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The generalization of the variation of the action-integral operator introduced by Schwinger in the

derivation of the principle of stationary action enables one to use this principle to obtain a description of
the quantum mechanics of an open system. It is shown that augmenting the Lagrange-function operator

by the divergence of the gradient of the density operator, a process which leaves the equations of motion

unaltered, leads to a class of generators whose associated infinitesimal transformations yield variations of
the action-integral operator for an open system, similar in form and content to those obtained for the to-

tal, isolated system. The augmented Lagrange-function operator and the associated action-integral

operator are termed proper operators, since only their variation yields equations of motion for the ob-

servables of an open system, in agreement with the expressions obtained from the field equations. Modi-

fying the generator in this manner is shown to be equivalent to requiring that the open system be bound-

ed by a surface through which the."e is a local zero Aux in the gradient vector field of the electron densi-

ty. Only the observables of such properly defined open systems are described by the correct equations of
motion. The physical significance of such proper open systems is discussed.

SCHWINGER'S PRINCIPLE
AND THE DEFINITION OF AN OPEN SYSTEM

formulation of quantum mechanics:

5W')2=F(t2) —F(t, ) . (3)

Schwinger' has given a formulation of quantum
mechanics in which a single dynamical principle replaces
the conventional array of assumptions based on the clas-
sical Hamiltonian dynamics and the correspondence prin-
ciple. The principle is stated as a variational equation for
the transformation function connecting eigenvectors as-
sociated with different spacelike surfaces, which describes
the temporal development of the system. ' Schwinger
postulated that the generator of the infinitesimal transfor-
mation be identified with the variation of the action-
integral operator, the quantity 5@'&2, that is,

5&'q2 t2lq~, ti & =(t&&)&q2 t215@]2lq),t) &

Equation (1) has been written for a particular choice of a
base vector system, one which is specified by the eigenval-
ues, denoted by q;, of the complete set of commuting po-
sition operators constructed from the field variables at
the time t, ; that is, for a given spacelike surface. Al-

though proposed independently by Schwinger, Eq. (1) is a
translation into differential form of Feynman's path-
integral formulation of quantum mechanics.

The manner in which the transition amplitude is

modified when infinitesimal changes occur in the dynami-
cal variables of the quantum system can also be expressed
using Dirac's transformation theory in terms of the ac-
tion of infinitesimal unitary generating operators, F(t, )

and P(t2). The action of these operators on the state vec-

tors associated with the spacelike surfaces —that is, at
the two time end points —yields

5&q2, t2lq~, t~ &=(i&&)&q2, t2IF"(t2) —&(ti)lq~, ti & (2)

A comparison of Eqs. (1) and (2) yields Schwinger's prin-
ciple of stationary action, the operational statement of his

The principle of stationary action states that changes in

the action-integral operator for a given dynamical system
arise only from alterations of the eigenvectors associated
with the two time end points. The infinitesimal generat-

ing operators are introduced via the infinitesimal (e) uni-

tary operator 0, with P=eC:

U = 1 (i e j—A)0 .
'

In this manner, Schwinger introduces Dirac's transfor-
mation theory into a generalized action principle.

Equation (3) is written for a closed isolated system, one

bounded by two spacelike surfaces, but the principle ap-

plies to the general case of a system with finite spatial
boundaries whose evolution with time generate a timelike
surface. In this situation the change in action is generat-
ed by operators attached to both the spacelike and time-

like boundary surfaces of the system, Fig. 1.
Equation (3) clearly extends the concept of stationarity

of the action. Hamilton's principle yields the equation
of motion of the field by requiring that the action be sta-

tionary to first-order changes in the field variables, with

the restrictions that the variations in the field vanish in

the boundaries defining the system and that these boun-
daries remain fixed. The principle of stationary action,
on the other hand, relaxes these restraints. It equates the
variation in the action to the independent effects of
changing the field components at each point in both the
spacelike and timelike surfaces bounding the space-time
volume defined by the action integral, and of altering the
region of integration by a displacernent of the points in

these surfaces. Thus Eq. (3) contains the field equations,
for by demanding that the change in action be dependent

only on operators attached to the boundary surfaces it re-
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of subsystem is equivalent to defining a particular class of
infinitesimal generators; and (b) to show that only genera-
tors belonging to this class yield equations of motion for
the subsystem observables that are in agreement with the
expressions obtained from Schrodinger's equation or
from the energy-momentum tensor for the Schrodinger
field. These results suggest that the definition of an open
quantum system is not open to choice, but is determined
by physics.

