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Reentrant antiferremagnetism in oxygen-daped z&prates

I. Ya. Korenblit and Amnon Aharony
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv 69978, Isruel
(Received 22 December 1993)

The reentrant behavior of the sublattice magnetization in the doped cuprates La2Cu04+ and
YBa2Cu306+ is explained by a model which assumes that the localized holes reduce the sublat-
tice magnetization more strongly than the mobile holes. Good agreement with the experiments is
obtained, using the measured temperature dependence of the localized hole density, which is char-
acterized by the (measurable) hole excitation energy E(z), and the difFerence between mobile and
localized holes, described by a single x-dependent parameter. The theory also accounts for the ab-
sence of the reentrant behavior in highly doped samples. At higher temperatures we find additional
corrections, due to a renormalization of the spin waves by the impurities.

The parent materials for high-temperature supercon-
ductors, La2Cu04 and YBa2Cu306, are layered antifer-
romagnets (AF) with high Neel temperatures T~ = 320
and 410 K.~ 4 For doped samples, LazCu04+ (LCO)
and YBazCusOs+e (YBCO), the Neel temperature T~
decreases with increasing x, and it is convenient to iden-
tify samples by the values of T~.~ The long range AF
order disappears (TN = 0) when z = 0.02 in LCO and
z 0.4 in YBCO, and a transition to a spin glass state
was observed at least in LCO. '

In the pure samples, the temperature dependence of
the staggered magnetization, M(T, z), was explainedz
in terms of a generalized Schwinger boson mean field
theory. However, the temperature dependence of M in
the doped cuprates is unusual. In LCO with TN ——

190 K, M has a large plateau at T ( 0.4T~ (see Fig. 1
of this paper). z A plateau is also seen in samples with
Ttv = 150 and 220 K (Ref. 10). When z is further in-
creased, with a corresponding decrease of TN to 90 K, M
reveals a reentrant behavior (Fig. 1). It exhibits a max-
imum at some temperature T && T~, followed by a de-
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crease at lower T. Finally, when TN ——50 K, M decreases
monotonically with increasing T. A similar maximum
in M(T, x) has also been observed in YBCO,s'4 in sam-
ples with z = 0.3, T~ ——350 K; x = 0.33, TN ——300
K (see Fig. 2); and z = 0.37, Ttv = 180 K. At higher
impurity concentration (x = 0.38, Ttv = 150 K) the T
dependence is monotonic.

In this paper we discuss two mechanisms which affect
the z dependence of M(T, z). Figures 1 and 2 show our
theoretical results, &om the first mechanism, based on
the difference between mobile and localized holes. The
theory, which involves an x-dependent parameter P(x)
(see below), clearly reproduces the observed plateaus and
the maxima. The further reduction of M(T, z) at T )
T is explained in the second part of the paper, via the
scattering of spin waves.

Shender and Rammal described the disorder in the
antiferromagnet by a model of local noninteracting mag-
netic two-level systems (see also Ref. 13) with a wide dis-
tribution of the energy splitting P(e) This mod. el results
in a reentrant behavior of the sublattice magnetization if
P(e & T) & J ~, where J is the in-plane exchange inter-
action between neighboring Cu spins, and if P does not
scale with the defect concentration. The authors did not

l I I
I

I I I
(

I I 1
I

I I I
I

I l

C)

0.5

I

) I & ( i 1 i & g I t i s I

0 0.2 QA 0.6 0.8
T/T„

CO

0 5

FIG. 1. The temperature dependence of the normalized
square of the sublattice magnetization, M /Ms, in LCO.
o —Tjy = 190 K; ~ —T~ = 90 K; the dashed (lower) line
—z = 0, Tsr = 325 K (from Ref. 2). The solid lines represent
the theoretical fit to Eq. (3). The broken (upper) line gives
the prediction for the sample with T~ ——150 K.
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FIG. 2. Same as Fig. 1 for YBCO. —x = 0.30;
*—x = 0.33; the dashed line —z = 0.20 (from Refs. 3 and 4).
The solid lines represent the theoretical fit to Eq. (3).
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FIG. 3. The hole activation energy in LCO as a function of
the doping (Refs. 5 and 17). T~ is used to label the doping.
The solid line is a guide for the eye, and the dashed line shows
the extrapolation to low T~.

