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Density of states of disordered systems
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Density of states calculations for the tight-binding model with diagonal disorder are presented.
An instanton approach is used to calculate the tails of the spectrum, including all prefactors. It
is shown that a Hartree resummation improves the predictions. Furthermore, an effective-medium
approximation is used to calculate the density of states in the band. Combining both approaches,
a prediction is obtained for all energies. Large numerical simulations have been performed to check
the validity of the approach for the Anderson model with Gaussian and with binary disorder on
square and simple cubic lattices. The theory agrees well with the simulations.

I. INTRODUCTION

In pure crystalline solids, electronic excitations have
a band structure. Energy intervals in which excitations
occur are separated by band gaps, where the density of
electronic states vanishes. At the band edges the den-
sity of states has power law singularities, so-called van
Hove singularities. When a random potential is present,
the situation changes. States occur inside the band gaps
of the unperturbed system. This has two effects. First,
the band broadens as the band edges shift. Second, the
singularities of the density of states smear out: the den-
sity of states will have tails. The randomness can have
various origins. The model could for instance be used
to describe binary alloys; the random potential has a
binary distribution. The model can also represent inde-
pendent electrons interacting with lattice vibrations in a
pure crystal. In this case the disorder is caused by dis-
placement of atoms. On short time scales the disorder is
static and has a Gaussian distribution. Urbach noticed
that his experiments on the latter type of system could
roughly be described by an exponential tail, the Urbach
tail. 2 Urbach originally stated his experimental rule for
the absorption intensity, which is closely related to the
density of states. Theoretical results for the tails of the
density of states are available for binary disorder (Lifshitz
taiP), for Gaussian disorder in continuous and discrete
space (Halperin-Lax tail4 s), and for the Lloyd model. s

The problem of the density of states of disordered sys-
tems has been studied extensively and is of practical
importance (see Ref. 7 for a recent review). Most of
the approaches fall into two categories. One way is to
use diagrammatic expansions like the coherent-potential
approximation (CPA) or related methods. i s s The CPA
has been checked for various systems against numerical

work. The CPA works well if the values of the random
potential are not bounded, as in the case of Gaussian
disorder. However, the CPA fails to predict the tail of
the density of states if the random values of the potential
are bounded, as in the case of binary disorder. Another
way is to perform an exact average of the randomness,
which results in a field theory with an effective interaction
stemming from the disorder. The density of states in the
tail is determined by an instanton solution of this theory.
This general approach has also been used for spatially
correlated disorder. However, the determination of the
prefactors has only been done a few times. It was done
analytically in special cases only. Recently a more
general approximation was made, but renormalization,
which we show to be important, was not performed.
In one-dimensional systems the analysis of exact integral
equations has led to additional results for binary disorder,
exponential disorder, and arbitrary disorder (see Ref. 16
and references therein).

It is the purpose of the present work to provide a more
general theory for the tail of the density of states without
adjustable parameters. We have also performed extensive
numerical simulations, which extend previous results ~

to more and larger systems. Thus the statistical Huctu-

ations, even in the far tail, are small, and a comparison
with the theoretical predictions over a large energy range
can be made. The instanton approach is introduced in
the next section, and its fluctuations are discussed in
Sec. III. In Sec. IV we show that Hartree resummation
improves our results. Furthermore, we present in Sec. V
an effective-medium theory to calculate the density of
states in the rest of the spectrum. The numerical method
is discussed in Sec. VI; the data are compared with the-
ory in Sec. VII. The paper closes with a sumxnary. Some
simple cases were already treated earlier.
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II. INSTANTON APPROACH

The density of states is defined as

1
p(E) = lim —) b(E —E;), (2)

Consider the Anderson model with static diagonal dis-

order on a hypercubic lattice with unit lattice constant.
Hopping is described by a lattice Laplacian. The poten-
tial V is random. At each lattice site, its value is in-

dependently drawn at random from a distribution v(V).
The Hamiltonian is thus given by

to a field theory with a P interaction. For the case
of binary disorder with zero mean, we assume that the
potential has a probability c that V, = (1 —c)Vp and
a probability 1 —c that V„= —cVO. One then finds

U(x) = —In(l —c+ ce ' ) —cVpx. In a binary alloy c
corresponds to the concentration of one of the species.

