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Photoionization of semiconductor impurities in the presence of a static electric field
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The effect of a static uniform electric field on the photoionization process of an isolated impurity
in a semiconductor is studied. The impurity potential is treated with the quantum-defect approach.
The limiting hydrogenic and Lucovsky models are also considered. The photoionization process is
analyzed with the Fermi's golden rule in the dipolar approximation. We show that the main effects
of the static electric field are similar to the Franz-Keldysh effects well known for the photon-induced
interband transition: the appearance of a redshift of the lower absorption edge and of an oscillation
pattern superimposed on the zero-field photoionization cross section for higher energies. These
oscillations are much stronger when the electric-field polarization of the photons is parallel to the
static electric field than when it is perpendicular.

I. INTRODUCTION

In this paper, we investigate the photoionization pro-
cess of an isolated impurity in a semiconductor in the
presence of a static, uniform electric 6eld. Photoion-
ization cross-section measurements give useful informa-
tion on impurity states: energy, nature of the defect,
symmetry, electron-phonon coupling, temperature de-
pendence, etc. Our study is motivated by the experi-
mental conditions found in some techniques used to ob-
tain these cross sections. For example, the deep-level
optical spectroscopy2 (DLOS) involves impurities in the
depletion region of a junction where the electric 6eld can
have an appreciable magnitude. One can question the
effect of this electric 6eld on the optical measurements.
In the case of a thermal characterization technique like
the deep-level transient spectroscopy, such a static field
is known to lead to an often non-negligible Poole-Frenkel
effect.

Very few papers discuss the effects of a static electric
Beld on the photoionization process of an isolated impu-
rity. Monemar and Samuelson present an experimental
curve showing that the electric field indeed affects pho-
toionization measurements by inducing a redshift of the
lower absorption edge. On the theoretical side, Coon and
Karunasiri look at the problem in the weak field limit.
In their work, they use the quantum-defect approach to
model the impurity potential. They use the Coulomb
Green's function and the WKB approximation in order to
obtain the wave function of photoexcited electrons. The
photoionization cross section is obtained &om this wave
function. Their results are valid for weak static electric
6elds and for photon energies well below the ionization
energy of the impurity.

We address the same problem with a simple approach
valid for all photon energies. Our treatment is valid for
electric fields such that the 6eld ionization processes can
be neglected. We consider the photon-induced transition
of an electron (hole) &om a donor (acceptor) impurity to

the conduction (valence) band. The impurity potential
is modeled with the quantum-defect approach. We also
consider the hydrogenic and Lucovsky limits. The dipo-
lar optical transitions are treated with the Fermi's golden
rule.

In Sec. II we give the Hamiltonian of the impurity po-
tential in the presence of a static electric 6eld and de-
scribe its eigenstates. In Sec. III we develop an expres-
sion for the photoionization cross section starting &om
the Fermi's golden rule. Asymptotic expressions are dis-
cussed in Sec. IV. Calculated photoionization cross sec-
tions are 6nally presented in Sec. V. The details of the
calculations for the photoionization cross section and its
asymptotic limits are presented in Appendixes A and B.

II. HAMILTONIAN AND EIGENSTATES

In this section, we introduce the Hamiltonian of the
impurity potential in presence of a static electric 6eld.
We discuss the initial and final states of the photoioniza-
tion process. For briefness, we consider only the case of
a donor impurity. The following treatment can be easily
adapted to an acceptor.

A. Quantum-defect Hamiltonian

The charged defect is described using the quantum-
defect approach. " This model is well discussed in the coD-

text of semiconductor impurity photoionization in Refs.
6 8 ) and 9. We also consider the limiting hydrogenic
(no short-range potential) and Lucovskyii (no Coulom-
bic potential) models.

We use a simple form of the effective-mass approxi-
mation: a nondegenerate parabolic band with a single
extremum. In the following, we denote by F (r) the en-

velope function of state n with energy E . In presence of
a static electric Geld E i heading in the z direction, the
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quantum-defect envelope functions F„(r) are the solution
of the following effective Schrodinger equation:

H(r)F (r) = —V ——+ V„(r) + pz F (r)r

= E„F„(r).

