
r=t0|s|’=t0< 7 ) . (11)

In (11) the new exponent v is fully determined by the
exponents a and b: v = 1/2a + 1/2b. If one knows the
temperature dependence of the microscopic time scale
to, one can then use Egs. (10) and (11) to determine the
critical temperature. The time scale ¢, corresponds to
the transient short-time decay of the correlator in a time
regime where mode-coupling effects are not yet dominant
and can thus be obtained from an independent micro-
scopic theory for the system under consideration. Since
short polymers in a dense melt often exhibit a Rouse-like
behavior, %47 we try to describe the initial decay of ¢ (t)
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by the respective expansion of the Rouse model, which is
valid for times that are both larger than a crossover time
tcross, below which the microscopic details of the model
affect the dynamics of the monomers, and much smaller
than the longest relaxation time of the chain, i.e., the
Rouse time 75

#5(t) = exp [——qz(b,zlpc)npcy/t/to] for teross <t K Tr,
(12)

where (b,zlpc),,pc stands for the mean-squared bondlength
averaged over all monomers n, polymers p and configu-
rations c.

Having gathered all this theoretical information, one
can now try to fit the simulation data in the time window
of the (3 process close to the critical temperature with the
asymptotic expressions (4), (5), (6), and (7). A priori,
these equations contain four unknown parameters: the
nonergodicity parameter f7¢, the total prefactor of the
scaling function hgc,, the time scale of the 3 process t.,
and the critical exponent a.

In the framework of the idealized MCT one could have
also chosen the von Schweidler exponent b or the expo-
nent parameter A as the fourth fit parameter instead of
the critical exponent a, since they are related to each
other by the transcendental equation (8). In fact, the ex-
ponent parameter was used to fit the decay of the coher-
ent intermediate scattering function in a recent dynamic
light scattering study of concentrated migrogel solutions,
and it was shown that the idealized theory accurately
describes the experimental data over up to eight decades
in time?!. However, it is a priori not clear to what
extent a fluid will show the signature of the idealized
MCT, since this version of the theory overestimates the
freezing tendency of the liquid due to the neglect of hop-
ping processes which are characterized by a temperature-
dependent frequency 6.'® This frequency 4 introduces a
natural scale g¢ for the separation parameter, given by

leo| = (5to) i (13)

which separates the liquid region, where the idealized
MCT can be applied, from the region in the immedi-
ate vicinity around the critical temperature, where the
hopping effects dominate the 3 dynamics. Therefore the
idealized theory is expected to work on the liquid side
in a temperature window between some value e, be-
low which the asymptotic expressions (4), (5), (6), and
(7) no longer hold, and g¢.!® Another result of this ex-
tended version of the MCT is that the critical exponent
a always stays the same, irrespective of the size of §,
whereas the von Schweidler exponent b may change from
the value, which is tightly coupled to a by (8), to a uni-
versal one of 1/2, if the temperature crosses the border
€0, provided that the exponent parameter is larger than
/4, i.e., A > 0.785. Since we did not know a priori how
important hopping effects are for the system under con-
sideration, we have therefore chosen the critical exponent
a as the fourth fit parameter instead of b or A, as was also
done in Ref. 20.

The actual fitting procedure now consists of two steps:

First, one tries to describe the decay of ¢;(t) at every
temperature in the relevant temperature window by ad-
justing all four parameters simultaneously until one dis-
covers a pair of values for f3¢ and a for which it is pos-
sible to fit all temperatures satisfactorily. This first trial
and error step also serves to assess the error bars for the
nonergodicity parameter and the critical exponent, which
the MCT requires to be temperature independent. Fix-
ing the found values of f3¢ and a, the second step consists
in repeating the whole fitting procedure with two open
parameters, hoc. and t., for all temperatures in order
to obtain their temperature dependence. The results of
this second step together with the value of a can then be
used to derive the critical temperature with the help of
(9) and (10).