VARIATION OF THE ACTION FOR AN OPEN SYSTEM

FIG. 1. Pictorial display of the space-time volume swept out

by a two-dimensional open system. A spacelike surface at a
given time is denoted by Q(t), being bounded by a surface
S(r, t). The temporal evolution of the latter constitutes the
timelike surface, which along with Q(t&) and O(t2) define the
space-time volume of the action integral. In the general case,
the change in action is generated by operators attached to both
the timelike and spacelike surfaces. However, for a proper open
system, the principle of stationary action states that this change
is equal to the difference in the values of the generators P(t)
acting only in the two spacelike surfaces at the two time end-

points, as is the case for the total system.

The action-integral operator for an open system Q—
that is, some subsystem of a total system —is the time in-
tegral of the Lagrange-function operator X[4', t, 0]:

The operator X is the integral of the Lagrange density
operator L defined in Eq. (6) for the two-component
Schrodinger field with the external potential f' and the
two-body interaction g(r, r'):

quires that that variation of the action over the space-
time volume bounded by these surfaces must vanish, as it
does in Hamilton's principle.

The generalization of the variation of the action-
integral operator to include displacements of the time-
like, as well as of the spacelike, surfaces enables one to
use this principle to obtain a description of the quantum
mechanics of an open system. The space-time volume
swept out by some total system and bounded at its two
time endpoints by spacelike surfaces can be partitioned
into disjoint, additive contributions by timelike surfaces,
surfaces determined by the time dependence of the spatial
boundaries of the constituent open systems. In addition
to enabling one to determine the mechanics of an open
system, one may use the principle of stationary action to
inquire as to whether there is some unique prescription
for defining the spatial boundaries of the open system
that constitute the timelike surface.

It has been demonstrated previously that the boun-
daries of an open system can be chosen in such a manner
that the contribution resulting from the action of the gen-
erators in the timelike surface vanishes, and the principle
of stationary action assumes the same form for such a
subsystem as it does for the total, isolated system: that
the change in action is dependent only on operators at-
tached to the two spacelike surfaces [Eq. (3)]. The pur-
pose of this paper is twofold: (a) ta shaw that this choice

L(4,V4, 4)= '(iR/2)14+4 —4' 4]

Xqj(r')ql(r) ' .

Necessary summation over spin is always assumed in the
integration over r. The spatial boundary of the subsys-
tem S(r„t), which determines the timelike surface, is a
function of the time and is initially arbitrary.

According to the principle of stationary action, the
variation of %V,z[q1,0] over the space-time volume deter-
mined by the boundary of 0 must vanish and, as previ-
ously demonstrated, this requirement yields
Schrodinger's equation of motion for the field. The
remaining contributions to 5'N, 2[q1,0] are grouped into
two sets of terms: one consisting of spatial integrals eval-
uated at the time endpoints, and the other consisting of
time integrals evaluated at the spatial endpoints, as given
in Eq. (7):
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5% &2[4,&]= . (ifi/2) f dr@ 54+c.c. +f drL(4, V4, 4, t}5t .

+ f dt ( A—/2m)fdS(r, }.(V4 54+c.c.)+fdS(r, ) nL(4, Vql, k, t)5S(r, ) .

t2
+ f dt ( —iR/2) fdS(r, )(aS/at )0+54+c.c.

fl
(7)

The first bracketed term results from the variations of the
field variables in the spacelike surface (the interior of the
subsystem) and from a displacement of the time, all eval-
uated at the two time endpoints. The second term results
from variations in the timelike surfaces, being the time
integral of variations of the field variables in the spatial
boundary of the system and of displacements of this
boundary, as denoted by 5S(r, ). The final term takes ex-
plicit account of the dependence of S(r, ) on the time.
With the exception of the final term, the definition of a
generator in terms of its contributions from the spacelike
and timelike surfaces given in Eq. (7) is in agreement with
that determined by the generalized variation of the action
given by Schwinger in his Eq. (2.19). Thus his generali-
zation of the action principle anticipates its application to
an open system.

