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The Poisson equation for the electrostatic potential in a solid is solved using three different cel-
lular techniques. The relative merits of these different approaches are discussed for two test charge
densities for which an analytic solution to the Poisson equation is known. The first approach uses
full-cell multiple-scattering theory and results in the familiar structure constant and multipole mo-
ment expansion. This solution is shown to be valid everywhere inside the cell, although for points
outside the mufBn-tin sphere but inside the cell the sums must be performed in the correct order to
yield meaningful results. A modification of the multiple-scattering-theory approach yields a second
method, a Green-function cellular method, which only requires the solution of a nearest-neighbor
linear system of equations. A third approach, a related variational cellular method, is also derived.
The variational cellular approach is shown to be the most accurate and reliable, and to have the best
convergence in angular momentum of the three methods. Coulomb energies accurate to within 10
hartree are easily achieved with the variational cellular approach, demonstrating the practicality of
the approach in electronic structure calculations.

I. INTRODUCTION

The electrostatic potential V(r) resulting from a
charge density p(r) is given by the Poisson equation

V'2V(r) = -4vrp(r).

The solution of the Poisson equation is an integral part of
modern electronic structure calculations. A typical elec-
tronic structure calculation utilizes an iterative process
in which the Schrodinger equation is solved and its so-
lutions are used to generate a charge density. The Pois-
son equation is then solved for this charge density and
its solution, the electrostatic potential, is used to recon-
struct the potential needed for the next iteration of the
Schrodinger equation.

Although many techniques can be used to solve the
Poisson equation as part of an electronic structure cal-
culation, the procedure which is adopted in practice is
often determined by the form of the potential required
for the Schrodinger equation and by the form of the
charge density that is output from the Schrodinger equa-
tion. Thus in techniques, such as the pseudopotential
approach, which employ plane wave representations of
the wave functions, it is convenient to use Fourier trans-
form techniques to solve the Poisson equation. In the
augmented plane wave technique and its derivatives, the
wave function is expanded in spherical harmonics inside
muKn-tin spheres surrounding each atom and in plane
waves outside of these spheres so that it is convenient to

use a similar mixed representation when solving the Pois-
son equation. 2 In this paper we shall discuss techniques
for solving the Poisson equation that are appropriate for
electronic structure calculations which employ the mul-

tiple scattering approach.
In recent years much progress has been made in

our understanding of full potential multiple-scattering
theorys ~o (MST). The following results are now clear.
(i) Full potential multiple-scattering theory can be
viewed as a technique in which locally exact solutions
of a differential equation, valid over individual atomic
cells, are combined into a global solution valid over all
space. s 7 (ii) These locally exact solutions can be con-
structed in such a way that (for points inside a given
cell) they depend only on the contents of the cell. s (iii)
The t matrix for a given cell contains all of the informa-
tion about the contents of a cell necessary to reconstruct
the globally exact solution at all points outside the cell.
(iv) It is vitally important to converge internal angular
momentum sums. ' (v) MST can be converted into a
cellular theory with a nearest-neighbor secular matrix.
(vi) These results can be easily generalized to relativistic
theories.

In the multiple-scattering approach to electronic struc-
ture calculations the solution to the Schrodinger equation
is obtained in terms of an expansion in spherical harmon-
ics, hence the charge density is most naturally expressed
in this form. Likewise, the Schrodinger equation poten-
tial is most easily used if it is expressed as an expansion
in spherical harmonics. Fortunately, many of the full cell
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MST techniques developed for treating the Schrodinger
equation can be used to facilitate the solution of the Pois-
son equation.

Although Morgan first attempted a full-cell Poisson so-

lution in 1977, the E convergence of various expansions
was not fully understood and the numerical test given

by Morgan failed to converge in E. Gonis et a/. intro-
duced the technique of shifting the center of the multipole
expansion and proved that the multipole moments of a
cellular charge distribution uniquely determine the po-
tential outside the cell, even within the "moon" region
(the region outside the cell but inside the circumscribing
sphere of the cell). We shall show that the standard mul-

tipole expansion is convergent if summed in the proper
order.