Since this analysis based on the expansion of the scal-
ing function does not simultaneously yield the time scale
7 of the o process, it has to be determined by a separate
fit, for instance with the empirical Kohlrausch-Williams-
Watts formula,!

#3(t) = f3°exp [~ (¢/7x)"] (14)

where the temperature-independent Kohlrausch expo-
nent Bg typically ranges between 0.3 and 0.8 for struc-
tural glasses. Although it is not possible to obtain the
Kohlrausch law as a solution of the idealized mode-
coupling theory for the a-process generally,®3? it implies
the time-temperature superposition principle,'*® which is
in turn a major result of the idealized MCT, and a com-
parison of the Kohlrausch law with the numerical solu-
tion of the mode-coupling equation for the o process has
shown that one can use it as a convenient fit formula for
the time window following the von Schweidler law, i.e.,
for times ¢ > 7. The application of the Kohlrausch law
to the simulation data proceeds in exactly the same two
steps, as explained above. Using the result for the noner-
godicity parameter from the analysis with the idealized
MCT the first step serves to determine the value and the
errors of the Kohlrausch exponent 8k, whereas one keeps
it fixed for all temperatures in the second step in order to
extract the temperature dependence of the a time scale
7k and thus the critical temperature by virtue of (11).
Since the application of the Kohlrausch law assumes the
validity of the time-temperature superposition principle,
and this principle states that all times in the a-relaxation
regime share the same temperature dependence we have
used the time value 7;/5, where #5(71/2) becomes 1/2,
in addition to 7x in order to test Eq. (11). The same
strategy to estimate the a-time scale was also adopted in
Ref. 21. From a theoretical point of view one can ratio-
nalize this choice by the fact that the von Schweidler part
of the scaling function (7) concatenates the 8- with the
a-relaxation regime, and thus all data points, which fall
in this part, such as T1/2, have to obey both the scaling
law of the B and of the a process.

IV. ANALYSIS OF THE INCOHERENT
INTERMEDIATE SCATTERING FUNCTION

The whole analysis is based on the time evolution of the
incoherent intermediate scattering function ¢3(t), which
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was determined by the following formula during the sim-
ulation

1 NP

93(t) = wp 2_(os{a [Fne(t) = Tnc(O)]PJa:  (15)

=1

where r,,.(t) is the vector to the center of gravity of the
nth monomer in configuration ¢ at time ¢, (---). rep-
resents the average over all independent configurations
and the symbol [- -], stands for the lattice analogue of
a spherical average in the continuous reciprocal space.3®
This function was calculated for six ¢ values, namely,
q = 1.65,2.1,2.53,2.92,3.0, 3.2, distributed around the
maximum of the collective static structure factor, which
lies at ¢ = 2.92,3® and six different temperatures ranging
from T = 0.21 to 0.16.%° For the three higher tempera-
tures T = 0.19,0.20,0.21 we monitored the time evolu-
tion of ¢%(t) over a period of 5x10° MCS’s, whereas we
simulated twice as long for the remaining lower temper-
atures T = 0.16,0.17,0.18. Therefore, the overall length
of our simulation covers six to seven decades in time, a
length that is comparable to that of a very recent lattice
gas simulation.?”

A. Qualitative aspects of the simulation data

Figures 2 and 3 compile the simulation results for all
studied ¢ values at the lowest and at the highest tem-
perature, i.e., at T = 0.16 and T = 0.21, respectively.
With increasing g value one can see that a two-step pro-
cess starts to emerge at T = 0.21 and that it becomes
stronger developed at T = 0.16. The detection of the
two-step process in this polymer melt, where the first
step cannot stem from the fast relaxation of side groups,
is therefore a strong indication that mode-coupling effects
might play a prominent role for the time evolution of the
tagged particle correlator in the chosen temperature in-
terval. Another qualitative feature of Figs. 2 and 3 is the
fact that the intensity of ¢} (t) decreases with increasing
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FIG. 2. Simulation data of ¢3(t) for the six ¢ values of
this simulation, i.e., ¢ = 1.65 (diamonds), ¢ = 2.1 (crosses),
q = 2.53 (squares), ¢ = 2.92 (times), ¢ = 3.0 (triangles), and
q = 3.2 (stars) at 7 = 0.16. ¢ = 2.92 corresponds to position
of the maximum of the collective static structure factor.
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FIG. 3. Simulation data of ¢g(t) for the six g values of this
simulation at 7' = 0.21 using the same choice as in Fig. 2.