Only the contributions from the spacelike surfaces at
the time endpoints survive for the total isolated system
with boundaries at infinity, and in this case the expression
for the change in action can be expressed as

5W»[ P]=P(t, )
—P(t, )

f dr fthm, 4+c.c.

—fdry(4, V~4, 4)5t '

where A=i''P+/2, is the momentum conjugate to the
Geld variable 4, and where h% denotes the total variation

of a field variable as given by

h4' =54( r ) + 45t +B45r; (9)

that is, by a change in 4(r) at r, and by changes resulting
from spatial and temporal displacements. In analogy
with the classical case, the Hamiltonian density is defined
by a Lagrange transformation:

8(4,V 4,4)=(A4+c.c. ) —L(k, V4, 4) . (10)

Equation (8) identifies H[4]—5t with the generator of a
temporal change. All other possible changes in the
dynamical variables of the system are described by the
generator of spatial change fthm, 4, the quantum analog of
the classical generator p5q. It is this generator that
yields a derivation of the commutation relations. ' The
properties of interest for a subsystem are obtained
through spatial variations, the time dependence of a sub-
system property being obtained either from the field
equation or from the principle of stationary action ob-
tained when 5t is set equal to zero, the procedure fol-
lowed in the remainder of the derivation.

The field theoretic expression for a subsystem genera-
tor, using Eq. (4), is

F[t,Q]= f dr[ft54(r)+c. c. ]

=(s/2) f dr[4+(G4) +cc.],
which yields the following expression for the variation in
the action when substituted into Eq. (7):

5'N»[4, 0]=F[t„Q]—F[t, , II]
E2

+ f dt f d S(r, ) [ ( fi /2m )(V@+54+c—.c. )

+nL(4, V4, 4)5S(r, )
—(iA/2)(BS/Bt)qj+54+c. c. ] . (12)

This result is transformed using Eq. (13), the Heisenberg equation of motion for a subsystem generator obtained from
the field equation

dF[t, Q]/dt=(E/2)[(i/fi)(4~[H, C]~4)„+cc ]+(s/2.)f. dS(r, ).([(BS/Bt)4+G4+c.c. ]
—[JG(r)+c.c. ]) .

In addition to the contribution from the interior of the subsystem as given by the commutator average in Eq. (13), there
are surface contributions to the time derivative arising from the change in the surface with time and from the Aux

through the surface of the vector current density for the observable G(r), where

Jo(r)=(fi/2mi)[%+V(C4) —V%+04] . (14)

Use of Eq. (13}in Eq. (12), yields the following expression for the change in action for an open system with arbitrary
boundaries:
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NV, z[4,0]=(e/2) f dt[(i/fi)(41[8, C]14&n+c.c. ]

+f dt —(A /4m)(t)dS(r, ) ~ [(4+V(54)+V@+54)+cc. ].+ $1S(r, ) nL5S

For the total system with boundaries at infinity, Eq. (15) reduces to

NV, z[4,R ]=(E/2) f dt j(i/fi)(41[0, C]14&+c c .].
with the corresponding expression for an infinitesimal time interval being

5X [0 R ]= ( e/2 ) [ (i /X ) & e
I [8,0 ] I

e & +c.c. ] .

(16)

(17)

Thus the principle of stationary action may be stated in a form relating Heisenberg s equation of motion for the genera-
tor to a variation of the Lagrange-function operator. It is demonstrated next that a particular choice of generator when

applied to Eq. (15) yields expressions for the variation in the action-integral and Lagrange-function operators for an
open system that are the same in form and content to those given in Eqs. (16) and (17) for the total isolated system.