Under general conditions the resulting nonlinear field

equations have saddle point solutions (also called classi-
cal solutions or instantons). 2i In the tail of the density
of states this solution is dominant. For reasons of con-

venience we will only consider the low-energy tail of the
lowest energy band. The action is minimal if the center of
mass of the instanton is exactly located on a lattice site.
The action is stationary when the equation of motion is

satisfied. The solution f has to satisfy

where X is the number of lattice points and where the

E; are the eigenvalues of the Schrodinger equation. As

the density of states is self-averaging, the large-N limit

yields the average density of states. The average density
of states can be extracted from the Green's function, G =
(H —E) ', as

p(E) = ) Im Tr (G(E+ i0))„,„.1

The angular brackets indicate averaging over the disor-

der configurations. This average can be taken either by
using the replica trick, or by introducing a supersym-
metric field. We use the latter procedure. The Green's

function is written as a path integral,

G„„(E)= J DVPDE exp ) ' —@„(—A —E+ V„)@„

x P,*P„ (4)

with an action

This involves the two-component field iI'„= ((t)„y,),
where P, is a boson field and where y„ is a Grass-
mann field. i '2P The field P„ takes values on the line

(—ooQi, +oops). Due to the combination of fields the
normalization of the Green's function has canceled in this
expression. This allows the Green's function to be aver-

aged over the impurity potentials, yielding

(G(E))„„,= fDED@exp(—A)t)„'t),

~f —Ef+U'(f')f =O. (8)

The solution with the lowest action is selected from all

possible solutions, as the other instantons give negligible
contributions to the density of states. The action of this
instanton is denoted as A, and can be expressed as

A, = ) U(f ) —f„U'(f„) .

III. FLUCTUATIONS AND THE PREFACTOR
OF THE DENSITY OF STATES

Important here is the treatment of the prefactor of
the density of states. It is determined by the fluctua-
tions around the instanton. We thus put 4„= (f„,0) +
(bP, by„). We approximate most of the fluctuations by
their quadratic terms, leading to determinants of the Buc-
tuation matrices. If this were done for all fluctuations one
would find

Inserting A, for A in Eq. (5) gives the exponent of the
density of states (3). This exponent of the density of
states has already been studied in the literature for some
cases; see, for instance, Ref. 20.

The saddle point solutions are degenerate in several
ways. We lift one degeneracy by fixing the instanton in
the boson direction, and insert 4, = (f„,0). We also fix
the center of the instanton inside the unit cell containing
the origin of the lattice. This choice is also arbitrary and
yields a factor N, which cancels the factor I/N in the
expression for the density of states (2).

A = ) [—4„{b,C )„—E4„4'.+ U(4.C.)] . (6) (G„„(E))= D4DC exp( —A. ~ by'MTby

The effective potential U follows &om the distribution of
the disordered potentials v(V),

+bp MI, bp) f
detMT ).
det ML,

(I0)

G(x) = i f AV (V).-'
Formulas (3)—(7) can be used on a lattice or in the con-

tinuum, regardless of the disorder distribution or dimen-

sion. For Gaussian disorder with zero mean and vari-

ance (V„) = a, one finds U(x) = cr x /2 Th—is leads.

This expression involves the determinants of the longitu-
dinal and transversal fluctuation matrices,

ML, = —4 —E+ U'(f') + 2f'U" (f'),
MT = —4 —E+ U'(f') .
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The determinants can be calculated analytically for some
cases. An example is the white-noise potential on a
line. In general they have to be determined numerically.
However, as is well known, zero modes and nearly zero
modes are also present, and have to be treated separately.
The integration over the zero-mode fluctuations can be
done by a change of variables to collective coordinates.
Both in the continuum and on the lattice the matrix Mz
has one zero eigenvalue, corresponding to supersymmet-
ric rotation. (Or rotation in replica space if the replica
trick is used to average the Green s function. ) This eigen-
value has to be excluded &om the evaluation of the de-
terminant; instead a factor ger/ P, f2 will enter in Eq.
(10). This involves the norm (P„f2) ~2 and a factor
~m, compensating the omission of the eigenvalue in the
determinant.