g values in the time regime of the two-step process so
that the first step becomes more visible. Since the first
step corresponds to the critical decay of the correlator to
the nonergodicity parameter f7¢ a decrease of f;¢ would
mean that the initial decay of ¢ (t) in the 3-regime gets
more pronounced. In fact, the MCT predicts that f7¢
decreases with rising g values according to?

fie =exp [—¢*rZ]. (16)

In (16) the length 7, measures the available space that
a particle has at the critical temperature. Therefore, the
loss of intensity of ¢3(t) with rising g values qualitatively
agrees with the behavior required by the theory. Moti-
vated by the formula (16), one can ask if it is not possible
to map the whole time dependence of the correlator ¢3(t)
on the mean square displacement of a monomer by the
ansatz

63(t) = exp{—q*([Tnc(t) — Tnc(0)]*)nc}- (17)

Such a description for ¢§(¢) naturally appears in the an-
alytical treatment of polymer dynamics if one assumes
very long chains with a Gaussian shape.?* Therefore,
polymer theory anticipates that the interplay of the time
and ¢ value dependence of the tagged particle correlator
is less complicated than the MCT predicts. If this differ-
ent conjecture was correct, the ratio —In ¢3(t)/ g? should
no longer be dependent upon ¢ for all times. In order to
test (17) we chose one time from the regime of the scale
to, t = 150 MCS’s, and three time values from the regime
of the 3 and the a process, i.e., t = 1005, 50 794, 5 000 100
MCS’s. Figures 4 and 5 present the results of this analy-
sis for T = 0.21 and T = 0.16, respectively. At both tem-
peratures one can see that the ratio —In qu;(t)/q2 is more
weakly dependent upon ¢ than the Gaussian approxima-
tion predicts and that the difference between the simula-
tion data and the Gaussian approximation becomes the
more pronounced the larger the considered time value
is. Therefore, the functional relationship between ¢} (t)
and ¢ is more sophisticated than (17) assumes, which
justifies to try other concepts such as the mode-coupling
approach.



49 ANALYSIS OF THE INCOHERENT INTERMEDIATE . .. 141

o

FIG. 4. Plot of —In¢}(t)/q?, vs ¢ at T = 0.21 for
four different time values, ie., t = 150 MCS’s (diamonds),
t = 1005 MCS’s (crosses), t = 50794 MCS’s (squares), and
t = 5000100 MCS’s (times) in order to test (17).

B. Quantitative analysis

The six figures 6-11, referring to each of the studied
temperatures individually, contain the details of the line
shape analysis of ¢ (t), which is represented as a solid line
in all plots so that the agreement between the fitting for-
mulas and the simulation data can better be estimated.