make a detailed comparison with the experiment.
The reentrant behavior of M observed in the doped

cuprates resembles that of magnets exhibiting a reentrant
transition to a spin glass state. Therefore Aharony et
al. and Endoh et al. related the maximum in M with
the spin glass ordering. It has been argued, that at
low doping the holes are localized on the oxygen sites
in the Cu02 planes, introducing a large effective ferro-
magnetic interaction between the two Cu spins neigh-
boring the oxygen hole. The two spins connected by the
frustrated bond are perpendicular to the sublattice mag-
netization and act on the AF background as a dipole.
The spins around the ferromagnetic bond are canted, by
an angle which decays at large distances r from the ori-
gin as r i (Refs. 6 and 15). Thus the defect induced
decrease of the order parameter diverges as lnL in the
limit L ~ oo, where L is the sample size. This means
that an arbitrary small number of defects destroys the
long range order. In real cuprates, the range of the
r dependence is restricted to r ( ro by the in-plane
anisotropy (with a spin wave gap es 1 meV, in LCO)
or by the interplane exchange interaction J& (in YBCO).
A simple generalization of Villain's arguments shows
that the range of the r dependence is of the order of

J/es = (J/J~) I = 10 in the lattice constant
units. Thus each localized hole lowers the sublattice mag-
netization in a finite but large (rp )) 1) range, and the
sublattice magnetization decays quickly when the doping
increases.

Recent experiments ' show that the acceptors in
LCO and YBCO are relatively shallow. In pure LCO
with T~ = 320 K, the acceptor level energy is E(z =
0) = 35 meV) TN Upon do. ping, E(z) drops quickly,
faster than T~(z) (Fig. 3). Since the fraction of mo-

bile holes is n(T, z) = exp[ —E(x)/T], the number of
localized holes decreases substantially as T increases in
the range 0 & T ( TN. The activation energy in slightly
doped YBCO is also about 30 meV.

In some models, the mobile holes move as polarons
in pure conductance bands. The effect on M(T, z) is then

minimal. In other models, the hole is described as a
moving vacancy in the quantum AF. The spins around

the hole are canted in a dipolelike way. In the cuprates,
the hopping energy t obeys t )) J. In that case, the hop-
ping is faster than the spin dynamics, and the hole "hops
through a frozen spin background. " It is thus reason-
able to assume that mobile holes cause less disruption of
the AF order than localized ones. Therefore the delo-
calization of the holes with increasing T should cause an
increase in M.

To separate the two effects addressed in this paper, we
write

M(T, z) = M, (T, x) —m, (T, z).

Here M, (T, z) describes the temperature dependence of
the magnetization due to the spin wave excitations. The
disorder affects this function only via the renormaliza-
tion of the spin wave spectrum. Therefore M, (T, z) is
independent of x for T m 0. The effects of hole delo-
calization are contained in m, (T, x), and m, (T, O) = 0.
Thus, M, (0, z) = M, (0, 0) = M(0, 0). We now
consider m, (T, z) in two limits. At T = 0, all the
holes are localized [n(T = O, z) = 0], and we define
bp = m, (0, x)/M, (0, z) = [M(0, 0) —M(0, z)]/M(0, 0).
In the other limit, of high T, all the holes become mo-
bile, and we denote the limit of m, (T, x)/M, (T, z) when

n(T, z) + 1 by bi. bi is T independent: the temperature
dependence of m, (T, z) is caused only by the spin wave
excitations. Since the main contribution to m, (T, z)
comes from spins with small canting angles, the function
m, (T, z) is proportional to M, (T, z).

In the intermediate temperature range, when 0
n(T, x) ( 1, we write

m, (T, z)/M, (T, x) = [1 —n(T, z)]bp + n(T, z)bi. (2)

Equations (1) and (2) yield

M(T, z) M, (T, z)
M(0, z) M(0, 0)

where AM(0, x) = M(0, 0) —M(0, z), and P(x) = (bp-
bi)/bp. Basically, Eq. (3) contains the single x-dependent
parameter P(z) which represents the difference between
mobile and localized holes. We expect P(z) to decrease
with the increase of z, since the localization range of the
hole increases and the difference between localized and
delocalized holes decreases.