The behavior of the longitudinal matrix is more sub-
tle. In the continuum, due to translational invariance,
Mi, will have d zero modes. These generate a shift
of the instanton. Their eigenvalues should also be ex-
cluded &om the determinant. Their resulting factor is

( 2

[g„!P /x]+2. We return to the situation on the lat-

tice. In the case of Gaussian disorder only the zero mode
of Mz remains. The zero modes of ML, disappear, ex-
pressing the fact that the Gaussian instanton is strongly
bound to the lattice. An instanton with its center a lit-
tle bit shifted has a much larger action and barely con-
tributes to the path integral. All Mi, fluctuations can be
approximated quadratically. Thus the density of states
in the tail for Gaussian disorder is

The prime indicates here the exclusion of the zero mode.
In the case of binary disorder the situation is more

complicated as we are dealing with a crossover regime be-
tween the quadratic approximation and real zero modes.
On the lattice, nearly zero modes of MI, are present;
they are the remainders of the translational zero modes
of ML, in the continuum. This means that the action
varies only slightly (essentially quartically) under such
variations. Large fluctuations, shifting the center of the
instanton, give an important contribution to the action.
Even an instanton shifted to the edge of the unit cell gives
a signi6cant contribution. It is not allowed to shift the
instanton outside the unit cell, as instantons centered in-
side other unit cells are already taken into account. This
makes an analytical treatment difBcult. We therefore in-
tegrated numerically over these fluctuations. The inte-
gration boundaries are chosen such that the fluctuations
do not shift the center of the instanton outside the unit
cell. Let g„', i = 1, . . . , d denote the (normalized) nearly
zero modes. The integral over the fluctuations of these
modes now is

K = dc . . .dc" exp —A + c'g' + A

x r(f +cg ))
& E.(f.+ c'gi) r

'

in which sums over i are implied. ((r) is the character-
istic function of the unit cell. [((r) = 1 if r is inside the
unit cell containing the origin, else ((r) = 0.] This fac-
tor 6xes the integration boundaries. Having integrated
explicitly over these fluctuations, the small eigenvalues
corresponding to these modes are to be excluded from
the determinant. Integrating over all fluctuations one fi-

nally obtains for the density of states in the tail for binary
disorder:

det' Mi, & )
The primes now indicate the exclusion of the exactly
zero mode in the Mz determinant, and the d nearly zero
modes in the ML, determinant. Note that this expression
is general: it also contains the case of Gaussian disorder,
where K can be evaluated analytically.

The above "bare" results yield the density of states
for energies between the minimal value of the random
potential and zero. Equation (14) correctly describes the
far tail, yet it diverges &om the numerical data when
approaching the band edge.

IV. HARTREE RESUMMATION

with g0 being the return Green's function,

in which A(q) is the momentum representation of the
Laplacian. In the case of binary disorder, the interaction
can be expanded in gP + terms. Similar loop corrections
are made in all these interaction terms. The resummation
leads to an effective potential for the binary case given
by15

—c )
UR(*, go) = —«o* —).—

Im gl —cj
-m*V.

!
x 1 —exp!(1+mgo(ER) Vo)

(17)

We use the renormalized potential to re6ne the prediction
for the density of states. We write U = U~ + (U —U~)
and we treat (U —UR) as a perturbation. The instanton

The above theory can be improved by performing a
loop renormalization or Hartree resummation. ' In the
continuum, renormalization is needed in two or more di-
mensions to obtain a 6nite density of states. Although
on the lattice the result without renormalization is 6nite,
renormalization improves the prediction for the density of
states. In the case of Gaussian disorder, we are dealing
with a P interaction. Resummation of the interaction
term shifts the effective energy to a renormalized energy
ER. Some additional improvement can be made by doing
the resummation self-consistently:
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and the fluctuation matrices are recalculated with the
renormalized energy and potential. The change in the
potential is compensated afterwards,

p~(E. U') —p(E U&)eZ (&R(f')—&(f')j

p(E, UR) is calculated as in Sec. III, but with the re-
summed potential.

The energy range where the instanton contribution is
dominant is smaller than in the bare case. The limiting
energy shifts away from the band center. Comparison
with numerical simulation will show that resummation
significantly improves the prediction for the density of
states.