DEFINITION OF THE PROPER ACTION AND ITS ASSOCIATED GENERATOR

(18)

a property that is retained in the presence of an electromagnetic field. Substitution of this result into Eq. (15), the ex-
pression for the variation of the action integral for an open system with arbitrary boundaries, yields

5K[4, t, 0]=(e/2)[(i/A')(%1[8, C]1%&n+c.c. J

—(4 /4m ) fdS(r, ) ([(@+V(54)+V4'+50)+c.c.]+nV (0+4)5S), (19)

One first notes an important property of the Lagrange density that is obtained when the field equations are satisfied,
namely, that it reduces to the Laplacian of the density operator: '

(fi /4m—)V (4+4)= —(A /4m)V p(r),

X'[4, t, 0]=X[%,t, 0]+k f d Vz(4+q ) (21)

where, for brevity, the result of the substitution has been
expressed in terms of the variation in the Lagrange-
function operator. One next notes that the whole of the
surface contribution to the variation in Eq. (19) is equal
to the variation of the subsystem integral of E, Eq. (18),
and as a consequence the variation of the Lagrange-
function operator can be expressed as

5K[k, t, 0]=( /2E) [(i/A')(%1[H, C ]1%& +ncc].
(fi'/4m)—5. f drV'(4+4) . . (20)

J

Thus, because of the property of the Lagrange density ex-
hibited in Eq. (18), the variational expressions for an
open system with arbitrary boundaries differ from the
corresponding expressions for the total system given in
Eqs. (16) and (17) by the variation of the subsystem in-
tegral of the Laplacian of the density operator.

Schwinger points out that there is an ambiguity in the
definition of the Lagrange function for a given equation
of motion, in that it may be augmented by the divergence
of an arbitrary vector without affecting the equation of
motion, only modifying the infinitesimal generating
operator associated with a given surface. Clearly, one
may augment the Lagrange function and its density in
Eqs. (5) and (6), with the final integral appearing in Eq.
(20) to yield a function labeled X [4,t, 0]:

5X [k, t, 0]=(e/2)[(i/&)(41[8, 0]14& +c.c. ]

and

5%V'„[4,0]
=(e/2) f dt [(i/A')(%1[8, C]1%&„+c.c. ] .

(22)

(23)

It is demonstrated below that Eqs. (22) and (23) ob-
tained by the variation of the proper functionals, and
only these expressions, yield equations of motion for sub-
system observables that are in agreement with expres-
sions obtained from the field equations.

where A, is an undetermined multiplier. This function,
and the corresponding definition of the action integral,
labeled %V&z[4', 0], will be referred to, respectively, as the
proper Lagrange function and proper action integral.
Since the additional term is a divergence expression, its
variation contributes only to the surface terms, and the
field equations are again obtained. It follows from Eq.
(20) that if one sets the constant A equal to (R /4m), all
contributions to the variation of the proper functionals
arising from the variation of the timelike surface and its
displacement vanish, with the result that that expressions
for 5X [f,t, 0] and 5%&z[4,0] are the same in form
and content to those obtained for the total isolated sys-
tem given in Eqs. (16) and (17); that is,
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UNIQUENESS OF GENERATORS
DEFINED BY VARIATION OF THK PROPER ACTION

The variational results expressed in Eqs. (22) and (23)
are equivalently obtained by demanding that the open
systems be chosen so that the variation in the subsystem
average of the Laplacian of the density operator vanishes
at every stage of the variation:

5 f drV (4+4) .=0 . (24)

=0, (25)

where p(r} is the electron density whose properties de-
scribe the distribution of the nuclear and electronic
charges throughout real space. The satisfaction of the
variational constraint expressed in Eqs. (24) and (25) is
equivalent to demanding that the subsystem be bounded

This same constant expressed in the Schrodinger formu-
lation is

T

5 ~ (@~f dr V (ip+ip)~ql) =5 f dr V p(r) .

by a surface exhibiting a local zero flux in the gradient
vector field in the electron density, as expressed in Eq.
(26):

(iP~ Vp(r, ).n(r, )~% ) =Vp(r, ).n(r, )=0, Vr&S(r, ) .