Oh et at. also employed a scheme that is based on
the ideas of multiple-scattering theory. Although their
theory appears somewhat diH'erent because they avoided
using the multipole moments by performing an Ewald
summation for the multipole expansion at every point
in the cell and incorporating its contribution into the
boundary condition of the local solution, their technique
is equivalent to the standard multipole expansion spe-
cialized to the case of a periodic lattice.

Another recent paper calculated corrections to the
usual multipole expansion based on a formula due to
Sack. Although these correction terms should satisfy
Laplace's equation, they do not, so we suspect that they
are incorrect. The numerical results obtained by Schadler
do show, however, an improvement when these correc-
tions are truncated at a finite S. The cause of this appar-
ent improvement is unclear to us at present.

We show that the potential can be represented as a
local solution plus a series expansion in terms of regular
solid harmonics. The coeKcients in this expansion can
be determined from the multipole moments of the charge
density for the cells. If this multipole expansion is used it
is important that the internal angular momentum sums

be converged. The slow convergence of these internal
sums may make the standard multipole expansion im-

practical. We shall show that these slowly convergent
internal sums can be eliminated by the use of surface in-

tegrals over the surfaces of neighboring cells. We also
show that significantly better convergence as well as the
avoidance of internal angular momentum sums can be
achieved by means of a cellular technique.

In Sec. II we outline the multiple-scattering approach
to the solution of the Poisson equation in a manner that
parallels recent developments in full potential MST for
the Schrodinger equation. In Sec. III we discuss pos-
sible efficiencies and improvements in convergence that
may be gained by taking advantage of the fact that there
is considerable flexibility in the definition of the locally
exact solutions within a given cell. In Secs. IV and V
we point out that it is possible to modify the traditional
MST approach to generate a cellular approach that can
be made to converge faster in angular momentum than
the traditional MST approach. In Sec. VI we discuss
numerical tests that demonstrate the accuracy and efB-

ciency of the various approaches. Finally, in Sec. VII we

summarize our conclusions.

II. MULTIPLE-SCATTERING- THEORY
APPROACH TO THE POISSON EQUATION

The Poisson equation, Eq. (1), for a charge distribution

p and a corresponding Coulomb potential V with the
boundary condition U = Vo as r ~ oo is equivalent to

V(r) = Vo + dr'G(r, r') p(r'),

where the Green function is

G(r, r') =
/r —r'/

'

which satisfies

7' G(r, r') = —4ir(i(r —r').

In the following we shall take Vo ——0.
We shall assume for the present that we can solve the

Poisson equation for a localized region of space contain-
ing cell n. Techniques for obtaining such solutions are
discussed in Sec. III. Let us denote the electrostatic
potential calculated for this region by v„(r„). The only

property of v„(r„) which we need at present is that it
satisfies the Poisson equation V v„(r„) = —4irp(r„) for
all points r„ in cell n. Here and in the following we

use the notation r„ to denote a position relative to the
expansion center in cell n. In an electronic structure cal-
culation, this expansion center would normally coincide
with the position of the nucleus.

We would like to write the total electrostatic potential
in cell n, V„(r„),as the local solution v„(r„)plus correc-
tions (e.g. , due to charges outside the cell). Thus we can
write

V„(r„)= v„(r„) ——) f t(r'[G(r„, r'„, )'W v„(r'„,)
~l

—v„(r„',)V' G(r„,r'„, )].

Here the first term in the integrand is simply Eq. (2) with

p(r„) substituted by —V2v„(r„)/4ir for points in cell
n' The seco.nd term simply gives —v„(r„) by virtue of
the definition of the Green function, Eq. (4). These vol-

ume integrals over the cells can be converted into surface
integrals using Green's theorem,

V„(r„)=v„(r„)——) f aS„[a(r„,r'„, )r7'v„(r'„, )4x

—v„(r„',)V'G(r„, r„', )]. (6)

If the point r is inside the inscribed sphere of ceH n, the
Green function can be expanded in a convergent series of
solid harmonics, so that Eq. (6) can be written as

V-(r-) = v-(r-) —).
Here the regular and irregular solid harmonics are defined

as Jl.(r) = r Yl, (r) and Hl, (r) = r Yl. (r), respec-
tively, and Yl, (r) is a real spherical harmonic. We have

used the notation [f",g ]„ to represent the Wronskian-
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like surface integral over the surface of cell n' of a func-
tion centered on site n and a function centered on site
n'. Thus

[HI. , v„]„=— dS„.[He, (r„')V'u„(r„', )
n'

—v„(r'„,)V'HL, (r„')].