We first compare Eq. (3) with the experiments for
LCO. Ignoring the renormalization of spin waves (see be-
low), we approximate M, (T, x)/M(0, 0) by the function
M(T, O)/M(0, 0), known &om neutron measurements.
The magnetization decay AM(0, x)/M(0, x) is also
known from the experiment. P The energy E(x) has been
determined from Hall measurements of the hole concen-
tration for a number of LCO samples. ' The depen-
dence of E on TN according to these data is given in
Fig. 3. Thus we are left with one adjustable parameter,
P. For the sample with T~ = 190 K, and E(x) = 140
K (Fig. 3), Fig. 1 shows a very good fit to Eq. (3) with
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P(x) = 0.26. A similar fit was found for T~ = 220 K
(from Ref. 10), with P = 0.30. For TN = 90 K, we ex-
trapolate E(T~) in Fig. 3 and estimate E(x) = 21 K.
Figure 1 shows that Eq. (3) with P = 0.13 reproduces
the data very well, especially near the maximum. In-
deed, P decreases with increasing x. In both cases, the
fit becomes worse at higher T, due to the x dependence
of M, (T, x) (see below). Figure 1 also shows Eq. (3)
with T~ = 150 K, E = 70 K, and P = 0.18, which we
choose by interpolation between the parameters found
above. The resulting graph exhibits a plateau, similar to
the data of Ref. 10. However, the scatter in the latter
does not allow a quantitative comparison.

There are no experimental data for E(x) in YBCO.
We therefore used both E(x) and P(x) as adjustable pa-
rameters when comparing Eq. (3) with the experiments.
We approximated the function M, (T, x)/M(0, 0) in
Eq. (3) by the measureds 4 function M(T, 0.20) rather
than by M(T, O). The reason is that M(T, 0.20), like
M(T, O), does not exhibit any peculiarities (see Fig. 2),
i.e., M(T, 0.20) = M, (T, 0.20). It is natural to sug-
gest that the function M, (T, 0.20) is closer to the func-
tions M, (T, x) for x ) 0.30, than M, (T, O). It is seen
from Fig. 2 that the theoretical line with E = 25 K
and P = 0.54 follows closely the experimental points for
YBCO with x = 0.3 (T~ = 350 K) in the whole temper-
ature range 0 & T & T~ E= .15 K and P = 0.32 give
a good fit for the sample with x = 0.33 at T ( 0.7T~
(Fig. 2). However, the comparison in this case is less
conclusive, since there are no experimental points in the
region of the maximum.

As mentioned above, the sample with x = 0.37 (T~ =
180 K) also reveals the reentrant behavior. Neverthe-
less, the overall temperature dependence of M(T, x) for
this sample difFers substantially from that in the above
samples with a lower doping level: the line M(T, 0.37)
at T ) T is concave rather than convex. This means
that the frustrating impurities afFect strongly the func-
tion M, (T, x), and our assumption that this function
behaves as M, (T, 0.20) ceases to be valid. Therefore we
have not tried to fit Eq. (3) to the data in this case.

We can now understand why M(T, x) exhibits a max-
imum only at some intermediate range of x. When z is
small, E is large, of the order of T~. Thus the increase of
M due to the delocalization of the holes, which is most
pronounced at T E, is depressed by the fast decay of
M due to the thermal fluctuations near TN. In the highly
doped samples the difFerence between the localized and
delocalized states is small, i.e., E(x) and P(x) go to zero.
Therefore there is no reason to expect an increase of M,
when the number of delocalized holes rises. The relation
between E(x) and T (x) has been noted in Ref. 3.

We now turn to our second efFect, involving the difFer-
ence between the temperature dependence of M, (T, x)
for a doped crystal and M, (T, O) for the pure one. For
small x we consider a simple model of the impurities:
frustrated noninteracting bonds. We can thus consider a
single frustrating bond, connecting the spins S~y and S2f.
The Hamiltonian of the system is H = Ho + H;„t + H „t,
where He ——Jg~, ~

S; . S~ is the Hamiltonian of the
undoped antiferromagnet, with nearest neighbors (ij).