V. EFFECTIVE-MEDIUM THEORY

We also present an effective-medium theory for the
density of states inside the band. As stated above, the
tail of the density of states is dominated by the instan-
ton solution of field equation (6). Nearer to the band
center, however, the trivial solution (f = 0) is the most
important. The same resummation as in the tail is made,
but now only the self-energy correction is taken into ac-
count. Interaction terms remaining after resummation
are neglected. We obtain a self-consistent equation for
the return Green's function go,

gp=
( E+ UR(0 gp)) p p

(19)

in which U&(O, gp) = "&*' '
~

—p. Since gp is a com-
plex quantity now, the density of states can be extracted
immediately, using

1
p(E) = —Im gp(E + iO) . (20)

dE
dER

Although this may not be the best theory for the density
of states in the band center (CPA, for instance, is better
in the cases considered), it has a nice feature: It precisely
complements the instanton prediction for the density of
states (12) and (14). The transition between the renor-
malized instanton and this regime occurs at the band
edge of the eH'ective-medium theory. This band edge is
given by

VI. NUMERICAL SIMULATION

To corroborate the validity of the theory presented and
in particular to evaluate the improvement by resumma-
tion, we have performed extensive numerical simulations.
In site representation the Anderson Hamiltonian (1) can
be expressed as

where the primed sum involves summation over nearest-
neighbor pairs. We choose the transfer matrix element
t = 1/v (where v is the number of nearest neighbors) so
that the band extends between —1 and 1 for V~ = 0.

In numerical investigations of the Anderson model, the
disordered potentials V~ have usually been chosen accord-
ing to a box distribution of width W/t, i.e., a variance
o2 = W /12. For the present comparison we have used
the Gaussian and the binary distributions. We note for
completeness that we shifted the mean of either distribu-
tion to vt, so that the band edge of the system without
disorder appears at E = 0, in agreement with the repre-
sentation (1) of this model.

As the secular matrix corresponding to the Hamilto-
nian (23) is extremely sparse (five or seven nonvanish-

ing elements in each row and column in two or three
dimensions, respectively), and as we are interested in the
eigenstates at extreme energies, the straightforward diag-
onalization of the secular matrix can be most effectively
performed by the I anczos method. We used this algo-
rithm to determine all eigenvalues up to a given energy
for various configurations of the random potentials, i.e. ,

for different samples. The samples had a size of 100 x 100
sites on a square lattice and 19 x 19 x 19 sites on a sim-

ple cubic lattice; periodic boundary conditions were im-

posed. According to Eq. (2) we determine the density of
states, which fluctuates strongly for a given sample. Av-

eraging over 70 samples in two dimensions and 50 samples
in three dimensions yields a sufBciently smooth density
of states in the energy range around the Hartree band
edge. To improve the statistics in the tails the average
was taken over more and more samples at lower and lower

energies. In the extreme tail we included 2100 samples
and 350 samples for the Gaussian disorder case in two
and three dimensions, respectively, and 700 samples for
the binary disorder (two dimensions). Due to the com-
paratively large sample sizes, the data thus obtained are
much more reliable than our previously published results
of similar numerical simulations.

with VII. RESULTS

E = ER + UR(0, gp), (22)

lnvoh'lilg gp(ER) from Eq. (19).
We stress that the behavior found in this region is un-

physical. It was not the goal of this study to resolve this;
however, we expect the discrepancies to disappear when
the critical region is dealt with properly.

The above technique has been applied to a particle
in a Gaussian-distributed disorder potential on a square
and on a cubic lattice. The potential V has average zero
and is delta correlated with a width R' = 1 in the two-
dimensional (2D) case and width W = 4/3 in three di-
mensions (3D). We have also solved numerically the non-
linear equation of motion (8) on a lattice of 13 x 13 and



49 DENSITY OF STATES OF DISORDERED SYSTEMS 13 381

10
3D Density of States

10
2D Density of States
Bina D d

10 10

QJ -3
10

CL

10

10
-0.6 -0.4

Energy (eV)
-0.2 0.0

10

10
-0.20

Hartree
band edge

CPA
edge

I

-0.15
Energy(e V}

-0.10

FIG. 1. Density of states (in eV ) for a tight-binding
model on a cubic lattice in the presence of a random po-
tential with Gaussian statistics. Histogram: data from the
numerical simulation. Full curves: instanton after Hartree
resummation (left part), Hartree summation inside the band
(right part). Dashed curve: bare instanton theory. The efFect

of the resummation can be clearly seen. No fitting was done.