Since, for given v„(r), the expansion in solid harmonics is
unique, it follows that if this expansion is convergent the
expression correctly gives the potential even at points,
r, outside the inscribed sphere. We shall show in Sec.
IIIB and the Appendix that for a particular choice of
the local solution, v„(r„), the sum over L in Eq. (7)
always converges for all points r within the cell.

Equation (7) can be converted into the standard mul-

tipole expansion by using the expansion of the irregular
solid harmonic centered in cell n in terms of regular solid
harmonics centered in cell n',

I

where the zero-energy structure constants GLL, are given
by16

(2&+28 1)!' ~—- Ye+e "(R )
(2E—1)!!(28+1)!!+ . ge~,'+i

charge in cell n as will be discussed in Sec. III. The third
term involving the sums over L, n', and L' represent the
contributions to the potential from charges on the sites
other than n. These results agree with those of Gonis
et al. , who pointed out that the multipole moments of
a cellular charge distribution are sufficient to define the
electrostatic potential due to that charge distribution at
all points outside the cell.

It is important to remember that the internal angular
momentum sum over L' in Eq. (12) must be converged
before the sum over L is performed. For cells n' whose
bounding spheres overlap cell n, the double sum over L
and L' is, for general charge densities, only conditionally
convergent. The sums must be performed in the order
indicated. Alternatively, the problem of slow and condi-
tional convergence may be avoided by using the surface
integral expression of Eq. (7) for the contributions to the
potential from the charge density in neighboring cells.

The existence of a convergent angular momentum ex-
pansion of the potential can be demonstrated if the elec-
tron density can be expanded to sufficient accuracy us-

ing a finite Fourier series because if the charge density is
given by

Gmax

p(r) = ) q„h(r —R„)+ ) 8 e*

x Yg
r"' Yj r"' Yj~ r' dO'. (10)

If we make the observation that the multipole moments
for each cell are given by

then the potential will be given by

Gmax

"(')=)-,-R '")- a " (14)

1
ql ———— dS„[JI,(r„)V'e„(r„) —v„(r„)V'Jl, (r„)],

V„(r„)= v„(r„)—) " dS„[H(r„)V'v„(r„)
- JL(r )

L
—v„(r„)V'H(r„)]

) L( ~) ) ) Gun qra

L 'g - L'
(12)

then the solution for the coefficients can be cast into the
more familiar form,

The first series in this equation can be expanded in terms
of regular solid harmonics centered at the origin [except
for the term with R„= 0 which can be represented by
Ho(r)] If the sy.stem is infinite the infinite contribu-
tion coming from large values of R„will be canceled
by the G = 0 term in the second series. Each term
in the second series can be represented by a convergent
expansion of regular solid harmonics. We show in the
Appendix that a convergent angular momentum expan-
sion for the potential exists for charge distributions more
general than that of Eq. (13) if one uses a local solution
to the Poisson equation based on the extended charge
density as defined in the next section.

The sum over I' in Eq. (12) can be shown to converge
if R „ is larger than the largest distance from the origin
of cell n' to any point within cell n'. This condition
is satisfied for reasonably close packed systems. Even
when this condition is satisfied, the convergence may be
slow. Moreover, the maximum value of L' required for
a given level of convergence will generally increase with
increasing l. The issue of the convergence of the final
sum (over L) is subtle and may depend on the choice
that is made for the local solution, v . We shall return
to this point in Sec. III.

Equation (12) has a simple physical interpretation.
The first two terms on the right hand side represent
the contribution to the electrostatic potential from the

III. USING TRUNCATED
OR EXTENDED p TO CALCULATE Vjy

A. Truncated p

If the local solution to the Poisson equation, v (r ),
is calculated using a charge density that is truncated at
the boundaries of cell n, i.e., the p(r) used for calculating
v (r„) does not extend outside cell n, then

dS„.[H(r„)V'v„(r„) —v„(r„)V'H(r„)] = 0.~
~

n

Equation (15) can be proved by noting that the surface
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integral can (by virtue of Green's theorem) be evaluated
on the circumscribing sphere where

v (r„) = ) HL, (r ) dr'„JL, (r')p(r'„)0 (r').