(26)
Thus modifying the infinitesimal generating operator by
augmenting the Lagrange function in the manner de-
scribed in Eq. (21) is equivalent to requiring that the open
subsystem be bounded by a "zero-flux" surface in the
field of Vp(r}. The application of the zero-flux boundary
condition to the electron density of any system leads to
its exhaustive and disjoint partitioning into regions each
of which, in general, contains a single nucleus. '

Delimiting the open systems to those bounded by a
zero-flux surface rids the variational expressions of the
contribution arising from displacements of the surface of
the open system, the term E5S in Eq. (15) and
V2(4+4)5S in Eq. (19), with the result that the temporal
development of the associated subsystem generator is
correctly governed by the flux in its vector current densi-

ty. From Eqs. (13) and (19), the variation of the
Lagrange function for an open system with arbitrary
boundaries is given by

5/[4, Q]=(s/2) f dr 8[4+(G4)+c.c. ] /dt+ fdS(r, ) ~ [( A /2m—)(Vip+54+c. c. +nL 5S(r, )J (27)

in which the term describing the explicit time dependence
of the surface has been canceled out by moving the total
time derivative of P[t, Q] within the integral. The corre-
sponding expression for the variation of the proper
Lagrange function is given in Eq. (28):

5X [OQ]', (e=/2) f dr B[~p+(G~p)+c.c. J/Bt

+(e/2) fdS(r, ) ([JG(r)+c.c. J) . (28)

By requiring satisfaction of the variational constraint
given in Eq. (24}, the term involving the displacement of
the surface in Eq. (27) is replaced by the surface integral
of the variation of (iri /4m)V(~p+4). The addition of this
result to the remaining surface term in Eq. (27) trans-
forms the surface contribution into one which removes
from the variation the infinitesimal flux in the generator
through the surface of the open system. The resulting ex-

pression is that given in Eq. (28} for a proper system.
This result or the equivalent statement given in Eqs. (22)
and (23) equates the variations in the proper Lagrange
function and action integral to the action of generators
acting solely within the interior of the open system, the
essence of the principle of stationary action for a total
system [Eq. (3)].

Because of the additivity of the Lagrange function and
hence of the action integral, one has

W„[4]= +%V»[4', Q], 5@'»[4']= g 5%'»[q, Q] .
0 0

Eq. (18), and because of Eq. (26) it vanishes separately
over each of its proper subsystems. Simi1arly, the total
variation is the sum of contributions over the interior of
each subsystem. The summations given in (29) for open
systems with arbitrary boundaries would entail the can-
cellation of equal and oppositely directed fluxes through
their common timelike surfaces. The additivity expressed
in (29}applies to all properties.

PROPERTIES OF A PROPER OPEN SYSTEM

The average properties of a proper open system and
their temporal behavior are determined by the variational
statement of Heisenberg's equation of motion given in

Eq. (22}, each choice of generator yielding a correspond-
ing subsystem theorem. Choosing C=p, rXp or r p,
corresponding, respectively, to the generation of a rigid
translation, rotation, or scaling of the coordinates of an
electron over the interior of the open system, yields the
force, torque, or virial theorems for an open system.
These three related and important open system theorems
are used to illustrate the physical consequence of using
the proper Lagrange-function and action-integral opera-
tors in the definition of an open system. The discussion is
given using the Schrodinger representation, the average
value of a subsystem operator G [Q] being given by

G(Q)=( ,' )f dr fd—~'[O'C(r)%+c.c. ]

=(-,')I (% i6[Q]~e )+c.c]
(29)

The action integral vanishes for a total system because of
=(—,') . (%~ f r['P+(O'P)+c. c. ] ~%) (30)
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5Ã'[e, Q]=c VQ'[O'„Q]I,=, , (31)

where the symbol fd~' denotes a summation over all

spins and an integration over all spatial coordinates ex-
cept those of one electron whose coordinates, denoted by
r, are integrated over the open system Q. The resulting
basic single-particle nature of the definition of the expec-
tation value for an open system follows from the use of
the corresponding generator acting on the electron with
coordinate r in the open system variation principles.