The preceding equation is written with lengths and en-

ergies given in units of the effective Bohr radius a0 and
of the effective Rydberg Ry', respectively. Those quanti-
ties are defined as in the hydrogenic effective-mass theory
formulation:

52
a0 —— Ry' =

m' e2 ' 2m* a'2 '
0

(2)

B. Ground state

where m' represents the band mass and e the static di-
electric constant of the semiconductor. In Eq. (I), V„(r)
is the dimensionless short-range potential associated with
the quantum-defect theory and +pz is the static electric-
field contribution. The parameter p = e E,~ ao/Ry' rep-
resents the energy increase of an electron accelerated by
the electric 6eld over a distance equal to the effective
Bohr radius (ao) (this energy is written in Ry' units).
We use p in the following to represent the static electric
field.

Eg(r) = Ng4 (r), (4)

where Ng is a normalization constant and O(r) a spheri-

cally symmetric radial function.

that in the quantum-defect approach the ground state is

mostly determined by the short-range potential. Note
that this approximation becomes less valid for the hy-

drogenic limit since there is no short-range potential.
This approximation nevertheless remains acceptable if
we work with very weak 6elds in this case. We have
veri6ed explicitly, using a variational approach not pre-
sented here, that the envelope function deformation and
the Stark shift resulting &om the static field were very
small for all the cases discussed in Sec. V.

If we neglect the electric field contribution, the Hamil-
tonian H(r) reduces to the well-known quantum-defect
problem. For an optical transition, the dipolar opera-
tor vanishes for z = 0 and the most important contri-
bution to the matrix elements comes &om outside the
near-origin region [see Eq. (9)j.s For a spherically sym-
metric (s-like) ground state, the quantum-defect enve-

lope function is well known in that region and is fortu-
nately normalizable. In the hydrogenic and Lucovsky
limits, the ground state is also well known. Table I gives
the eigenenergy Eg and the envelope function Fg(r) for
the various cases. To facilitate the forthcoming develop-
ments, the envelope functions are given in the following
form:

For the ground-state evaluation, we neglect the field
ionization process. The critical field magnitude for the
classical 6eld ionization can easily be evaluated if one
neglects the ground-state energy shift (Stark shift). ~2 In
the quantum-defect context, its value is

1, = Eg/8 8v4'

where Eg(= —I/v2) is the ground state energy of the
defect and v is the quantum-defect parameter. We use
this p, value as a reference in the following: it gives an
upper bound for the electric field. We consider that the
lifetime associated with the field ionization process is very
long when p &( p, .

We also assume that the static electric field is small
enough to neglect the deformation of the envelope func-
tion and the Stark shift. This is justified by the fact

C. Continuum states

Evaluating continuum extended states in the quantum-
defect approach is a diKcult task even in the absence of a
static electric field. ' In this work, we follow Bebb who
neglects the impurity potential in their evaluation. 6

In presence of an external static electric field, the
continuum states are thus determined by the following
Schrodinger equation:

(—V + pz)Ff(r) = EfFf(r) .

The eigenstates are

where Ai(z) is the Airy function and Nf is a normaliza-
tion constant

TABLE I. Impurity ground-state envelope functions Fz(r) = N&C'(r) and related eigenenergies
Eq.

Case

Quantum defect'

Hydro genic
Lucovsky

-1/v

—1
—1/v2

Ng
—1/2

2s v) 1/[I'( —v)(v —n)(v —n —1)]
m=0

I/~x
1/v'2s v

W„ ggz(2r/v)/r

exp( —r)
exp( r/v) /r—

E& is given in units of Ry'.
The r variable is given in units of ao.

'W„,„(z) is a Wtuttaker function (Ref. 18).
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1

2' p'/6

The eigenenergies are given by

Ef ——k +k
where k and k& are the x and y components of the elec-
tron wave vector in the Brillouin zone and e can take
any value, positive or negative. Note that a more pre-
cise treatment would show that e takes equally spaced
discrete values: the so-called Wannier levels. But for
bulk materials, the spacing between those levels is usu-
ally small and ~, can be treated as a continuous variable
with a constant density of states.