For all of the considered temperatures one can see that
the short time expansion of ¢j(¢) within the Rouse model
[see (12)] describes the initial decay of the correlator very
well in a time window, which increases with decreasing
temperature. Whereas the validity of the Rouse model is
confined to about one decade (i.e., ¢t € [60,1600] MCS’s),
for T = 0.21 the window of its applicability considerably
expands in the directions of both smaller and larger times
the lower the temperature becomes, resulting in an accu-
rate description over about 2.5 decades (i.e., t € [10,8000]
MCS’s) at the lowest temperature 7' = 0.16. Hence the
microscopic time scale to strongly depends upon temper-
ature and this contribution has to be removed from the
results of the fitting by the MCT in order to work out
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FIG. 5. Plot of —In ¢3(t)/q* vs g at T = 0.16 for the same
time values and the same choices as in Fig. 4.
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FIG. 6. Comparison of the simulation data (solid line) and
various fitting formulas at T = 0.21. The short-time ex-
pansion of Rouse model (12) and the Kohlrausch law (14)
are represented by a dashed line with long dashes and by a
dashed-dotted line, respectively. The dashed line with the
short heavy dashes corresponds to short-time expansion of
the MCT (6), whereas the dotted line refers to the long-time
part of the scaling function (7).
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FIG. 7. Comparison of the simulation data with the same

fitting formulas and the same choice for the types of the lines
as in Fig. 6 at 7' = 0.20.
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FIG. 8. Comparison of the simulation data with the same
fitting formulas and the same choice for the types of the lines
as in Fig. 6 at T = 0.19.
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FIG. 9. Comparison of the simulation data with the same
fitting formulas and the same choice for the types of the lines
as in Fig. 6 at T = 0.18.

1 10 100

the linear dependence of the § and the a time scale upon
the separation parameter as clearly as possible.

The MCT starts to describe the decay of the tagged
particle correlator in the last time regime, where the
Rouse model applies to the simulation data, resulting
in a very good matching of the Rouse theory and the
short-time expansion of the scaling function (6) at all
studied temperatures. Although this short-time expan-
sion coincides with the measured curve of ¢j(t) over at
least 1.5 decades for all temperatures, a glance at Figs.
6-11 immediately shows that the temperature interval
over which the idealized theory can fully account for the
major part of the decay of the intermediate scattering
function is limited to T' > 0.19. For smaller temperatures
the simulation data progressively fall below the predic-
tion of the idealized MCT so that we want to discuss the
low-temperature regime 7' < 0.19 separately from the
high-temperature one. In the high-temperature region
one obtains by the described fit procedure the following
results:

0.2 r ]
1 10 100 1000 10000 100000 10° 107

t

FIG. 10. Comparison of the simulation data with the same
fitting formulas and the same choice for the types of the lines
as in Fig. 6 at T' = 0.17.
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FIG. 11. Comparison of the simulation data with the same

fitting formulas and the same choice for the types of the lines
as in Fig. 6 at T = 0.16.

a = 0.239 £ 0.030, b = 0.370,
~ = 3.443, X\ = 0.863 + 0.052 > %;

f2¢=0.80 £ 0.03. (18)

Figures 6-8 show that these parameters allow to fit the
simulation data for T = 0.21 over about three decades,
reaching from 4x10? to 4x10° MCS’s, whereas the respec-
tive time interval slightly extends for the smaller temper-
atures, ending at 108 MCS’s for 7' = 0.20 and at 5x 10
MCS’s for T' = 0.19. Therefore, the outer edge of the in-
terval, where the MCT applies, shifts to about one decade
in time which is much stronger than the respective shift
of the end of the time interval, where the Rouse theory
describes the simulation data, in the same temperature
range. This means that the time scale of the 8 pro-
cess separates more and more from the microscopic time
scale ¢y with decreasing temperature and that the interval
where the simulation data are close to the formulas of the
reduction theorem increases. This feature qualitatively
agrees with the predictions of the idealized MCT for the
3 regime and has been observed in experiments.*® Figure
8 also shows how the asymptotic expansions (6) and (7)
are tailored so that they can complete each other in order
to describe the decay of a correlator as far as possible.
Since the extended von Schweidler law (7) diverges faster
than (6) for small times the short time part of the scaling
function begins to describe the simulation data before (7)
catches up with (6) for times t o t.. If the o and the 3
process are sufficiently separated the von Schweidler part
of the scaling function will continue the fit of the correla-
tor, while (6) departs from it for ¢t > t.. This qualitative
picture only appears for T' = 0.19, whereas the extended
von Schweidler law (7) does not substantially contribute
to improve the fit at the higher temperatures. Hence the
simulation data show that the o and the (3 process are
not very well separated, and thus the time scale 7 of the
a process does not expand faster than ¢, in the consid-
ered temperature range contrary to the prediction of the
idealized theory. This interpretation is also supported by
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TABLE 1. Values of to, hjc., t., Tk, and 71/, resulting from the fits to @5(t) at the different temperatures of this simulation.