Thus [Hg, v„']„vanishes because [HP, Hl", ,]„=0.
Thus for truncated p, the potential is given by

V„(r„)= v„'(r„) —) al
L

where

—QL, a7' 2~+, with

aL' = ) [HL, v„',]„.

Note that now there is no exclusion of site n in the sum
over n'; thus

aV =ai+[H2 v:]-

since for n' n

[Hg, v„',]„=[HL, v„',]„
dr'HL (r') [

—4vr p(r')].

a~ ——) [HL, v„',]„,
n'gn

(is)

or by

where v„'(r„) is given by

):2~, [q2'(r-)Hi(r-) + s2'(r-) J~(r-)]
L

(20)

The superscript t indicates that p has been truncated and
we have defined

rn

ql'(r„) = dr'„JL, (r„')p(r„')0„(r'„)
0

(2i)

R

sL,'(r„) = dr'„HL, (r„')p(r„')e„(r„').
rri

(22)

The step function 0 (r ) is defined to be unity if the
point r„ is inside cell n and zero if it is outside.

V„(r„)= v„' (r„) + ) JL, (r ) ) ) GL, L, Ql,
L n'gn - L'

(19)

However, for n' = n, we must evaluate [Hl, v„']„, which
can be written as the sum of two surface integrals, one
over the muffin-tin sphere and the other which encloses
the surface of the region outside the mufBn-tin sphere but
inside the ceil,

dS„[HL,(r„)7'v'(r„) —v'(r„) V'Hl, (r„)]

YL, (r„) Bv'(r„)
MT

+(~+ l) v (r )
Yg(r„),

rMT

+ d „,[-4 p( )]~-( )

B ~(-)
rMT

where the last term arises from the use of Green's the-
orem to convert the surface integral over the region
bounded by the muffin-tin sphere and the cell bound-
ary into a volume integral. This term is equal to
—4ms&'(rMy). The first term can be evaluated by sub-
stituting (23) for v'. The contributions involving qL (r)
cancel leaving 4vrsL, '(rMy).

Thus V„(r„) can be calculated as

B. Extended p

We can also calculate v„(r„)without truncating p with
the step function. In this case, the particular solution to
the inhomogeneous equation is

-sl.'(~M~) 1 JL (r-)) + ).aL,
2~

",„Jl,(r„)
(30)

V„(r„)= ) (ql, '(r„)HI, (r„)[sl'(r „)+ sv, '(rM~)
L

where the "extended" qL and 8L are defined without the
step functions used in calculating the truncated versions

rn

q2'( -) = dr'. J~(r'. )p(r'. )
0

(24)

R
s", (r„) = dr'„H, (r'„)p(r„').

rn

The solution to the homogeneous equation is given by

v„'(r„) = ) [ql'(r„)HI, (r„) + s~'(r„)JL, (r„)],
L

(23)

This may be compared with the version which uses the
truncated p

V-(r-) =),[qR'(r-)H~(r-) + si'(~-) J~(r-)]

JL(r )+ ~L 2E+ 1
L

Note that the coefficients al in (30) and (31) are given
by (1S). One advantage of Eq. (30) is that integrals over
the step function do not have to be performed for variable
limits. The integrals can be performed, for example, by
Causs-Legendre quadrature over each analytic piece of
the step function de6ned by
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Hq(r) = f dBYg, (r)8(r). (32) V„(r„)= v„(r„)—) a7
„Jl.(r„)

L
(37)

A second important advantage is the fact that the an-
gular momentum expansion can be shown to converge
throughout the cell regardless of the the charge distribu-
tion. This result is shown in the Appendix.

The present discussion shows that there is considerable
Hexibility in the choice of the local solution v (r ). This
Bexibility arises kom the fact that the local solution e„
is only required to satisfy Poisson's equation within cell
n. The efFect of external charge distributions is to add
terms which are analytic and satisfy Laplace's equation
within the cell. It is easy to see that such terms can-
cel out between the 6rst and second terms on the right
hand side of Eq. (7). An analogous property of certain
solutions to the Schrodinger equation was pointed out re-
cently by Nesbet. Note that we use the phrase "solutions
to Poisson's equation" advisedly. This is not the same as
the physical electrostatic potential, which, of course, does
depend on the charge density outside the cell.