FIG. 3. Density of states (in eV ) for a tight-binding
model on a square lattice with binary disorder. Histogram:
data from the numerical simulation. Dashed curve: bare in-

stanton theory. Full curves: instanton after Hartree resum-

mation (left part), Hartree summation inside the band (right
part). Dotted-dashed curve: CPA prediction, only present in

the band.

9 x 9 x 9 sites. The determinants were then calculated
numerically. The results are presented in Figs. 1 and 2.
In the absence of disorder, the unperturbed band edge
lies at E = 0. In the presence of disorder there is a tail
extending to E = —oo. The dashed curve in Fig. (1) rep-
resents the predictions kom the bare instanton calcula-
tion (12) and already gives a good description of the data
for energies deep in the tail. The solid curves in the tail
region (left part in the figures) are the predictions from
the instanton theory after resummation, improving the
theoretical prediction. The instanton with resummation

coincides with the numerical data up to higher energies
than does the bare instanton. The solid curves in the
right part of the graphs are the results of our effective-
medium theory. They were calculated with formulas (19)
and (20) and agree very well with the numerical simula-
tion.

We compared our results also to the CPA method as
presented in Ref. 8. We recall that the self-energy in the
CPA is calculated self-consistently:

V
Ecru(E) = f dvv(v)

(24)

LU

10

10

10

10

0

0
-0.4 -0.2

Energy (eV)

2D Density of States
Gaussian Disorder

I

0.0

This self-energy is used to calculate the Green's function
and the density of states. The CPA performs very well

in the case of Gaussian disorder. This can be seen in
Fig. 2, where the CPA is denoted by the dotted-dashed
curve. For reasons of clearness we omitted the CPA in
the three-dimensional case and the bare instanton in the
two-dimensional case. The qualitative behavior in two
and three dimensions is the same.

The same procedure was followed for a system with bi-
nary disorder distribution. The potential has zero mean
and probability 2 to be either —I/~12 or I/~12. The re-
sults are plotted in Fig. 3. The limited range of the CPA
is evident (dotted-dashed line). The figure clearly shows
a reasonable agreement between the numerical simulation
and the bare instanton approach (dashed line). Again,
resummation (solid line) improves the agreement.

FIG. 2. Density of states (in eV ) for a tight-binding
model on a square lattice in the presence of a random po-
tential with Gaussian statistics. Histogram: data from the
numerical simulation. Full curves: instanton after Hartree
resummation (left part), Hartree summation inside the band
(right part). Dotted-dashed line: CPA prediction. The CPA
performs very well in the case of Gaussian disorder.

VIII. SUMMARY

Both for Gaussian and for binary disorder and in both
two and three dimensions we have obtained agreement
between theory and simulations. It is important to note
that the results are plotted without any 6tting parame-
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ters. All prefactors are explicitly taken into account in
our theory. The predictions of our theory inside the band
and in the tail describe almost the whole spectrum, ex-
cept for a small "critical" region near the edge where our
predictions diverge from the simulation experiment. It
can also be seen that the Urbach rule, which would cor-
respond to a straight line in our plots, works quite well

in the Gaussian case, but not in the binary case.
In conclusion, we have presented a method to calcu-

late the tail of the density of states of a disordered sys-
tem. It includes all numerical prefactors and there are
no adjustable parameters. It can be used in the con-
tinuum and on the lattice, in all dimensions. Arbitrary
disorder distributions can be treated. The results of our
method match the numerical data well, especially if the
theory with resummation is used. We also presented an
effective-medium theory to calculate the density of states

inside the band. This method also agrees with numerical
simulation.

It may be possible to use the same technique to calcu-
late transport properties like the ac conductivity of disor-
dered systems. This calculation would be more elaborate
as two-instanton solutions are needed.
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