T tox1078 h3c. x10? t.x107* 7K X1078 T1/2%107°
0.21 3.004 + 0.038 6.034 + 0.803 1.129 + 0.583 6.360 + 0.274 1.352
0.20 5.942 + 0.105 5.791 £ 0.718 2.589 + 1.239 15.364 + 1.099 3.420
0.19 8.062 + 0.217 5.377 + 0.771 5.603 + 2.894 36.358 =+ 3.227 9.113
0.18 12.617 & 0.252 4.137 +0.130 12.366 + 6.559 80.802 =+ 8.173 16.924
0.17 26.869 + 0.530 3.591 + 0.491 53.058 + 36.346 163.136 + 22.508 36.691
0.16 37.300 =+ 10.445 2.207 + 1.046 379.768 + 332.928 313.404 + 61.156 69.519

the attempt to describe the long-time decay of ¢3(t) by a
Kohlrausch law with an exponent Sx = 0.515+0.020, re-
sulting from a fit to simulation data in the whole temper-
ature range T € [0.16,0.21] while fixing the prefactor in
(14) to f;° = 0.8. Figures 6-8 show that the Kohlrausch
law not only successfully continues the fit of the MCT
to arbitrarily long times, but it also penetrates the 3
regime considerably. In fact, the Kohlrausch law starts
to describe the decay of ¢(t) already close to t. (com-
pare Table I) in this high-temperature range, whereas
one would have expected this to happen only for ¢ >> ¢,
according to the idealized theory. Hence the idealized
theory certainly overestimates the freezing tendency of
polymer melt in this simulation. This fact clearly ap-
pears in Figs. 9, 10, and 11 for the temperatures below
T = 0.19. The more the temperature is reduced and the
better the two-step process becomes visible the stronger
the formulas 4-7 deviate from the actual simulation data
so that only the initial decay of the first step can be
adequately fitted by the short-time expansion (6) of the
idealized MCT. However, it is possible to rationalize such
aresult within the extended version of the MCT by intro-
ducing a new time scale £ below which (6) remains valid,
whereas for time values larger than f one has to work
with other asymptotic expansions that take the hopping
processes into account.!® Due to the weak separation of
the B and the o processes and the deficiency of the ideal-
ized theory in the fitting of ¢ (t) below T' = 0.19 hopping
processes seem to have a decisive influence on the relax-
ation of the tagged particle correlator in this simulation
so that it was very important to use a, and not b or A,
as the fourth fit parameter. Whether the inclusion of the
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FIG. 12. Plot of (h;c,)2 vs temperature [see (9)]. The dia-
monds represent the results from Table I, whereas the dashed
line is a least-squares fit, yielding a critical temperature of
Te = 0.153.