Substituting this expression into Eq. (36) and solving for
aL with the aid of the identity

[Hp, Jp, ] = (2E+ 1)b„„~bi.s, ~ (38)

yields the MST result

which may be compared with Eqs. (18) and (26).
The GFCM equations for the Poisson equation also be-

gin with (36), but by carefully choosing which cell center
one uses for expanding V on the various cell boundaries,
one can cancel all contributions to the surface integrals,
except those from the surface of cell n. This process is
the same as was used to derive the GFCM formula for
the Schrodinger equation. One can obtain

[HP, V„]„+ ) [HP, V„]„~„=0. (4o)
IV. THE GREEN-FUNCTION

CELLULAR METHOD

The Green-function cellular method (GFCM) for the
Schrodinger equation was developed as a variation of the
MST method which eliminates the structure constants
and yields a strictly nearest-neighbor secular equation.
The GFCM can also be applied to solve Poisson's equa-
tion. To derive the GFCM for Poisson's equation, we
write Poisson s equation, Eq. (2), in the integral form

) dr„' [G(r, r'„, )V' V(r'„, )
In'

—V(r„', )V' G(r, r„', )] = 0, (33)

by use of Eqs. (1) and (4). By means of Green's theorem
this can be written as

) dS'„, [G(r, r'„, )V'V(r'„, )
n' n'

n'=n+8

Here n' = n+ b means that n' only runs over the neigh-
bors of n, i.e., over the atoms that share a cell face with
atom n, The no.tation [Hg, V„]„~„represents a surface
integral over the face separating cells n and n' with the
normal to the surface pointing from cell n' to cell n.

We can also write this as

) [HP, V„—V„]„~„=0.
n'=n+6'

(41)

n

+ ) ) [H,",J,",']„„,", , =o. (42)
n'=n+8

This form makes it clear that the equation will be sat-
is6ed by a set of V„'s which are continuous and have
continuous derivatives across the cell boundaries.

Using Eq. (37) for V„and V„, we have

n

[Hp, v„]„—) [Hp, v„]„„—) [Hp, Jp, ]„2~,+ 1n'=n+b Lt

—V(r'„, )V'G(r, r„', )] = 0. (34)
Using Eq. 38, we have,

If r is inside the mufBn-tin sphere inscribed within cell
n, it is clear that we can write the above equation as

) JP(r„)) [HP, V„]„=0.

[HP, v„]„—) [HP, v„]„
n'=n+8

) [HP, V„]„=0 (36)

for all n and L. The MST solution for the Poisson equa-
tion derived in Sec. II can be obtained by writing the
solution as the sum of a local solution to the Poisson
equation plus a solution to Laplace's equation with coef-
Gcients that are to be determined,

This implies that the solution to the Poisson equation
must satisfy

—a", + ) ) [H,",JP,]„„,' =O. (43)
n'=n+h L'

This is the GFCM approach to the Poisson equation. It
seems to converge in angular momentum about as well
as the Korringa-Kohn-Rostoker (KKR) approach as we

show in Sec. VI. Either the truncated or extended ver-
sion of the local solution, v can be used in Eq. (43). We
6nd it more convenient to use the extended version.

Note that although Eq. (43) has the form of a simple
linear system,
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) I Inn n n
MLL, aL, ——XL,

nl LI
(44) E truncation is rather slow, similar to the KKR approach

which is also nonvariational.

the matrix M is generally singular. This is easiest to see
for the case of a periodic system with one atom per unit
cell. Then, a is independent of n and

) ML p ap ———apbIp + Q [Hl Jp ] ap (45)

V. VARIATIONAL CELLULAR METHOD

In this section we consider a variation of the GFCM
in which the irregular solid harmonics (the HL 's) are re-
placed by regular solid harmonics, (JL 's), thus

n' =n+b

I

but since Jo ——1, which is independent of n',

) ML, p ap =0. (46)

