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Monte Carlo simulation of the nonequilibrium phase transition in p-type Ge at impurity breakdown
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We report an ensemble Monte Carlo simulation of impact-ionization-induced impurity breakdown in

p-type germanium at liquid-helium temperatures. In our Monte Carlo simulation, the impurities are
treated as two-level systems (ground state and first excited state} exchanging particles with the continu-
um of free holes by capture and thermal generation from the excited level and by impact ionization from
both levels. From the simulation we directly obtain the experimentally observed negative differential

mobility and demonstrate the cooling effect of the impact-ionization process. For a detailed analysis of
the nonequilibrium phase transition between low and high conducting states we extract the characteris-
tic relaxation times of fluctuations exhibiting "critical slowing down" and a strong increase of the
current-noise spectral density in the phase-transition regime. Finally, we demonstrate that our Monte
Carlo simulations can be used for a quantitative investigation of the complex nonlinear dynamics of
current filaments in semiconductors.

I. INTRODUCTION

During the last ten years impurity breakdown in semi-
conductors' at liquid-helium temperature has been of
large interest both from experimental and theoretical
points of view. In the breakdown region, critical and
nonlinear dynamic phenomena have been found. Up
to now theoretical models which describe this nonequili-
brium phase transition have been based almost exclusive-
ly on approximate solutions of the Boltzmann equation,
e.g., on the method of moment equations. They are able
to explain qualitatively some of the experimentally ob-
served phenomena, but often fail to give particular details
such as, for example, the correct order of magnitude of
the measured quantities. On the other hand, these details
are closely connected to the microscopic physics in-
volved, and their analysis should allow one to discrim-
inate between difFerent theoretically derived microscopic
models. For example, concerning impact ionization, a
variety of different theoretical models for the impact-
ionization scattering rate ' lead to the same qualitative
behavior in the breakdown regime. Indeed, two aspects
of impact ionization, namely the fact that it is a process
with a threshold and that it is autocatalytic, are mainly
decisive for the impurity breakdown. But the quantita-
tive dependence of the impact-ionization rate on the elec-
tric field, and its inhuence on energy and momentum re-
laxation, are determined by the microscopic model.

It is the purpose of this paper to bridge the gap be-
tween the microscopic physics and the macroscopic non-
linear phenomena in the regime of impurity breakdown.
In particular, we present a detailed microscopic theory of
the scattering processes and generation-recombination
(GR) kinetics, which can be used in simulations of the
macroscopic spatiotemporal dynamics of current 61a-
ments as demonstrated recently in exemplary studies. "'

In previous work, ' we used a single-particle Monte

Carlo simulator to obtain the GR rate coefFicients
governing the dynamics between the band and impurity
levels under nonequilibrium conditions. However, a ma-
jor restriction of this analysis was that it considered only
a single impurity level, and therefore could not explain
S-shaped negative differential conductivity (SNDC) and
the formation of current 61aments. To improve the mi-
croscopic physics, here we extend this approach with
respect to several aspects: First, we now use a many-
particle Monte Carlo simulator which allows us to per-
form direct simulations of time-dependent processes and
to overcome some of the restrictive assumptions of the
previous single-particle version; second, we treat the im-
purities as two-level systems, which is a necessary prere-
quisite for the occurrence of SNDC and current filamen-
tation; and third, the modeling of impact ionization is
based on a microscopic model in which, in contrast to
previous work and along the lines of Ref. 14, the wave-
vector dependence of the matrix element is taken into ac-
count. This is important for the asymptotic behavior of
the microscopic scattering rate at high energies.

Impurity breakdown in semiconductors leads to an in-
crease of the free-carrier concentration by several orders
of magnitude. Such strong particle number variations
represent a diSculty for the conventional Monte Carlo
simulator. ' Time-dependent statistical weights for the
single electron can be used' to overcome the problem of
bad statistics in the prebreakdown regime on one hand,
and overly free-carrier numbers in the postbreakdown re-
gime on the other hand. Furthermore, strongly different
time scales for the scattering processes in the band con-
tinuum (10 ' s) and for the transition of carriers be-
tween the discrete impurity levels ( 10 s) require a
difFerent handling of free and bound carriers.

The paper is organized as follows: The GR model is
described in Sec. II. In Sec. III we introduce the Monte
Carlo technique and, in particular, explain the choice of
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time-dependent statistical weights and the handling of
the two bound levels in connection with the continuum of
free holes. Section IV presents the direct results of the
Monte Carlo simulation. In Sec. V we analyze the dy-
namics of fluctuations in the phase-transition regime
within a master-equation approach, where the transition
rates are obtained from the Monte Carlo simulation.
Critical slowing down is well reproduced in the relaxa-
tion rates of number fluctuations and in the low-

frequency noise spectrum. A nonequilibrium phase tran-
sition is often accompanied by characteristic features of
nonlinear dynamics such as spatial or temporal pattern
formation. In Sec. UI we give an example of how Monte
Carlo data can be used in the quantitative analysis of the
formation and dynamics of current filaments. Finally, in
Sec. VII we draw some conclusions. Details concerning
the calculation of the thermal generation and recombina-
tion rates are given in Appendix A, and the impact ion-
ization rates are derived in Appendix B.