hopping term actually succeeds in extending the fit of the
idealized theory for T' < 0.19, is not clear at present and
can only be verified if one applies the extended scaling
theory to the simulation data. For the time being one
can, however, try to extract an estimate for the critical
temperature from the data of the fitting procedure by
the idealized theory, which are compiled in Table I, us-
ing Egs. (9)-(11). The results are shown Figs. 12, 13,
and 14. For the (3 time scale and the amplitude of the
scaling function one clearly obtains a straight line, which
yields a critical temperature of T, = 0.14610-90% for ¢,
and of T, = 0.15373:005 for hgce, respectively. Therefore,
the critical temperatures, resulting from the fit with the
formulas of the reduction theorem, coincide within the er-
ror bars, whereas they do not agree with values derived
from the o time scales 71/, and Tx whose temperature
variation is compared in Fig. 14. Based on Eq. (11)
one would have expected that a plot of (to/ 'r)l/ 7 versus
T should intersect the temperature axis at T, for both
time values if the time-temperature superposition princi-
ple applied. However, Fig. 14 shows that only the results
in the high-temperature region approximately behave lin-
early, whereas the curve for both 7/, and 7k starts to
bend around T = 0.18 and becomes much weaker depen-
dent on temperature than the idealized theory anticipates
for T' < 0.18. If one uses only the high-temperature data
to estimate the critical temperature the linear regression
gives T, = 0.11810:002 for 11,5 and T, = 0.10577 015 for
Ti. Although these two values agree again with each
other within the error bars, yielding an average criti-
cal temperature of T, = 0.112%03% from the o time
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FIG. 13. Plot of (to/t.)** vs temperature [see (10)]. The
diamonds represent the results from Table I whereas the
dashed line is a least-squares fit, yielding a critical tempera-
ture of T. = 0.146.
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FIG. 14. Plot of (to/7)/" vs temperature [see (11)] . The
triangles correspond to the times where ¢g(t) adopts a value
of 1/2 at the respective temperature, whereas the diamonds
represent the results from the Kohlrausch fit. The dotted and
the dashed line are the least-squares fits to the temperature
interval T € [0.19,0.21] for 71/, and 7k, yielding a critical
temperature of T. = 0.118 and 7. = 0.105, respectively.

scales this average critical temperature is not compati-
ble with the combined result of t. and Ajc., which reads
T. = ().15()’:8:832. Due to the above-mentioned possi-
ble relevance of the hopping term for the decay of #y(t),
which will especially affect the temperature dependence
of the o time scale,!® and due to the fact that the lin-
ear extrapolation for the a time scale is based on a small
temperature interval far away from the resulting T value,
the critical temperature determined from the 3 time scale
and from the amplitude of the scaling function seems to
be more reliable than that from (14).

Equipped with these results one can still perform sev-
eral cross checks. Omne possible cross check consists in
combining the fitted values for the amplitude of the scal-
ing function and the § time scale in such a way that it is
again possible to estimate 7. by a linear extrapolation.
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FIG. 15. Cross check based on Egs. (9) and (10). A plot of

(h;c,to/t;)za/Ha vs temperature should yield a straight line,
which crosses zero at T.. The diamonds correspond to the
results obtained from Table I and the dashed line is again a
least-squares fit, giving a critical temperature of 7. = 0.148.
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FIG. 16. Crosscheck based on the scaling property of the 3
regime. In a plot of hig (t/t.) vs t/t. the simulation data for
all temperatures should fall on one curve as long as the ideal-
ized theory describes the decay of ¢;(t). This expectation is
fulfilled for T" > 0.19, whereas (4) does not succeed in scaling
the smaller temperatures.

A glance at the Egs. (9) and (10) shows that the com-

bination (h;csto /ts)za/ 1ta should linearly depend upon
temperature and become zero at T.. Figure 15 reveals
that this expectation is fulfilled, yielding a critical tem-
perature 7. = 0.14873-0%¢ which compares very well with
the values obtained from hjc. and t. directly. In another
cross check one can try to test the scaling property of
the (3 regime by plotting hog (t/t.) = [#3(t) — f2°]/c.
versus the reduced time t/t, using T, = 0.150 and the
values compiled in (18). If the scaling property applied,
all data should collapse on a temperature-independent
master curve in the J-relaxation regime. Figure 16 shows
that this is only the case for the temperatures larger than
T = 0.19, whereas (6) and (7) are not the adequate ex-
pansions of the scaling function for 7' < 0.19.