[JL, ~-]- — ) [JL, ~ I--
n' =n+b

n I

+ ). ):[JL JL]- -2I,
' =o (47)

nI=n+h LI

In other words, the linear equations do not contain the
coefficient ao. This simply reBects the fact that the po-
tential is undetermined up to an overall constant. This
problem can be handled by eliminating the first row and
column of the linear system. For the case of a non-
periodic system, or a periodic system with more than
one atom per unit cell, one has to be more careful to dis-
tinguish two possibilities. In these cases either the 8 = 0
row for only one sublattice vanishes and therefore one
removes this row and the corresponding column, or sev-
eral E = 0 rows are linearly dependent, in which case one
removes any one row among them and the corresponding
column. These situations can be easily identified Rom
the geometry of the system.

In the GFCM approach one avoids the cumbersome in-
ternal / sum of Eq. (12). Instead one performs a set of
surface integrals and solves a system of linear equations.
Although in the KKR approach the multipole expansion
of Eq. (12) can be avoided by using the cell surface in-

tegrals, Eq. (7), these surface integrals involve the eval-
uation of the irregular solid harmonics and the normal
derivatives of the solution from a neighboring cell on all
the surfaces of the central cell. This is a rather cumber-
some process compared with that in the GFCM where
one only needs the surface integrals on the surface be-
tween the two cells. However, because the GFCM ap-
proach is nonvariational, its convergence with respect to

We shall show later that this set of equations yields so-
lutions which are much more accurate than either the
KKR approach or the GFCM approach at the same S

truncation. The reason that this particular technique
works so well is that it can be derived &om a variational
principle. Consider the electrostatic energy as a func-
tional of the potential

1
ET[V] = f drp[r)V[r) —— drVV(r) VV[r).

8m
(48)

fq(x) for x ( xp.,
f, (x) for x ) xp. (49)

One can show that this integral is given by

The variational principle &&
——0 yields the Poisson equa-

tion, Eq. (1). We would like to set up Rayleigh-Ritz
equations by expanding V using Eq. (37) and then eval-
uate

&
„.Before we can do that, however, it is necessary$~n

to deal with the fact that in practice, because of 8 trun-
cation, the expansion for V(r), Eq. (37), is in general
discontinuous in value and derivative at the boundaries
between the cells. Thus when the Coulomb integral in
Eq. (48) is partitioned into cellular integrals, the contri-
butions to the integral &om the discontinuities at the cell
boundaries have to be considered.

Consider Grst the integral of the square of the deriva-
tive of the discontinuous function

(df (x) i *' (dfg(x) ) ' fdfz(x) i
dx ) L„( dx ) . ), dx )

f dfx(xo) df2(zo) ) l. [fx(xo) —f2(xo)]
j d-+0 26

(50)

If one excludes the last term, which is singular but of sec-
ond order in the discontinuity, then the contribution kom
the discontinuity agrees with the formula of Schlosser and
Marcus. When applied to the Schrodinger equation, the
Schlosser-Marcus functional allows false roots in addition
to the true solutions because of the exclusion of the di-
vergent term. An observed property of the false solutions
is that the function and its derivative are discontinuous
at the cell boundary. The derivative changes sign but not

magnitude at the cell boundary, causing the vanishing of
the second to last term in Eq. (50). The last term in

Eq. (50) would prohibit the false solution by adding an
infinite penalty to a discontinuous function. In fact it
has been shown for the Schrodinger equation in one di-
mension, where the eKect of the divergent term and the
~ —+ 0 limit can be studied analytically, that false roots
are no longer found if the contribution of the divergent
term is added to the secular equation. 24
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FIG. 4. Test of VCM technique for solving the Poisson
equation using the Slater —de Cicco model.

solving the Schrodinger equation for a periodic potential.
The fcc crystal structure has cubic (Oh) symmetry;

hence there is no contribution &om odd values of E or
from 8 = 2. In addition, there are single independent
coefBcients for 8 = 4, 6, 8, and 10 and two independent
coefBcients for 8 = 12 and E = 14. This observation
reQects the fact that the potential can be expanded in
cubic harmonics belonging to the aug or I'i representation
of the Oh group.