II. THE GENERATION-RECOMBINATION
KINETICS

The low-temperature breakdown of doped semiconduc-
tors is based on the impact ionization of shallow-impurity
states. Therefore, one should expect an important
influence of the details of the impurity itself. However,
the impurity is normally treated as a simple one-level sys-
tem with a well-defined energy below the band edge. The
infinitely many hydrogenlike discrete states are thought
to be lumped into one. In this picture, the time that a
carrier remains trapped has the meaning of a mean trap-
ping time only. %ithin this strongly simplifying ap-
proach the occurrence of breakdown can be described;
however, details are often in contrast to experiments. Of
course, the exact treatment of all impurity states in a
Monte Carlo simulator under nonequilibrium conditions
is beyond the present possibilities. (Some results concern-
ing the dynamics at thermal equilibrium can be found in
Ref. 17.) Nevertheless it can be shown analytically that
the impurity must be treated at least as a two-level sys-
tem in order to describe the experimentally observed S-
shaped current-voltage characteristics in the breakdown
region. ' In the following we consider a p-type semicon-
ductor and use the hole picture.

On a macroscopic level, the carrier (hole) concentra-
tions in the three subsystems, i.e., the impurity ground
state (p„), the impurity excited state (p,2), and the
valence-band continuum (p) obey the following set of
rate equations

X1Pt2 1Pnt +X1PPt2+X1PPt1
~ S S

Pt1= X Pt1+ ~ Pt2 Xippti ~

The concentration p, 2 is fixed by the charge neutrality
condition p+p, 1+p,2=%& —Nz, where Nz is the accep-
tor concentration, ND &Nz the concentration of com-
pensating donors, and n, =N&+p the concentration of
ionized acceptors. Equation (1) is a balance of the rate of
change of the free-carrier concentration p due to thermal
generation from the excited impurity level (coefficient

Tsi=(8„,) =——f d k C„,(k)f(k),1

with p= f d k f(k). For low temperatures at thermal

equilibrium, where impact-ionization processes are negli-
gible, a carrier which is captured by the excited state
reaches the ground state with a very large probability.
This allows one also to apply the expression for C, ob-
tained within the "cascade capture model" (Refs. 10, 18,
and 19) (see Appendix A) in the case of a two-level model.
The generation rate Xi is then determined bg detailed
balance from the equilibrium coefficient T1 and the
thermal equilibrium concentrations p, p,2, and nt ac-
cording to

0 0

X = T =, T
ntp

0 1 Pea (4)

The calculation of the equilibrium concentrations from
statistical mechanics is given in Appendix A. The transi-

Xi ), its inverse process (capture coefficient Ti ), impact
ionization from the excited state (coefficient X; ) and
from the ground state (coefficient X, ). Equation (2) is the
balance for the impurity ground state, where the first
term (coefficient X') describes the thermal excitation of
holes into the excited impurity level, the second term
(coefficient T') the reverse process, and the third term
the transition to the band due to impact ionization. In
these rate equations the process inverse to impact ioniza-
tion, i.e., the Auger process, has been neglected. This is
justified as long as the impurity concentration is
sufficiently low, as is the case in the present studies. For
the same reason the carriers in the band are assumed to
be nondegenerate.

The problem, of course, is the determination of these
coefficients from microscopic transition probabilities un-

der nonequilibrium conditions. Many theoretical predic-
tions about nonlinear phenomena and chaos can be made
on the basis of Eqs. (1} and (2), but often the GR
coefficients are approximated by phenomenological func-
tions of some control parameter such as, e.g., internal
electric field or mean carrier energy. In a more micro-
scopic approach the coefficients depend on the carrier
distribution function and therefore can be calculated
from a Monte Carlo simulation. On the other hand, by
comparing the results of Monte Carlo simulations with
experiments, some constants in the microscopic formulas
may be determined.

For the Monte Carlo simulation we need the micro-
scopic transition rates between the impurity ground state,
the excited state, and the states in the band specified by
the wave vector k. Let us first concentrate on the
thermal excitation and trapping processes. Neglecting
the Poole-Frenkel effect, which describes the influence of
the electric field on the impurity states, the coefficients
T*,X', and X1 are independent of the field. The capture
coefficient T1 is obtained from the microscopic rate

8„,(k} for the capture of a carrier with wave vector k by
averaging with respect to the distribution function f(k}
of the carriers in the band according to
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tion probability per unit time of carriers from the excited
impurity level to the band state k is similarly determined
by detailed balance as

pg, „(k)= 0 &„,(k)f (k), (&)

with the equilibrium distribution function f (k). The
transition coefficients T' and X' between the impurity
levels are also related by detailed balance:

ac. em

total

ion impurity

. recomb

II t toll))&l

- ac. abs.

opt. em.

0X' Pt2

Te pp

10"
10 10 ' 10

F. (meV)

10'

Finally, the generation coefficient X' is fixed by the as-
sumption that, since the slowest step for a carrier to
reach the band continuum is to come to the first excited
state, the generation coefficient from the ground state to
the excited state in the two-level model is approximately
equal to the generation coefficient (Xl )""g" in the one-
level model:

Xe (XS )single
1 t

FIG. 1. The microscopic scattering rates as functions of the
carrier energy used in the Monte Carlo simulation: acoustic-
phonon absorption (ac. abs. ) and emission (ac. em. ), optical-
phonon emission (opt. em. ), ionized-impurity (ion. impurity),
impact ionization from ground (II ground) and excited (II exc.)
state, and capture (recomb. ). The rates are calculated for holes
in Germanium at a lattice temperature of 4.2 K {see Table I}.

which again is related to T, by detailed balance:

(XS )single —
( )singleTS

1 Jeff 1

given by
' IF„.I'IF., I' 64~

(q2+ $2)2 Ir(qt2+a2)4
(14)

where

(p ff)"" "=N, (Tz ) exp(E, /(kzzTL ))

is obtained in analogy with the two-level model (Appen-
dix A).