With the infinitesimal generator P=cp, the first-order
variation in X [4,Q] is given by '"

with %,(r, r', t )= {1 —(i/A}c p] %(r,~', t) =%(r—c,r', t ).
Variation of the proper I.agrange integral X [4,Q] is, by
Eq. (21}, equal to the sum of the variations of X[V,Q]
and —L (Q), where

L (Q)= ( A /4m) f dr V p(r) . (32)

The variation of X[V,Q], as anticipated on the basis of
Eq. (27), yields

c VQ[%'„Q]~, O=c m f drBJ(r)/Bt c(—R /4m)fdS V p(r)n(r)+c (irt /2m) fdS f dr'{ V@" VV +VVV qi'] n(r)

(33)

which includes the contribution from the variation of the surface with 5S=a n(r), and where J(r) is the vector current
density, Eq. (14}with C =1. The variation of —L (Q) is

c (R /4m)V, f drV p~ =c (A /4m)fdS V p(r}n(r)
0

c(R—/4m) fdS fdr'{(VVV" )%+V+'VV+VVVV'+O'VV%'] n(r) . (34)

—veve'++'vve] . (36)

The stress tensor is determined by the one-electron densi-

ty matrix I'"(r,r'). The statement of the principle of
stationary action [Eq. (22)] equates this variation in the
proper Lagrange integral to the subsystem average of
[8,p] = —V„P; thereby yielding an expression for
F(Q, t), the Ehrenfest force acting on a proper open sys-
tem"' (the total potential-energy operator is here denot-
edby P):

F(Q, t}=f dr fdr'4'( —V„P')4
0

=m f dr BJ(r)/Bt —tt}dS cr(r) n(r) . (37)

This result is to be contrasted with that obtained for the
variation of the Lagrange integral for an open system
with arbitrary boundaries, which by Eq. (20} equates the
commutator average F(Q, t) to the right-hand side of Eq.
(33).

One may obtain a local expression for the Ehrenfest

The addition of this result to the variation of the improp-
er Lagrange function cancels out the surface variation
and transforms the remaining surface integral into one
describing the flux in the momentum density through the
surface of the open system. Thus

c VQ'[%„Q]~, ,
=c mf dr BJ.(r)/Bt —c.fdS tr(r) n(r), (35)

where the quantum stress tensor tr(r)=J&(r), as intro-

duced by Schrodinger, ' is given by

~(r) =(A'/4m} f d~'{(VV% ')0 —VC 'V%

force, F(r, t), either by using the equations of motion to
determine the time derivative BJ(r}/Bt, as done by Pau-
li' and Epstein, or by using the divergence relations
satisfied by the spatial components of the energy-
momentum tensor of the Schrodinger field. ' Using again
the generator for a single electron coupled with the ap-
propriate averaging, these methods yield '

F(r, t)= fdr'4'( —V„f')qi

=m BJ(r)/Bt —V.tr(r), (38)

an expression that is, term for term, the differential form
of the force given in Eq. (37) for a proper open system.
The differential and integral expressions for the force act-
ing on an open quantum system are identical in form and
content to Cauchy's first law of motion in classical con-
tinuum mechanics. ' The force density F(r, t) in Eq. (38)
is the force exerted on an electron at r in the basin of the
open system obtained by averaging the force operator
—V, P'over the motions of the remaining particles in the
system. Its integration in Eq. (37) yields the average
force exerted on the open system F(Q, t) One notes th.at
the Ehrenfest force, even though it includes the contribu-
tions arising from the electron-electron repulsions, is to-
tally determined by the information in the one-electron
density matrix.

Proceeding in a similar manner for the generator
P=cr Xp, the principle of stationary action yields the
torque theorem for a proper open system:

T(Q, t)= f dr fd~'4'( rXV, P)—4'
0

=m f drrXBJ(r)/Bt+ fdS cr(r)Xr.n(r) .
(39)
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Taking the moment of the momentum balance given in
Eq. (38) yields the differential forin of this torque
theorem

T(r, t)= fdr'qi*( —rXV„V)%

sidual being the quantity of interest. This near cancella-
tion is refiected in the local behavior of V(r). One may
take advantage of the short-range nature of V(r) by using
the local statement of the virial theorem [Eq. (43)] to
define an energy density E,(r) as

=mrXBJ(r)/Bt+V [o-(r.)Xr], (40)

a result which, again, is the differential form of the corre-
sponding theorem for a proper open system.