The agreement between Slater's results and the KKR
results truncated at E „=4 is fair. There are significant
errors for fairly small values of r even within the muKn-
tin radius (r = 0.353 55, i.e. , the distance of the point
N from the origin), implying incomplete convergence at

„=4. For E „=6, the agreement is much better at
small values of r, but appears to be worse for points in the
interstitial region. At E = 8, the agreement is good
but there are still discernible discrepancies especially for
the larger radii near the corners of the fcc cell.

Since the GFCM approach does not require conver-
gence of internal E sums, it is easier to use a higher value
of 8 „in the expansion of the potential. Figure 3 shows
a comparison between Slater's results and the nonvari-
ational GFCM approach, Eq. (42) for / „=4, 6, 8, 10,
and 12. The results appear to be of comparable accuracy
to those obtained from the KKR approach for a given
value of 8 truncation except perhaps for the 8 = 4
results which seem to be fortuitously good in the corner
of the cell (near H) for the KKR technique. However,
as can be seen from Fig. 3, the overall quality of the
potential improves consistently as 8 „ is increased. A
quantitative measure of the Bt, given in Table I, con6rms
this observation.

Figure 4 shows a comparison between Slater's results
and the VCM approach, Eq. (47). The agreement can be
seen to be very good especially for E truncations of 8, 10,
and 12. Table I shows the root mean square error over
the cell for the various approaches. It can be seen that
aside from the KKR 8 „=4 results, the VCM approach
gives better agreement at every level of truncation and
is of suKcient accuracy to be used in electronic structure
calculations.

Another numerical test for which the exact solution is
known is the model used by Morgan, with the charge
density given by

p(r) = B) e* (52)

distributed over a fcc lattice. T„are the nearest-neighbor
reciprocal lattice vectors. The Coulomb potential for this
charge density is

V(r) = 4vrp(r)/T + const,

where T is the length of the vectors T„. Unlike the
work of Morgan, we chose B = 1 and a lattice constant
of unity since this produced a nonspherical potential of
roughly the same magnitude as that found for the Slater
potential. Figure 5 shows the comparison between the ex-
act results and those calculated using the VCM approach
at various levels of 8 truncation. The level of agreement
is generally very good. Table II shows the variation in
the Coulomb energy and cell charge with E „.The last
column indicates the exact results. By 8=10 convergence
of the Coulomb energy to better than 10 hartree is
achieved.

TABLE I. Comparison of the root mean square error for di8'erent techniques and diferent
angular momentum truncations for solving Poisson's equation for Slater's test of an fcc lattice of
point charges in a compensating uniform background.

10 12 14

KKR
GFCM
VCM

0.028 467
0.053 001
0.053 631

0.034 474
0.044 885
0.018 641

0.004 392
0.004 572
0.001 476

0.004 609
0.001 100

0.001 005
0.000 193 0.000 1678
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equation using Morgan's model for 8 „=4,6,8.

Notice that at the same E truncation the agreement of
the VCM and the exact potentials is much better than
in the Slater test. This is due to the fact that the E

convergence for the cell potential is more rapid in the
Morgan test than in the Slater test. In the Morgan test
the potential converges in 8 at the same rate as the charge
density, which has converged at 8 = 8. This convergence
can be judged by looking at the net charge in the cell
which should, of course, be exactly zero (see Table II).
In the Slater test while the charge density converges at
8 = 0, the potential converges at a much slower rate. In
view of this, we believe that the Slater test is a much
more rigorous test of a full-cell electrostatic solution.

We did not perform a careful study of the computer
time necessary to calculate the potential as a function
of E „and other parameters for each of these meth-
ods because it depends on other considerations such as
programming technique and optimization as well as the
inherent eKciency of the technique. Generally, we found
that the KKR calculations required more computer time
than the GFCM and VCM calculations because of the
need to calculate internal sums to high values of angu-
lar momentum. The GFCM and the VCM calculations
at the same 8 truncation take exactly the same time.
The largest VCM calculations required approximately
two minutes on an IBM RS-6000 model 370.