We are now left with the determination of the two
impact-ionization coefficients for the first and the second
impurity levels. They are related to the microscopic
impact-ionization scattering rate P," from the impurity
level t (t = t 1 and t2) according to

with q= —(k' —k) and q'= —(k"+q). Here F,„andF„,
are overlap integrals between two valence-band states,
and between a valence-band state and the impurity state,
respectively, E'p and e are the vacuum and relative static
dielectric constants, respectively, and A, is a screening
wave vector. Details of the derivation are given in Ap-
pendix B.

With the characteristic inverse impact-ionization
scattering time

X, =—f d k P (k)f(k),1

Xi =—f d'k P"(k)f(k) .

(10)

for k ~a, we obtain

The microscopic rates are given by

„

IM, I'fi[E(k )+E(k")
k' k" impurities

+E,—E(k)]f, , (12)

3+k a', & [q'+ ( t(./a, )']

with

qgr
= +Q(k /at ) —1,k

(17)

with the energy of the impurity level E, =(fi a, )/(2m„),
expressed in terms of an effective Bohr radius a„the
effective mass in the valence band m„,and the interaction
matrix element M, . Again nondegenerate statistics are
assumed, 1 —f(k')=1 and 1 —f(k")=1, and the sums
run over all final band states k' and k". The occupation
probability f, of state t satisfies

f, =p, V (t=t, , t, ),
impurities

where Vis the volume of the crystal.
Assuming an impurity wave function similar to the hy-

drogen ground state, the square of the matrix element is

q = —Q(k/a, )
—1,k

and P,.',"(k)=0 for k (at. The function h(q) is given in

Appendix B. The remaining integration can only be done
numerically, and the results for the first and the second
impurity levels are shown in Fig. 1.

III. THE MONTE CARLO TECHNIQUE

We have performed calculations for the case of p-type
Ge at 4 K. In this temperature range the relevant
scattering processes are elastic scattering from ionized
impurities, inelastic acoustic and optical deformation po-
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tential scattering, capture by and thermal generation
from the excited impurity levels, and impact ionization
from both ground and excited impurity levels. The mi-
croscopic rates of these scattering processes are shown in
Fig. 1. A single band, the heavy-hole band, is taken in
the spherical parabolic approximation. In addition to
these processes which involve free carriers, our ensemble
Monte Carlo simulator accounts for the thermal transi-
tions of the bound carriers between ground and excited
impurity levels. It should be emphasized that we distin-
guish between the microscopic scattering and transition
rates of the individual carriers (Fig. 1), which are used as
input in the Monte Carlo procedure, and the macroscopic
GR rates, which are obtained as a result of the simula-
tion. The GR coefBcients T&, X&, and X& are calculated
from Eqs. (3), (10), and (11) using the distribution func-
tion f determined by the Monte Carlo simulation. The
GR coefficients Xi, X*, and T', however, are (for nonde-
generate statistics, and neglecting the Poole-Frenkel
efFect) independent of the electric field and the distribu-
tion function, and can therefore be used as constant input

parameters. Their value is determined from detailed bal-
ance arguments in thermal equilibrium, as discussed in
Sec. II and Appendix A. All parameters of the simula-
tion are summarized in Table I. Further details of a gen-
eral Monte Carlo simulator can be found in Refs. 15, 21,
and 22.

In the following we concentrate on the description of
our treatment of the large density variations in the
phase-transition regime, and of the very different time
scales involved in the problem. To overcome the
difficulties introduced by the large free- and bound-
carrier density variations, each particle i (which we will
call quasiparticle in the following) of JVo total particles of
our simulation represents a time-dependent statistical
weight G, (t }with

JVO

g G;(t ) =A„=V(X„ND), — (19)
i=1

where JP& is the effective number of available carriers.

With auxiliary functions 8;(t), 8,"(t ), and 8,' (t ), which
are equal to 1 if particle i is in the valance band, the im-

purity ground state, and the excited state, respectively,
and equal to zero otherwise, the densities in the three
subsystems can be written as

JVO

p(r)=V ' Q G(r)8(r),
i=1

0

p„(r)=V ' g G, (t)8,"(r),
i=1

p„(r)= V ' g G,.(r )8';2(t ) .

(20)

(21)

(22}

The distribution function of the free carriers reads

JVO

f(k, r)=V ' g G, (r)8, (r)5[k —k, (r)], (23}

where Ak;(t } is the crystal momentum of particle i at
time t Th.e statistical weight G, (t ) is kept constant until
the number of quasiparticles in the valence band

JVr„,(t)=g, ',8,(t) falls below JV;„orexceeds JV,
„

JVO

with 0 &JV;„&JV,„&JVo. In that case the quasiparticles
are redistributed according to a statistical method report-
ed in Ref. 16, and thus a new distribution of quasiparti-
cles is generated with unchanged statistical properties.

Besides the large density variations, the second
diSculty is the presence of strongly different scattering
rates for the relevant scattering processes. Fast intra-
band processes such as impurity scattering which are
mainly responsible for the mobility of the carriers occur
on a time scale of 10 ' s. In contrast to this, the time
scale related to a transition by thermal excitation of a
carrier from the ground state to the excited state of the

impurities is about 10 s. The resulting extreme ratio of
the time scales does not permit a direct simulation of all
processes. However, since the carriers in each bound
state are indistinguishable, we do not need to observe
each particle in the bound states individually, but only

TABLE I. Material parameters for p-type Ge at TL =4.2 K used in the simulations (Ref. 15).