Finally, setting the generator F=sr.p in Eq. (22) yields
the virial theorem for an open system which may be ex-
pressed as "

2T(Q) = —f dr fd~'4*( rV—V)%

+m f drr BJ(r)/Bt —f dS r o(r) n(r)

(fi /4—m)fdS Vp(r) n(r), (41)

where the final surface contribution vanishes because of
the zero-flux surface constraint on the open system. The
local form of the virial theorem obtained by taking the
virial of the Ehrenfest force in Eq. (38) is, term for term,
the difFerential form of Eq. (41)

2K(r)= —r F(r, t}+mr BJ(r)/Bt —V [r cr(r)]
—(A' /4m)V p(r), (42)

—2G(r)= I
—r Vo+V (r o}] (fi /4m)V p—

=V(r) —(iri /4m)V p(r) . (43)

The virial V(r) defined in Eq. (43) is the potential-
energy density of an electron at r. It determines the aver-
age effective potential field experienced by a single elec-
tron in a many-particle system, and provides the most
short-ranged description possible of this interaction po-
tential. This is a consequence of the electronic virial in-
cluding the contribution from the nuclear-nuclear forces
of repulsion ( V„„) in a local manner (as the virial of the
density of the Hellmann-Feynman force which the nuclei
exert on the electron at r). The average of the virial den-
sity is '

V= fV(r)dr=( V„, &+( V„&+(0„„&+y X..V.E,
(44)

the final term being the virial of the Hellmann-Feynman
forces acting on the nuclei, which vanishes in an equilib-
rium nuclear configuration. In interactions between sys-
tems, the repulsive potential energies ( V„) and ( V„„)
are each approximately one-half the magnitude of the at-
tractive potential energy ( V„, ), the relatively small re-

where K(r) is the kinetic-energy density defined as
(
—A' /4m) fdr'[qi'V ++qlV ql'] and the identity

V [r cr(r)]= Tro+r Vo has been used. Because of the
zero-flux surface condition defining a proper subsystem,
the kinetic-energy density K(r) integrates to the same
average value T(Q), as does the density
G(r) =(iri /2m) fdr'[V%" V%], since they differ locally

by (fi /4m )V—p(r). For a stationary state, the local ex-
pression for the virial theorem may be stated entirely in
terms of the stress tensor and its trace: '"

E,(r) = G(r) +V(r) = —K(r) . (45)

Each of the above quantities is defined in terms of the
stress tensor o(r), which in turn is determined byI' "(r,r'), whose diagonal elements are the electron densi-
ty p(r). Each of these quantities is observed to be as lo-
cally transferable, as is p(r) for a given open system in
different environments. Thus the integral of E,(r) over a
properly bounded open system yields a contribution to
the total energy which parallels the transferability of the
form of the open system in real space. Only an energy
density defined in this manner possesses this essential
physical property. A11 proper open systems are in gen-
eral transferable to some extent, this observed property
underlying the usefulness of the atomic model in chemis-
try.

The three theorems illustrate a general result: only the
variation of the proper Lagrange function in the principle
of stationary action yields theorems for an open system
that are in agreement with the corresponding local ex-
pressions obtained from Schrodinger's equation. The
proper integrated equation of motion for a subsystem ob-
servable contains as its sole surface term the flux in its
current density through the surface of the open system,
the same surface flux that appears as a divergence of the
current density in the differential form of the theorem de-
rived from Schrodinger's equation

DISCUSSION

Proper open systems, those satisfying the zero-flux sur-
face condition, have a number of unique and important
physical characteristics. Their properties, including the
energy and those induced by an externally applied field,
are additive to yield the corresponding expectation values
for the total system. Proper open systems are the most
transferable pieces one can define in an exhaustive parti-
tioning of the real space of any system leading to their
most important property; if the distribution of electronic
charge is essentially unchanged for a given subsystem in
two different total systems, then its properties are
transferable as we11 as additive, the subsystem contribut-
ing the same amounts to all properties in both systems. '