V. SUMMARY AND OUTLOOK

In this paper we calculated the incoherent intermediate
scattering function ¢;(t) during a Monte Carlo simula-
tion for a dense polymer melt by using a coarse-grained
lattice model, the bond-fluctuation model, which has the
advantage that one can obtain good statistics and cover
six to seven decades in the significant time window. Good
statistics are necessary if one attempts to analyze the line
shape of ¢;(¢) quantitatively, whereas long simulation
times are also required in order to account for the major
theoretical precondition of thermal equilibrium in the im-
portant temperature region as much as possible. In the
temperature interval T € [0.16,0.21] (Ref. 40) we tried
to fit ¢3(t) by the asymptotic expression of the ideal-
ized MCT. This analysis splitted the considered temper-
ature interval in two parts. In the high-temperature part
(T > 0.19) the idealized MCT accurately describes the
decay of ¢ (t) in the (3 regime over about three decades in
time, yielding a very good matching with both the expan-
sion of ¢7(t) within the Rouse model for short times and
the Kohlrausch law for the long times of the « process.
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However, in the low-temperature region (T' < 0.19) the
idealized theory only accounts for the initial decay of the
correlator, whereas it overestimates the freezing tendency
of the melt the longer the time and the smaller the tem-
perature become. This observation for T < 0.19 can be
rationalized theoretically by including hopping processes
in the theory, which restore ergodicity for all tempera-
tures and thus dominate the dynamics in the immediate
vicinity of the critical point. In this extended version
of the MCT the subtle interplay between the cage effect
and the hopping processes close to T, leads to a com-
plicated relaxation scenario in which the idealized the-
ory can only account for the initial decay of the correla-
tors. Therefore, the simulation results are qualitatively
in agreement with the predictions of the extended MCT.
If one extracts the critical temperature from the fit with
idealized theory one can estimate an upper bound for
the 6 term by virtue of Eq. (13). Combining the re-
sults of the fit with the expansion of the 3 correlator one
obtains T, = 0.150, and thus the ¢ values, where the ide-
alized theory applies in this simulation, typically range
between ¢ = 0.4 for T = 0.21 and € = 0.26 for T = 0.19.
Although these € values are compatible with those found
in experiments?%:2148 they are distinctly larger than the
typical distances to T, in second-order phase transitions,
where € < 0.1 or even £ < 0.01 is required to extract the
asymptotic power laws correctly.*® Although the critical
behavior of the idealized MCT has a completely differ-
ent origin than that of second-order phase transitions,
the wide extent of €, over which one can observe the in-
fluence of the dynamic singularity in this simulation in
comparison to the tiny region around T, which one must
enter in order to feel the singularity of a phase transi-
tion, raises some questions about the significance of the
idealized MCT for our model. Since the idealized theory
departs from the simulation data for T < 0.18, T = 0.18
may be used as an estimate for ¢ so that the upper
bound of the hopping term a value of §t; ~ 7x10~3, a
value which is much higher than that found in a recent
application of the extended theory.4® Whether reason-

able §(T) data will actually succeed in resolving the left
discrepancies between the simulation results and the ide-
alized theory is an interesting problem for future work.

In summary, we have presented very extensive and
statistically accurate simulation data for the incoherent
scattering function of a simple model for a polymer melt
undergoing a glass transition. While these data have
been used to test the idealized MCT one must realize that
this theory contains a number of adjustable parameters,
and presumably the extended theory, which takes the
hopping processes into account, will involve even more
parameters. The question of understanding these param-
eters from the microscopic model Hamiltonian, which is
well specified in this simulation, has not been addressed
here but will be a challenging problem for the future. At
the same time, the simulation yields detailed information
on many other quantities (temperature dependence of ef-
fective bond lengths, bond angles, chain radii, various
types of relaxation functions and associated relaxation
times, etc.), some of which have been analyzed in pre-
vious papers.?73850 It is a challenging task to develop
a theoretical framework that can explain the wealth of
these simulation data in a coherent way.
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