Effective mass
Crystal density
Sound velocity
Optical-phonon temperature
Relativistic static dielectric constant
Acoustic deformation potential
Optical deformation potential
Equilibrium capture coefficient
Excited-state generation coefficient
Ground-state generation coefficient
Ground-state relaxation coefficient
Energy of the acceptor ground
state
Energy of the acceptor excited
state
Acceptor concentration
Donor concentration

m, =0.346mo
po=5. 32 g/cm'
u =3.93 X 10 cm/s
Qcopp /kg 430 K
@=16
El =4.6 eV
do/ao=7. 12X10' eVcm

T, =6.5X10 ' cm's
Xs—] 4QX ]06 1

X*=1.00X10 ' s
T*=7.21X10 s

E& =12 meV

E2 =3 meV

N& =10' cm
= 10' cm



13 412 W. QUADE, G. HUPPER, E. SCHOLL, AND T. KUHN

their total statistical weights:

(24)

(25)

Thus, if we are interested only in mean values, we can
neglect the statistical fluctuations of the carrier densities
and take care of the most critical processes (transitions
between the bound states) in terms of rate equations
without loss of microscopic information. For the Monte
Carlo simulation this means that the particles do not
make transitions between the bound states (due to
thermal excitation and relaxation), but their total statisti-
cal weights change continuously according to the rate
equations'

10 '

I 10
B

t

10
10 '

mean energy {100K)
drift velocity (10cm/s)

V~A
V~INA
mobility {10cm /Vs)

10 10'
el. field (Vlcm)

10

FIG. 2. Mean values of the carrier energy E (expressed in

units of 100 K in terms of a carrier temperature k& Tz =E), the
drift velocity v in units of 10 cm/s, the free-carrier concentra-
tion p/N&, the concentration p, &/N& of the excited impurity
level, and the mobility in units of 10 cm /V s as functions of the
electric field.

G„=+T'G,z —Xd
(26)

'G,2= —T G,2,
+X'G (27)

The prime at the time derivative indicates that these rate
equations describe only the inhuence of the exchange of
particles between the bound states. The additional
change of the statistical weights due to impact-ionization
processes and other band-impurity transitions is then ob-
tained from the Monte Carlo simulation.

IV. SIMULATION RESULTS

In the breakdown regime a Monte Carlo simulation
faces serious problems, some of which have already been
mentioned in the previous sections. When using a two-
level model for the impurities, additional diSculties arise
due to the fact that then the carrier-density-voltage
characteristic may in principle be S shaped, ' depending
on the degree of the compensation. In this case, for cer-
tain fixed values of the electric field, there exist unstable
stationary states as well as possibly oscillatory instabili-
ties induced by Auctuations. Since the Monte Carlo
simulator represents the physical system including noise,
all these features may occur in the simulations. In order
to obtain a stable static characteristic for the mean
values, we have chosen a compensation ND suSciently
small (see Table I) such that no S shape occurred

The steady-state values for mean energy E, mean veloc-
ity v, and carrier densities of the three subsystems p, p, &,

and p, 2 are shown in Fig. 2 as functions of the electric
field @. The threshold behavior of the free-carrier density

p at 4 = 1.8 V/cm is clearly seen, reAecting the nonequili-
brium phase transition from a low- to a high-conductivity
state. In contrast to the monotonic increase of p, the car-
rier density in the excited impurity leve1 p,2 first also in-

creases sharply, but then, for higher fields, decreases
again. The reason is that at very low fields all carriers are
found in the ground state of the impurities; consequently

p and p, 2 are small. Then, with increasing field, impact
ionization from the ground state sets in, p rises and, due

to thermal recombination, so does p,z. Finally, the densi-

ty in the excited level decreases due to stronger impact
ionization. For the drift velocity U we first obtain, in the
prebreakdown regime, an almost linear increase with
respect to the field and then, immediately after the strong
rise in the carrier concentration p, a range of negative
differential mobility dv/d h. The reason is the enhanced
ionized impurity scattering in that regime, which leads to
a decrease in the momentum relaxation time. On the
other hand, the plateau in the field dependence of the
mean energy in the same field region just above threshold
is due to the eIcient cooling by impact-ionization pro-
cesses. The phenomenon that in the breakdown regime
the mean energy remains constant and the mean velocity
even decreases as a function of Geld, is not at all obvious.
It is an elaborate result of our detailed microscopic simu-
lation. It was not obtained in our previous Monte Carlo
simulation with a single impurity level, ' but has indeed
been found experimentally for low compensation. "' We
stress that it is characteristic of the impact-ionization-
induced impurity breakdown.

The coefficients X„X&, and T
&

(obtained from the
Monte Carlo simulation) multiplied by the acceptor con-
centration N„are shown in Fig. 3 together with the in-

verse momentum (r ') and energy (r, ') relaxation times

as functions of the electric field 8. The impact-ionization
rates strongly increase with increasing field due to the
heating of the carriers. The capture coeScient T, gen-

erally decreases with increasing field because less carriers
are in the region with small energies from where they can
recombine with high probability (see Fig. l). The pro-
nounced local maximum at about 4 V/cm again is a
consequence of impact ionization. In this field range, due
to strong impact ionization, many carriers are scattered
back to the band minimum. The generated carriers, as
well, are placed near that minimum, enhancing the occu-
pation probability at low energies and consequently the
recombination probability.