VII. CONCLUSIONS

We have shown that the techniques of full-cell multiple-
scattering theory can be applied to the solution of Pois-
son's equation. The global solution can be written in
terms of a local solution plus other terms which contain
the contribution to the potential from charges in other

cells and which ensure the continuity and smoothness of
the global solution. In calculating the local solution one
can use either a truncated charge density, which vanishes
outside the cell, or an extended charge density. Use of the
latter can be shown to lead to a series representation of
the potential which is convergent at all points within the
cell. The contributions to the potential at points within a
given cell due to charges outside that cell can be written
in terms of a sum over the multipole moments of those
cells provided that the cells are sufBciently compact that
the intercellular distance exceeds the radii of both of the
circumscribing spheres.

We have shown that a cellular method (the GFCM)
can also be derived from the MST formalism and used to
solve the Poisson equation. Moreover, a variational cellu-
lar method (the VCM) appears to ofFer the best conver-
gence of the techniques that we have investigated. The
GFCM and the KKR approaches show similar conver-
gence rates in terms of 8 truncation. The slow rate of
convergence for the KKR approach is consistent with the
previous work. In both Refs. 12 and 13 reasonable con-
vergence was achieved only at about 8 „)30. How-
ever, the convergence of the variational cellular approach
is much faster. This is because at any 8 truncation, al-
though the KKR method calculates each aL„and there-
fore VL„more accurately, provided all the internal sums
are converged, the cellular method gives a set of approxi-
mate al, 's that 6t the exact potential better at that level
of truncation since the solution is one which tries to min-
imize the Coulomb energy.
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0.106 141 7
—4.4 x 10

10

0.106 1037
—9.9x10

0.106 103 2
3.0x 10

Exact

0.106 1033
0.0
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APPENDIX: CONVERGENCE OF THE
SPHERICAL HARMONIC EXPANSION

OF THE POTENTIAL

V(r) = v„'(r) + — dS' [G(r, r') t7'
4'

—V'G(r, r')] V(r').

Since all points on the surface satisfy r' & r we can ex-
pand the Green function in a convergent expansion and
obtain

R

V(r) = —— V' G(r, r')V(r')dr'
4x

R

+— G(r, r') [V' V(r') + 4mp(r')]dr'.
4a

Thus, rearranging terms, we have,

V(r) = G(r, r') p(r') dr'
0

(A3)

R
+— [G(r, r') V' —V' G(r, r')]V(r') dr'.

4m 0

(A4)

The last two terms can be converted by means of Green's
theorem into an integral over the circumscribing surface
of radius R,

Here we show that the angular momentum expansion
converges quite generally when one uses a local solution
based on the extended charge density. The electrostatic-
potential due to charge density p(r) can be written as an
integral over all space,

V (r) = f O (r, r') p(r') dr'. (Al)

If r is restricted to be within cell n then the electrostatic
potential V(r) can be written in the form

V(r) = —— V' G(r, r') V(r') dr', (A2)
4m' 0

where the integral is over the region enclosed by a spher-
ical surface of radius R which circumscribes cell n. To
this equation we can add zero in the form of an integral
over V' V+ 4vrp,

V(r) = v„'(r) + ) [HP, V]~.
L

(A6)

Comparison with Eq. (7) for the case v„= v„' yields

[HP, V]~ = —) [HP, v„',]„.
nl

(A7)

This can also be shown directly by observing that for any
finite charge distribution confined within a surface 8, the
surface integral [HP, V]s = 0 vanishes. Therefore we can
write,

[HP, V]~ = —) [Hg, v„',]„+[Hg, v„']M,
n'gn

where the subscript M indicates that the second surface
integral is over the "moon" region bounded by the surface
of cell n and the surface of the sphere circumscribing this
cell. However, since

[Hp, v„']s = [Hp, v„']„+[Hp, v„']M = 0, (A9)

it follows that the [HP, v„']M = [HP, v„'—]„ from which
follows Eq. (A7).

It is easy to 6nd charge densities for which the angu-
lar momentum expansion does not converge if one uses
the local solution v„' for the truncated charge density but
does converge for the extended version v„'. One such ex-
ample would be the case where there is a point charge
in the moon region. The requirements on the charge dis-
tribution suKcient to ensure convergence when the trun-
cated version of the local solution is used are unclear to
us, but we speculate that continuity of the charge den-
sity and its spatial derivatives should suKce. It should
be noted that Brown and Ciftan ' have advocated use
of the "extended" solutions for the Schrodinger equation
as well as the Poisson equation.
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