Such behavior is observed experimentally for atoms and
groupings of atoms in homologous series of molecules,
and gives rise to what are termed additivity schemes.
The proper open systems recover the e'xperimentally
measurable additive atomic contributions to the volume,
heat of formation, polarizability, and magnetic suscepti-
bly, *' ' and as a consequence they have been identified
with the chemical atom. The extent of near-perfect
transferability, both experimentally and theoretically, can
be striking. These characteristics are a consequence ofI' "(r,r'}, which determines all mechanical properties of
a proper open system, being a short-ranged function.
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The zero-flux boundary condition not only defines an
atom or a grouping of atoms within a molecule, but also
generalizes the idea of a Wigner-Seitz cell in a crystal by
identifying it with the smallest connected region of space
bounded by a zero-flux surface and exhibiting the transla-
tional invariance of the crystal. ' ' The zero-flux bound-
ary condition enables one to go beyond the condition of
translational invariance to define and differentiate be-
tween an adsorbed atom and the adsorbing surface, be-
tween an atom in the bulk and one in the surface, or be-
tween a defect atom and its host. In every situation, one
obtains a complete description of all observable proper-
ties of the crystal in terms of their atomic contributions.

The gradient vector field of p, in addition to determin-
ing the boundary condition for a proper open system,
also determines the interatomic connectivity, the network
of bonds in a molecule or a crystal yielding a theory of
molecular structure and structural stability. ' This to-
pological aspect of the theory has received widespread
use, including applications to the solid state, where it has
been used to relate the topology of the electron density to
the structure and the bulk mechanical properties of met-
als and alloys and to the diffusivity of oxygen atoms in
alloys.

There is much current interest in the use of local and
regional relationships in the study of the solid state. Lo-
cal expressions for stress and force theorems have been
given by Nielsen and Martin, who define a stress density
for the discussion of the elastic properties of crystals.
Chetty and Martin, using similar concepts, define an en-

ergy density for use in the discussion of the separate con-
tribution to the energy of a solid arising from the surface
or from the presence of an impurity. Zeische and co-
workers have derived expressions for energy densities and
a local stress tensor in terms of one- and two-particle den-
sity matrices for the study of clusters and solids. ' All
three approaches make use of the local-density approxi-
mation to obtain working expressions. A comparison of
these approaches with the present results goes beyond the
present paper, but it is possible to note the manner in
which they complement one another. First, Nielsen and
Martin and Chetty and Martin comment on their lack
of unique definitions together with the associated prob-
lems of determining regions for which one obtains results
that are gauge invariant and which reflect the physical
property of interest, such as that of a surface energy. All

theorems that are derived here and the physical quanti-
ties they relate are uniquely defined and are obtained
from a variational principle that applies to specific well-
defined regions of space. These authors comment on the
long-range nature of the interactions that are associated
with the separate contributions to their local expressions
for the energy. The subsystem energy and energy density
obtained from the virial theorem for a proper open sys-
tem and expressed in terms of the tensor o (r) overcome
this difficulty by making use of the short rangedness of
I'"(r,r'). It is the demonstrated ' ' ' consequence of
this property of the one-density matrix that is responsible
for the primary operational concept of chemistry, that of
a functional group with characteristic properties. It is
this energy that exhibits the essential physical require-
ment that two identical pieces of matter possess identical
energies, be they of macroscopic dimensions or micro-
scopic, in the form of equivalent atoms at different sites
within a single crystal or two identical peptide units in a
protein chain.

Artacho and Falicov ' have proposed a method for the
treatment of a fermionic open system without a
prescribed physical boundary, the partitioning into the
open system of interest and reservoir being achieved
through a corresponding partitioning of the field-
theoretic Hamiltonian, together with an interaction term.
The latter term explicitly includes the dynamics of the ex-
change of fermions between system and reservoir. While
the variational principles for the proper open system
presented here are of a forrnal nature, they do establish
the existence of a unique spatial partitioning of some to-
tal system into subsystems, whose properties, in addition
to being governed by quantum mechanics, are additive
and reflect the characteristics of transferability associated
with the working concept of an atom in a molecule or a
crystal. Because the properties of proper open systems
parallel the atomic model of matter, they could represent
the optimum choice in the development of a general vari-
ational treatment of open systems.
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