It is interesting to fo11ow the time evolution of the
model system from an initial value to its stationary state
in the region close to breakdown (Figs. 4 and 5). Due to
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FIG. 3. Inverse momentum (~ ') and energy (~E') relaxa-

tion times, and impact-ionization coefficients from the ground
level (X&) and the excited level (X& ), and capture coelcient
( T& ) as functions of the electric field.

the critical slowing down of characteristic relaxation
times in this regime, which will be discussed in Sec. V,
very long times for the relaxation of the system into the
steady state can be expected at breakdown ( 8= 1.8
V/cm). This is clearly seen in Fig. 4(b), where the system
needs about 25 ps to reach the steady-state carrier con-
centration. Relaxation to the steady state occurs at least
one order of magnitude faster in Fig. 5(a}, where the sys-
tem is well above threshold. In Fig. 5(b} the correspond-
ing mean energy behavior is shown. In the transient re-
gime most carriers are still in the ground state of the im-

purity. Impact ionization is weak, and does not yet have
much influence on the mean energy. The generated car-
riers recombine into the excited state of the impurity,
which becomes more and more occupied. In the station-
ary state there is mainly a balance between thermal
recombination and impact ionization from the excited
state. The cooling due to the latter process leads to the
reduction of about 10% of the mean energy compared to
its initial transient value.

V. NOISE ANALYSIS

10 '

g0 -13—

0 10 20 30 40 50
time (ps)

10

10
10 20 30

time (ps)
40 50

FIG. 4. Free-carrier concentration p as a function of time for
an electric field (a) in the prebreakdown regime (1.3 V/cm) and
(b) at breakdown (1.8 V/cm). The simulations start with an ar-
bitrarily chosen initial concentration ofp /N„=3 X 10

The relaxation from an initial state to the stationary
state shown in Figs. 4 and 5 gives direct evidence that

10

2 4 6 8 10
time (p,s)

FIG. 5. (a) Free carrier concentration p and (b) mean energy
E (in units of Tq with E=k&Tq) as a function of time for an
electric field in the postbreakdown regime (3 V/cm).

the characteristic time scales close to breakdown are
slowed down strongly. This "critical slowing down"
(Ref. 1) can be analyzed more quantitatively by looking at
fluctuations from the steady state. Therefore, in this sec-
tion we present an analysis of the noise properties of the
system. We use the technique explained in Ref. 13, here
applied to the case of two bound states at the impurities.
The current correlation function, which describes the
electrical noise of the system, is decomposed into two
parts; the contribution due to velocity fluctuations and
the contribution due to fluctuations in the number of car-
riers in the band according to

(5I(0)5I(t ) )

Lz [(JV) (5v(0)5v(t))+(v ) (5JV(0)5JV(t))],

(28)

where JV(t ) denotes the number of carriers in the band,
v(t) their drift velocity, L the length of the system, and
5x(t ) =x(t ) —(x ) is the actual deviation of a quantity x
from its mean value. The velocity contribution is mainly
governed by scattering processes inside the band; transi-
tions between the ground state and the band play only a
minor role. Its Seld dependence in the present two-level
case practically coincides with the one-level model dis-
cussed in detail in Ref. 13. Therefore, here we will con-
centrate on the second contribution.

The calculations of the number fluctuations are based
on the master-equation approach, with transition
coeScients obtained from the Monte Carlo simulations.
The state of the system is characterized by the number of
carriers in the acceptor ground state JV„and the band JV.
The number in the excited state JV,2 is fixed by particle
conservation, A;, +JV,2+ JV=(N„ND) V. In order —to
calculate the number contribution to the current noise,
we need the equations of motion for the correlation func-
tions. They are obtained from the rate equations [Eqs. (1)
and (2)] by linearization:
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—(5JV(0)5JV(t ) )
dt

s~& and s~ corresponding to the relaxation times ~, and

~2 according to

= —a» ( 5JV(0)5JV(t ) ) —a, z (5JV(0)5JV„(t) ), (29)

—(5JV(0)5JV„(t) )

= —
az& (5JV(0)5JV(t ) ) —

a&2 (5JV(0)5JV„(t) ), (30)

with with

4 V

4pe V

L 2z [s,(f )+sJv, (f)+s~(f )), (42)

a„=X)+T)(n,+p) —X) (p, q
—p) X,p-„,

a, ~ =X]+(X) —X) )p,

a2, = T*+X,p„,
a22 = T*+X*+X&p

(31)

(32)

(33)

(34)

sJv, (f ) =[c,(5JV )+c,(5JV5A;, )],, (43)
1+(2m fr, )

s (f)=[(1—c, )(5JV ) —c (5JV5JV„)]
1+(2rtf r2)

(44)

=(c, (5JV ) +c2(5JV5JV„)) exp
7

+ [(1—c, )(5JV ) —c2 (5JV5JV, ) ) ] exp ——(35)
72

with the expansion coefficients c, =(a» r2 ')I—
(r, '

r2 ') an—d cz=a&zl(r, r2 '). In contrast to the
case of the one-level model, ' here the decay of number
fluctuations occurs on two time scales. In order to deter-
mine the initial values of the correlation functions, the
variances are needed. From the master-equation ap-
proach the equations of motion for the variances are ob-
tained according to

—(5JV ) =b, —2a„(5JV) —2a,2(5JNJV„),d
(36)

The time evolution of the two correlation functions is
therefore governed by two relaxation times ~& and ~2, the
eigenvalues of the matrix a;, and the autocorrelation
function of number fluctuations is given by

(5JV(0)5JV(t ) )