The static electric field thus transforms the plane wave
states of positive energy into more localized states with
positive or negative energies characterized by k, k„, and

In the following, we also use these functions when
studying processes involving hydrogenic and Lucovsky
ground states.

Calculations are performed for photons of polarization
parallel or perpendicular to the static electric field (which
heads in the z direction). Identifying each situation with
indices z and x, respectively, we carry the calculations
concurrently using (') to indicate the case under con-
sideration. In Eq. (9), we transform the summation over
final states into a three-dimensional (3D) integral and
rewrite the photoionization cross section as

x 8[Re —(k + k„+ e, —Eg)) dk~ dky de, ,

(10)

where

III. PHOTOIONIZATION CROSS SECTION

Using the above information concerning initial and 6-
nal states, we calculate the photoionization cross section.
Prom Fermi's golden rule, in the dipolar approximation,
it can be written

and

J(,)(k , k„,e.) = f.FJ (P) ( ) Fg(r'ide'. (12)

,

(E.,),
,

(
( E, ) km)

x ) I(+~(r)l~ r I+f(~J))]'~(Ef —E~ —~)
f

where o.o is the Gne structure constant, ~ the photon
energy, v" the electric polarization vector of the incoming
photons, n the re&active index of the semiconductor, and
the factors E,rr/Eo and m" /m are, respectively, the ef-
fective electric field (of the incoming light) and effective
mass ratios.

The integral in I (k, kz, e, ) (the index a denotes the zor
z case) extends over all space. In o (Ru), the integrations
on k and k„are performed over the projection of the
Brillouin zone in the k -k„plane (identified as BZ „).
We approximate this projection by a circle of radius kb.
Since the integrand is a rapidly decreasing function of k
and k~, this simpli6cation does not introduce a signi6cant
error.

In Appendix A, we show that each of the two 3D in-
tegrals in Eqs. (10) and (12) can be reduced to a one-
dimensional form. The resulting expression for the pho-
toionization cross section can easily be handled numeri-
cally. It is given by

0(.I (her) =
k 2

C ~ N& N~ 1 "~+@~ ~ siil —* — * * R~[gRu —(e~ —Eg), k~]

'Y 2 h~+E, —kf, 0 cos ~~
—"*'* R~ [/hid —(E, —Eg)) k, ]

The functions R (k „,k, ) and R (k „,k, ) are defined
in Appendix A [Eqs. (A4a) and (A4b)]. We present below
their speci6c expressions in the quantum-defect, hydro-
genic, and Lucovsky cases. In the two latter cases, the
evaluations are easily done. In the quantum-defect case,
the calculations starting with the Whittaker function of
Table I give complicated results. But the dipolar inter-
action matrix elements of the photoionization process ef-
fectively involve the envelope function outside the near
origin region. Consequently, we use a standard approx-
imation for the quantum-defect envelope function which
is valid far &om the origin: ' '

(2rl e
@d(r) =

I

—
Iqv) r (14)

RI.I (k y, k ) =—

(ii) I ucovsky model

The R functions are then given by (k = k „+k, ):
(i) hydrogenic model



PHOTOIONIZATION OF SEMICONDUCTOR IMPURITIES IN. . . 13 455

(k,
)R(*

& (k s, k, ) =-
+ k2)2

o, (hu) = Chu) Q, (i/[hcu+Egoe

(21)

(iii) quantum-defect model

A(. l(k „,k, ) = C„v Z„(kv), (17a)

with

C„=4ir 2" vz I'(v + 1) (17b)

Z(p)=
p' (1+p') "'
x (—[1 + (v + 2)p ] sin[(v + 1) arctan(p)]

+ (v+ 1)pcos[(v+ 1) arctan(p)]) . (17c)

From these equations, we have all the information nec-
essary to compute the photoionization cross sections.
Due to the nature of these expressions, numerical cal-
culations have to be done. Before proceeding to these
evaluations, we look at asymptotic limits.

IV. ASYMPTOTIC LIMITS

37o, (ku) = ap(hu) 1 +
4 hcu+ Eg s~2

In this section we present asymptotic expressions for
the photoionization cross section [Eq. (10)] in the limit
of weak electric fields (hu/p2~s )) 1) for photon ener-
gies outside the neighborhood of the zero-field absorp-
tion threshold ([fuu + Eg!/p2~s )) 1). The derivation of
these expressions is outlined in Appendix B only for the
z-polarization case, the treatment of the x-polarization
case being similar.