H;„q describes the interaction of the spins Sqy and S2f
with their neighbors. Ass»ming a strong ferromagnetic
coupling between Sqy and S2y, these spins are parallel
to each other, perpendicular to the staggered moment.
Thus

H,.„,= J) S,y S';+ J) S2y. S; (4)

contains sums over the three neighbors of Sqy (excluding

S2f ) and similarly for S2y, and

H„, = —J) S; S~,
(ij)

where the sum is over the seven bonds connecting Sqy,
S2f and their six neighbors. Note that for simplicity we

neglect the canting of all the spins except for Sqy and

S2y.
In the usual linear spin wave theory the Hamiltonian

(4) describes the interaction of the spin waves with a
pair of canted spins. For low energy spin waves, this
is analogous to the interaction of phonons with a local
distortion or magnetic ion (see, e.g. , Ref. 22):

Hj~t, —Sy ) Vqf o. p exp(iq Ry) + H.c.
q, A=1,2

(6)

Here a
& creates the spin wave with polarization A, and

Sf Sf + i S& represent the joint spin Spf = S2f = Sf
(the sublattice magnetization is along z). The interaction
energy is V~y oc J ~ q(ur-) ~~2 oc Jq~~2, where uo = coq
is the spectrum of the undoped antiferromagnet.

The spin wave self-energy which follows from (6), after
the averaging over the impurity bonds with concentration
Z) 1S

(7)

(8)

where the efFective dipole moment p represents the spin
Sy, taking into account phenomenologically that the real
defect is more complicated than the model considered
here 24

Writing the renormalized spin wave spectrum

(uq = (u-+ ReZ(u)q, qQ, (9)

and using Eqs. (7)—(9) for ~ && I', the renormalized spin

where the overbar means averaging over the orientations
of the frustrated bonds. The retarded Green's function
of the spin Sy, y(u), is proportional to the suscepti-
bility of the impurity spin, which is (under sufficiently
general conditions) a Lorentzian. 2s The width I' of the
Lorentzian is determined by the dipole-dipole interaction
(mediated in our case by the spin wavess'~s) of the ran-
domly distributed impurity spins or by the interaction
of the spin with the matrix degrees of freedom (spin-
phonon, spin-magnon interactions, etc.). Thus at low
frequencies cu (( T we have
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wave velocity becomes

c = co(1 —UT ))

where cp J and U Jp z.
The spin wave contribution to M, in a quasi-

two-dimensional antiferromagnet is of the order of
Ac 2T In(T/w, ),2s where ur, is a lower cutoff energy de-
termined by the in-plane anisotropy or the interplane ex-
change interaction and A is a constant. Thus if I' « ~,
the part of the spectrum with renormalized spin wave
velocity (10) does not contribute to the magnetization,
but if I' &) ~, we find that with logarithmic accuracy:

M, (O, z) —M, (T, z) AT

M, (0, z) c'(1 —UT )
2

For T )) U, the right-hand side becomes A(T + 2U +
3U T i + )/co. The leading correction, AU/co, low-
ers M, (T, z) at high T, in qualitative agreement with
Figs. 1 and 2.

Equation (11) has a maximum at To ——3U. Thus, one
might think that it could replace Eq. (3) in reproduc-
ing Figs. 1 and 2. However, fits to Eq. (11) failed to
reproduce the data with plateaus, and Eq. (11) fails at
T (Tp.

The Hamiltonian (5) describes the interaction of the
spin waves with a defect consisting of two neighboring
vacancies. Qualitatively the effect of such a defect on the

spin wave spectrum should be the same as that of one site
vacancy, which has been investigated for many years (see
Ref. 26 and references therein). The renormalization of
the spin wave spectrum due to this scattering does not
depend on the temperature at T « TN. It softens the
magnetic system and therefore, as mentioned above, it
also sharpens the decay of M, (T, z) with the increase
of T. However, it does not acct the structure observed
in Figs. 1 and 2. Thus we see that the renormalization
of the sublattice magnetization due to spin wave scatter-
ing on the &ustrated bonds improves the agreement of
Eq. (3) with the experiment at high temperatures, but
the anomalies of the magnetization at lower temperatures
are mainly due to the second factor in Eq. (3).

In conclusion, we presented a model that explains the
reentrant behavior of the sublattice magnetization in
doped cuprates LCO and YBCO. The model is based
on the single assumption that the moving holes destroy
the long range order less than the localized ones. Using
measured parameters, we found a good agreement with
the experimental data for both LCO and YBCO.
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