In Fig. 6 the characteristic relaxation rates ~&
' and ~2

'

are plotted as functions of the electric field. For compar-
ison, the dotted lines show recombination and impact-
ionization rates. At fields below 1 V/cm, r, agrees per
fectly with the recombination rate T&ND from the band
to the excited level of the impurity (below the breakdown,
the concentration of ionized acceptors is equal to ND),
and ~2 agrees with the rate from the excited to the ground
state of the impurity. All generation rates, thermal as
well as impact ionization, are much smaller and therefore
do not influence the relaxation of number fluctuations.
Well above the breakdown, on the other hand, the dom-
inant processes for this relaxation are impact ionization
from the ground state and from the excited states. The
relaxation rates agree with the impact-ionization rates of
carriers in these two states. (The concentration of car-
riers in the band which can perform impact ionization is
approximately N„ND)In —the b. reakdown region, in
general the rates are influenced by all processes and, in
particular, ~, ' becomes very sma11 at the phase transi-
tion. Due to this critical slowing down, the fluctuations
at this point decay more than two orders of magnitude

—(5JV5JV„)=b, —„(5JV) —( „+„)(5JNJV„)
dt

—a„(5JV'„),
—(5JV„)=b, —2a„(5JV5JV„)—2a22(5JV„),d

(37)

(38)
10

with

b) = V(XiP,2+XiPP,2+ TiPn, +XiPP, i },
b2= V(Xap~i»—
b3= V(T'p, 2+X*p„+X,pp„).

(40)

(41)

10

10

10

, (N„-N,):

10
el. field I'&&cm)

I

10 10

The variances then can be calculated as steady-state solu-
tions of Eqs. (36)—(38).

The noise current spectral density SI as a function of
frequency f is obtained from the current correlation
function according to the Wiener-Khintchine theorem by
Fourier transformation. ' lt can be decomposed into a ve-
locity contribution s„(f) and two number contributions

FIG. 6. Characteristic relaxation rates v&
' and v&

' for car-
rier number fluctuations as a function of the electric field. Close
to the phase transition ~&

' exhibits a pronounced "critical slow-
ing down. " For comparison, capture and impact-ionization
rates are included as dotted lines, which make it evident that
below the breakdown the relaxation rates are determined by
trapping processes, and above the breakdown by impact-
ionization processes.
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FIG. 7. Contributions to the low-frequency value of the noise
spectral density as a function of the electric field. Close to the
phase transition the contribution due to number fluctuations as-
sociated with the relaxation time ~& increases by several orders
of magnitude and then strongly decreases with increasing field

due to the almost complete ionization of impurities. The contri-
bution associated with ~2 is always negligible.

slower than at low fields, and more than three orders of
magnitude slower than at high fields.

In Fig. 7 the three contributions s„(0),s~i(0} and

s~(0) as well as the total value of the low-frequency
noise spectral density s(0} are shown as functions of the
electric field. The velocity contribution has been taken
from the single-particle simulations in Ref. 13. We note
again the strong increase in noise at the phase transition

by more than four orders of magnitude, which is partly
due to the increase of ~, and partly due to an increase in

the variances. We further note that the contribution with
relaxation time ~2 is always very small and therefore will

not be visible in the spectrum. When comparing the re-
sults obtained here within the two-level model with the
corresponding results obtained within the one-level mod-
el (Fig. 6 in Ref. 13), we find that in the present case the
number contribution falls below the velocity contribution
at much lower fields. The reason is that the ionization of
the impurities above breakdown is much more efficient in
the two-level case. The carriers which are trapped in the
excited state have a very high probability of being excited
back into the band due to the high impact ionization rate
from this level, and only a small probability to relax into
the ground state in which the impact ionization is two or-
ders of magnitude less efficient (see Fig. 1). This strong
generation rate is missing in the one-level model.

VI. NONLINEAR DYNAMICS

In this section we present an example of how transport
coefficients obtained by our Monte Carlo simulation can
be used for a quantitative analysis of the nonlinear spa-
tiotemporal dynamics often associated with the none-
quilibrium phase transition at impurity breakdown. ' In
particular, we study the formation and dynamics of
current filaments, i.e., self-organized spatiotemporal
structures characterized by a current Bow which is inho-
mogeneously distributed in the direction transverse to the
electric field. For the numerical analysis the field depen-
dences of the GR coefficients obtained from the Monte

FIG. 8. GR coeScients obtained from the Monte Carlo
simulation together with the analytical fit functions X&(C) (full

line), X& (8) (dashed line), and T& (6) (dotted line) used in the
analysis of the nonlinear spatiotemporal dynamics.