In the z-polarization case, for photon energies above
the zero-field absorption threshold (~ ) !Eg!),we ob-
tain

For photon energies above [Eg[, Equation (18) shows that
the electric 6eld adds an oscillation pattern to the zero-
field curve. Below !Ed,!, Eq. (21) indicates that a weak
static 6eld induces an exponential redshift of the lower
absorption edge.

Equation (21) can be compared with the results ob-
tained by Coon and Karunasiri. In both cases an ex-
ponential tail is found, with identical dependence on the
electric Geld. The prefactor is, however, different. This
discrepancy is related to different final state envelope
functions. Coon and Karunasiri use 6nal state wave func-
tions that depend on the electric field and on the impurity
potential. Our 6nal state wave functions do not depend
on the nature of the defect. In the Lucovsky limit, their
final states are less sensitive to the impurity potential.
We then 6nd that our prefactor exhibits the same linear
dependence on the electric 6eld as in the expression given
by Coon and Karunasiri for a neutral defect. s

Our asymptotic results are also very similar to those
describing the photon-induced interband transition pro-
cess in presence of a static electric field. As can be seen
&om the expressions of Sec. 8.4 in Ref. 15, the static
field also induces oscillations and a redshift in this case
(Franz-Keldysh effects). The frequency of these Franz-
Keldysh oscillations is the same as in Eq. (18) if one
replaces the effective mass by the reduced effective mass
of the two bands involved. The exponential dependence
of the redshifts shows a similar concordance. The ampli-
tude of both effects varies linearly with the electric field
for the two processes. (Note that there is a misprint in
the asymptotic expression presented at the bottom of p.
272 of Ref. 15. There should be a 8& dependence of the

prefactor instead of the reported 8& dependence. )
l

Similar expressions can be derived for the x-

polarization case. For Ru &!Eg!,we find

&g p' Qi(i/[~+ Eg[) 4 ~4-+~4~"'

128 ir2 !Ru + Eg[s~2

(22)

(4 (Aced+ Eg)s~'l
!x cos !—

(3
and for Ru )!Eg!

(18)
lf 2

o(fuu) = op(hu)! 1+ . 7.(fute, Eg, p) !, (23)
where op(Aced) is the zero-field photoionization cross sec-
tion defined by

CRuN2
o.p(hu) = " (Ru+ Eg) Qi(/k'+ Eg) (19)

and Qi is defined in Appendix B [Eq. (B2)]. The latter
can be related to the R, functions given in the preceding
section by

Qi(k „)= —lim R, (k „,k, )/k, .

For bc' & !Ed,[, we obtain

where r(ho, Eq, p) contains an oscillating function, the
amplitude of the oscillations being independent of p.
We obtain again an oscillation pattern and a redshift.
But the amplitude of these eKects is of the order of
p/[Ru + Eg[ ~ smaller than it is in the z-polarization
case. For example, in the next section, we consider a de-
fect of ground-state energy Ep ———4 Ry' in the presence
of a static electric Geld characterized by p = 0.1. For
these values, we expect that the above effects (oscilla-
tions for her ) [Eg[ and exponential tail for Fur & [Eg[)
in the x-polarization case should be of the order of 8Q
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times smaller than for those found in the z-polarization
case.

V. NUMERICAL RESULTS

To illustrate our formalism, we consider a moderately
deep impurity level of energy Ed = —4Ry' (v = 0.5)
and a deep one of energy E" = —69.5Ry" (v = 0.12).
We evaluate the photoionization cross sections for static
electric-field magnitudes such that p = p, /10 and p =
p, /20 [p, is defined in Eq. (3)] in order to neglect field
ionization processes. This gives p values of 0.2 and 0.1 for
the —4 Ry* level and of 60.3 and 30.1 for the —69.5 Ry*
level. Using GaAs parametersi" (ao ——104 A, Ry'
5.39 meV), the above parameters would correspond to a
shallow level of 21.6 meV and a deep level of 375 meV.
For the shallow level, the applied electric fields would
then be 1.04 x 10 V/cm and 5.2 x 102 V/cm and for the
deep level, 3.14 x 10s V/cm and 1.57 x 10 V/cm.