Carlo data have been fitted by smooth analytical func-
tions as shown in Fig. 8, and then inserted into the mac-
roscopic semiconductor transport equations. "" In-
creasing the concentration of compensating donors to
5X10' cm, the system of equations (1) and (2) yields
an S-shaped carrier density versus electric-field charac-
teristics [see Fig. 9(a)]. This leads to an S-shaped
current-voltage characteristic [Fig. 9(b)] with a negative
differential conductivity branch. The inset of Fig. 9(b)
shows a measured characteristic revealing very good
agreement with our calculations. For comparison, the
characteristic previously calculated from a simple rate
equation model with a single acceptor level and phenom-
enological capture and impact-ionization rates is plot-
ted in Fig. 9(c), exhibiting no negative differential con-
ductivity. It should be noted that S-shaped negative
differential conductivity in the two-level model [Fig. 9(b)]
arises only if the compensation NnlN„exceeds a
minimum value, and it becomes the more pronounced the
higher the compensation is. ' Under such conditions,
complex and often chaotic temporal behaviors of the
current or voltage are possible. While spatially homo-
geneous conditions are sufficient to explain the physical
origin of oscillatory instabilities under the simultaneous
action of crossed electric and magnetic fields by the dy-
namic Hall effect, the investigation of moving filaments
which have also been experimentally observed under
those conditions ' requires an extension of rate equations
(1) and (2) to the spatially inhomogeneous case. In Ref.
12 a semiconductor model has been presented which ex-
tends the dynamic Hall effect to filamentary conduction.
In that model, traveling and breathing filaments can be
obtained. Figure 10 shows density plots of the carrier
concentration n(z, t) for different values of the magnetic
field. The sample is W=60 pm wide and has triangular
contacts (which may also serve as a model for nonideal
planar contacts) spaced La=180 pm at the center and
Lo+L'=246 JMm at the borders. The magnetic field is
applied perpendicular to this plane. The applied current
density jo is chosen in the regime of negative diS'erential
conductivity [Fig. 9(b)]. For small magnetic fields the
filament remains near the center of the sample, and shows
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asymmetrically breathing filament boundaries [Fig.
10(a)]. For increasing magnetic fields the breathing
transforms into regular transverse motion in the direction
of the Lorentz force, some way toward the borders of the
device where the filament is destroyed. Small regular
current oscillations arise due to the periodic nascence and
destruction of traveling filaments [Fig. 10(b)]. This
motion becomes irregular and chaotic by a further in-
crease of the magnetic field [Fig. 10(c)]. Finally, at still
higher magnetic fields, the filament is pinned at the
boundary after some transient traveling sequences [Fig.
10(d)]. Such complex behavior agrees well with recent
experiments on p-Ge at impurity breakdown. The
Monte Carlo data of Fig. 8 have been used in further
simulations of the complex spatiotemporal dynamics of
current filaments with' ' and without" magnetic
fields.

0.9- (a)

& 06-

v

VII. CONCLUSIONS

We have presented a detailed microscopic analysss of
the low-temperature breakdown of p-type Ge based on
im act ionization from shallow acceptors. The impuri-Impac Io
ties have been treated within a two-level mode . eI. We have
derived an expression for the impact-ionization ra es
from both levels which includes the wave-vector depen-
dence and thus exhibits the correct asymptotic energy
dependence. These microscopic rates, as well as phonon
and impurity scattering and the thermal excitation and
trapping ra es, ent then have been used as input for ensern le
Monte Carlo simulations of the carrier dynamics. Time-
dependent statistical weights have been introduced to
overcome the difhculties associated with the strong varia-
tions in the carrier concentrations before and after the
breakdown, and with the largely different time scales of
scattering and thermal generation processes. From sirnu-
lations we have obtained the mean values of velocity, en-

ergy, and carrier concentrations in the various levels, as
well as the energy and momentum relaxation times, an

A distinctthe generation-recombination coeScients. A
effect of cooling and of negative differential mobility due
to impact ionization has been found. An analysis of the
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FIG. 9. (a) Carrier density p and (b) current density jo as
f tions of the electric field 8 obtained from Eqs. (1) and (2)unc ions o

th fficients from the Monte Carlo simulation i ig.using t e coe cien
=5X10' cm In (b)and an enhanced compensation of ND =5X10 cm . n

the inset shows a current-voltage characteristic measured in p-
Cie at 4.18 K with a 100-kQ load resistance (Ref. 24). (c T e
current density as a function of the electric field calculated from
a phenomenological one-level model (after Re . ).f. 25.

FIG. 10. Density plots of the carrier concentration p as a
function of the coordinate z transverse to the e ecctric field, and
o time orf t for different values of the magnetic field. T e gray in-

a g=11 mT, (b)t it is proportional to the carrier density. (a) = m
%=15 mT, (c) %=20 mT, and (d) %=25 mT. Nume p-

F 9 'th =0.85 mA/cm2. For simplicity arameters as in ig. wi jo —.
~ ~

constant mo i ity p=b'1't =10' cm /Vs has been used, whic is
smaller than in Fig. 2 because of increased ND. The inset s ows
the sample configuration with triangular contacts.
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time evolution from an initial state to the steady-state
solution directly revealed the slowing down of relaxation
times at the nonequilibrium phase transition. This criti-
cal slowing down, accompanied by a strong increase in
the noise power spectrum, was analyzed quantitatively by
investigating the dynamics of fluctuations within master-
equation formalism. Finally, we have used the GR
coefficients obtained from the Monte Carlo simulations
for a quantitative analysis of the formation and dynamics
of current filaments in the presence of a transverse mag-
netic field.

The main differences between this model and previous
work which used rate equations with simple phenomeno-
logical GR coefficients' is that, in addition to improved
impact ionization rates and electron heating effects we
can provide a detailed account of the complicated non-
monotonic dependence of the capture rate (Fig. 3) and
the mobility (Fig. 2) upon the electric field in the break-
down regime, which has indeed been found experimental-
ly. This is due to the elaborate microscopic physics con-
tained in the various scattering and GR processes, and
their mutual nonlinear interactions. %ith respect to our
previous single-particle Monte Carlo simulations using a
one-level model, ' the main improvements are the follow-
ing. First, the two-level model can reproduce S-shaped
negative differential conductivity and current filamenta-
tion, including their rich complex nonlinear dynamics.
Second, a plateau in the field dependence of the mean en-

ergy due to impact-ionization cooling, and a decrease in
the drift velocity due to enhanced ionized-impurity
scattering, occur in the impurity breakdown regime.
Third, the temporal development of the carrier density
and its critical slowing down near the nonequilibrium
phase transition can be directly followed in our ensemble
Monte Carlo (MC) simulations. Limitations of our model
include the neglect of higher excited states of the accep-

I
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APPENDIX A:
THERMAL GENERATION AND RECOMBINATION

Here we will give some details concerning the genera-
tion and recombination coefficients T&, X&, T', and X'
for the case of an impurity with two discrete levels. The
"cascade capture model" (Refs. 18 and 19) gives the
probability per unit time at which a free carrier with en-
ergy E is captured into the ground state of an attractive
impurity:

P„,(E )=n, C„,(E), (Al)

where n, is the density of attractive impurities, i.e., ion-
ized acceptors. The microscopic capture coefficient
C,«(E) in the cascade capture model is given by'

C„,(E )= H(x ),Ak o&

PtlU x

with x =2E/(m„u ),
r1=2~E'~/(m„u ),

(A2)

y=2ksTz /(m„u ),

tors, the Poole-Frenkel effect, and effects of degenerate
statistics or dynamical screening. However, in the regime
considered these approximations appear to be appropri-
ate. A further improvement of our model can be ob-
tained by determining the GR coefficients also in the re-
gime of negative differential conductivity directly from a
MC simulation.

H(x)= x+q ~ 1 —1+q y exp —g y
3 dn

o l+ x+g 4 —x 1 —exp —x+p y
(A3)

and the cross section for the p-like excited state) the grand partition function is
given by

(EO )2
CT

3 4~zoo Po
(A4) 1:"=g Z„A,",

r=0
(A5)

Here m, is the effective mass, TI the lattice temperature,
E, the acoustic deformation potential, po the crystal den-

sity, and u the longitudinal sound velocity. Using thiss'
rate, the equilibrium recombination coefficient T

&
can be

calculated according to Eq. (3) by taking f(k) as the
equilibrium distribution function.

For the calculation of the generation rate X, according
to Eq. (4), we need the equilibrium concentrations p, p,2,
and n, . Therefore, we calculate the grand-canonical par-
tition function " for the case of a two-level impurity,
which can be occupied by r =0 or 1 carriers in the energy
levels EI, l = 1 and 2. Assuming the degeneracy to be g„i
(g» =2 due to spin for the s-like ground state and g, 2 =6

p(1,1)=:- 'g&IA, exp
B TL

(A6)

The equilibrium density of acceptors with state I occu-

where

A, =exp(EF/ks TI ),
Zo= l,
Z] =/I =]g]/ exp( EI/kg Ti. }

and EF is the Fermi energy. The probability p(1,1) of
finding state I occupied is given by
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p, &
=Sz = '2 exp

E —E
kB TL

EF—E2
p, 2 =X~:- '6 exp

B TL
(A8)

and consequently the densities of occupied (p, =pti +pt2 )

and vacant (n, =N~ —p, ) acceptors are given by

pied (by holes) is obtained by multiplying the probability
p(1, I ) by the acceptor concentration Nz ..

APPENDIX B: THE IMPACT-IONIZATION MODEL

Following the ideas of Robbins and Landsberg we
present here a model for impact ionization from impuri-
ties. In contrast to their analytical models, as well as to
the widely used Keldysh model, ' (but similar to Ref. 28},
we account for the wave-vector dependence of the Inatrix
element for the electron-electron interaction. The matrix
element for impurity impact ionization is

M, =f d x f d y 1(,*(k",x)g„'(lt',y)

p, =iY& )+exp
—E +E*F

kB TL
(A9) X V(x, y)g, (k, y)g, (x), (81)

n, =p, exp

where

—EF+E*
kB TL

(A 10)

describing the transition of a carrier out of state k into
state k' by simultaneously exciting the bound carrier g,
into the band state k". The interaction occurs via the
screened Coulomb potential

—E 1 2E'= —kBTL ln 2exp
k T

+6exp
B L B L

(A 1 1)

The equilibrium carrier density in the valence band is
given by

1 e
V(x, y)= exp[ —

A, Ix —yI] .
4~@@0 I

x y I

(82)

For the calculation we assume a spherical parabolic semi-
conductor and use Bloch waves for the states k, k', and
lt". The bound state g„which is in principle orthogonal
to all band states, is approximated within the envelope
function approach by a hydrogenlike function according
to

0
p =N„(TL) exp

B L

with the effective density of states

(A12)

g, (x)=u, (x) a, i exp[ —a, IxI],
~Fr

(83)

2(2am„ksTL )
N, (TI )=

(2m')
(A13)

E2-
p,&= 1+—,

' exp N, (TL) exp
B L

and the Fermi energy is then fixed by charge conserva-
tion p +p, =N„ND. Thus —for p,s in Eq. (4) we obtain

where u, is a function with the periodicity of the lattice.
The coefficient a, =+2m, IE, I/A' is an inverse effective
Bohr radius of the bound state, and E, is the binding en-

ergy of the impurity level. With these functions the ma-
trix element can be calculated analytically and the result
for IM, I is given in Eq. (14).

The impact-ionization rate is then calculated according
to Eq. (12), leading to Eq. (16), where the function

(A14)

and X& can be calculated.
Finally we need to know the coefBcients T* and X*

which determine the transition rates between ground and
excited impurity levels. Their ratio is given by (6) with

0
P2 Ei —E2

0 3 exp (A15)
p~& B TL

following from Eqs. (A7) and (A8).

h(q)= B
C —4q B

C +4q B 4C (q +1)—
C —4q B

+—', [arctan(B —
q }+arctan(B+q)], (84)

with B=[(qM —q)(q —
q )]'i and C=[B +q +1]'

has been introduced.
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