From the asymptotic expressions of the last section, we
see that the magnitude of the oscillations is proportional
to the ratio y/[hu+E'[ ~ in the s-polarization case. Our
evaluated cross sections are of interest for photon energies
of the order of ~E"~. Consequently, the ratio y/~E'~s~
gives a rough estimate of the magnitude of these oscilla-
tions. The limiting ratio y, /[E~[ ~ = 1/(8v) is smaller
for a shallow defect than for a deep one, we thus expect
to see larger effects for the deep —69.5 Ry' impurity level
than for the —4Ry' one.

We Grst present photoionization cross sections based
on the quantum-defect model. They are given in Figs. 1

(—4Ry' defect) and 2 (—69.5 Ry' defect) for the z and z
polarizations of the incoming photon Bux. For compari-
son, we have also presented the zero-Geld cross sections.
The results for the z and z polarizations are different and
require a separate discussion.

In the s-polarization case [Figs. 1(a) and 2(a)], our cal-
culated photoionization curves agree very well with the
behavior suggested by the asymptotic expressions of the
previous section: appearance of a redshift of the lower
absorption edge and superimposition of oscillations on
the zero-Geld curve. As indicated by the electric-field de-
pendence of Eq. (18), the period and the amplitude of
these oscillations increase with the magnitude of the ap-
plied static electric Geld. Their amplitude decreases as
the photon energy increases. Their period is not constant
but also decreases with an increase in photon energy as
shown by the (her+ E")a~2 dependence of the oscillating
term of Eq. (18). Our asymptotic expression indicates
that the oscillation period should vary with the electric
Geld as p / This behavior is veriGed by our calculated
cross sections. In Fig. 3, we compare the asymptotic
cross sections [Eq. (21] for Ru & ~E"~ and Eq. (18) for
Aced & ~E'~) with the calculated one for the —4Ry' level
with p = 0.1. One can see that the agreement is nearly
perfect outside the neighborhood of the zero-Geld absorp-
tion threshold. Note that the two asymptotic expressions
have different values when Ru = [E'[, resulting in a mis-
match between the curves at that point.

In the x-polarization case [Figs. 1(b) and 2(b)], the

eKects are much smaller and almost negligible except
for very strong Gelds. This was already suggested by
the asymptotic expressions of Eqs. (22) and (23) where
the efFects were of much smaller amplitude than in the
z-polarization case. Physically this is reasonable since
the static electric Beld mostly deforms the Gnal extended
states along the z direction. Consequently, the dipolar
matrix element of Eq. (9) is much less affected by this
deformation in the x-polarization case than it is in the
z-polarization case.

Although not presented here, we have performed cal-
culations based on the Lucovsky approach for the same
parameters as above. This approach corresponds to the
omission of the Coulombic part of the impurity poten-
tial and the results should be identical to the quantum-
defect ones for an extremely deep impurity level (v &( 1).
For the defect energy considered, the zero-Beld cross sec-
tion takes smaller values in the Lucovsky case since the
ground-state envelope function is more localized. But the
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FIG. 1. Photoionization cross sections for the quan-
tum-defect inodel of the impurity potential with v = 0.5 (a)
in the z-polarization case and (b) in the z-polarization case.
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section. Qf 0.3?2 x 10 cm .
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tion is known to be strong in polar crystals and weak in
covalent semiconductors. Consequently, we expect this
effect to be small in Si, Ge, or in III-V compounds. Also
of interest to improve the above calculations are better
wave functions for the initial and final states. These im-
provements would help to extend the range of applicabil-
ity of our treatment.

ACKNOWLEDGMENTS

This research has been supported by the Natural
Science and Engineering Research Council of Canada
(NSERC) and by le Ministere de 1'Education du Quebec
[le Fonds pour la Formation de Chercheurs et 1'Aide
a la Recherche (FCAR)]. We would also like to thank
E. Kartheuser for stimulating discussions concerning the
quantum-defect model.

APPENDIX A

N
(g f ' ~~ ~ ik s-

2~+x/3 (A2)

Introducing this expression along with E~(r) [Eq. (4)] in
the definition of I (k, k„,e, ) [Eq. (12)], one can easily
get

NgNy +
I(.l(k, k„,e, ) =,~, e

Rz(k & k )
cos(kt)) R (k „,k, )

I

(A3)

where key k& + ky, is a polar angle defined in the

k -k„plane such that k = k „cos(kt)) and the R, (k „,k, )
and R (k „,k, ) functions are defined by

we rewrite the final state envelope functions [Eq. (6)] as

In this appendix, we show how each of the three-
dimensional integrals appearing in the definitions of
I (k, k„,e, ) [Eq. (12)] and of o(bc') [Eq. (10)] can be
reduced to one dimension.

Using the following integral representation of the Airy
function,

R, (k „,k, ) = 4 (r) e'" "dr
z

R (k „,k, ) = 4'(r) e'""dr'
ay

(A4a)

(A4b)

Ai(() = — '(' ) dk,
2x (A1) Now, using the parity of R, (k „,k, ) and R (k „,k, ) we

can rewrite

d fNgN +
Ii.l(k, kv, e, ) =

0

sin ~3
—" " R, k~y, k,

& dk, .
(
—i) cos(k) cos (

— ")R (k „,k, )
(A5)

Since the R functions can be evaluated analytically for
the three models of the impurity potential, we have re-
duced the three-dimensional integral appearing in the ex-
pression of I (k, k„,e, ) to a one-dimensional form that
can be easily evaluated numerically, except for very small
values of p.

Now, introducing Eq. [A5] into the definition of (r(fuu)
[Eq. (10)],one can easily perform the integration over the
k -k„plane. It is done by taking into account the polar
symmetry of the R~ (k „,k, ) and R (k „,k ) functions in
this plane. One then obtains Eq. (13).

I,(k, k„,e, ) = NgNy )
TL odd

ss/3

& ~'")

where

Q (k )= JO()z+ e'" +""" de

(B1)

(B2)

APPENDIX B

In this appendix, we derive the asymptotic expressions
of Sec. IV for the z-polarization case. These expressions
are valid for weak electric fields and for photon energies
far from the zero-Beld absorption threshold. We first
expand the Airy function of the final state in Eq. (12)
around z = 0 to get

and Ai("l(x) is the nth derivative of the Airy function.
Due to the radial syminetry of the 4(r)'s considered,
the integral defining Q (k „) only depends on k and

k„ through k~y = k2 + k„. Although defined for real

positive values of k „, the functions Q„(k „) can be ex-
tended to imaginary arguments. The resulting functions
are real valued.

Substituting Eq. (Bl) in Eq. (10), we approximate the
projection of the Brillouin zone in the k -ky plane by a
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o, (hu) = CRuNq Nf z.

X fr +Z, ( ) nys

(M+Es k', ) n odd ( 7

- 2

x Q„(gtko+ Eg —e, ) de, . (83)

circle of radius ks. Using the radial symmetry of Q„(k „)
in this plane, we integrate over k and k„ to get

o, (fuu) = C her Nd NJ: vr P ~

x ) Ai" (u) Ai (u)
(Aus+ Eg)

AiTA Odd ~2/&

(n+~)/3
x Q„(QRu + Eg + p ~ u)n! m!
x Q (Qku+ Eg+ p2~su) du . (84)

We expand the integrand around u = 0, leaving the
Airy functions unchanged. One can verify that, for the
4(r)'s considered, the term with n = 1 and m = 1 gives
the main contribution in the limits fuu/p2~s && 1 (weak
electric field) and (fuu + Eg(/p2~s && 1 (photon energy
outside the region of the zero-field absorption threshold).
Using asymptotic expansions of the integral

For weak electric 6elds, the integrand rapidly decreases
for negative values of e, . In the context of the efFective-
mass approximation, ~ + Eg —k&2 & 0 and the lower
bound can be extended to —oo. We develop the integrand
and make the change of variable u = —e/p ~2sto get

Ai' (u)du = —
[
—aAi' (a)

~ ~

3

+a'Ai'(a) —2Ai'(a) Ai(a)],

Eqs. (18) and (21) can be easily obtained.
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