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The two- and three-particle contributions to the configurational entropy (Sz and Ss, respectively)
were calculated by the method of Baranyai and Evans [Phys. Rev. A 42, 849 (1990)j for two different
models of a-Si, obtained by reverse Monte Carlo simulations. The 6rst model was the result of an
unconstrained calculation, while the second one was obtained by using a constraint requiring 100'%%uo

fourfold coordination. The pair-correlation functions of the two models were essentially the same,
but cosine distributions of bond angles (a projection of the three-body correlation function) were
remarkably different. Two-particle contributions to the configurational entropy do not differ for
the two models. However, the difference in the three-particle contributions to the con6gurational
entropy is large and the S3 of the 10070 fourfold coordinated model is much more negative than that
of the unconstrained model. This work is an attempt to make a quantitative distinction between
structural models with identical pair-correlation functions.

Recently it was shown that quite different structural
models of a-Si, generated by reverse Monte Carlo (RMC)
simulation, 2 are equally consistent with given diffrac-
tion data. The equal consistency involves highly simi-
lar, sometimes totally identical pair-correlation functions
(PCF), g(r), of different models. Qualitative distinction
between models could be made through characteristics of
local symmetries, such as the distribution of the number
of neighbors, or the cosine distribution of bond angles
(see, e.g. , Ref. 4). It was not, however, possible to char-
acterize the structural difference between models quan-
titatively. This was mainly beacause these ad hoc dis-
tributions cannot be linked to higher-order correlation
functions trivially. The main objective of the present
study is to find a proper means for the quanti6cation.

The con6gurational entropy can be expanded as con-
tributions from 2, 3,...,N body correlations, and it was
also possible to derive an ensemble invariant form of this
expansion. This effectively means that it is possible to
approximate the total configurational entropy by calcu-
lating the two- and three-body contributions from sets
of particle coordinates (configurations). The configura-
tions can be results of any computer simulation, for in-
stance, of RMC. In the case of our models of a-Si it is
expected that the constrained model would give a larger
negative three-body contribution (Ss) than the uncon-
strained one, whereas the two-body contributions (S2)
from these two models should be equal.

The calculation of S3 necessitates the calculation of
the three-particle correlation function. This is rather
cumbersome and extremely time consuming because of

the large number of configurations needed for acceptable
statistics. Probably this is why the method is not ap-
plied more widely. Nevertheless, we have attempted the
evaluation of S2 and S3 for two large models since the
difference expected to be found in S3 promised the quan-
titative measure that we were looking for.

First, suKciently large samples, i.e., a suKcient num-
ber of particle configurations, had to be collected by re-
verse Monte Carlo simulation. The technique has been
described in detail elsewhere. ' In short, according to the
RMC algorithm particles are moved around in order to
achieve the best agreement with a given (set of) experi-
mental, mostly diffraction, data. In addition to the data,
different constraints can be imposed, such as those on
coordination numbers or on bond angles, according to
our previous (chemical) knowledge of the structure. As
a result of RMC, particle configurations (sets of Carte-
sian coordinates of all the particles in the system) are
obtained that are consistent with the experimental data.
These con6gurations can be used later for geometrical
analyses. Methods for characterizing the local structure
are described in Ref. 4. The calculation of S2, and par-
ticularly of S3 would be a different application of the
con6gurations resulting from RMC.

A total of four RMC calculations were completed,
forming two unconstrained-constrained pairs. One pair
of models (sample 1 and sample 2, as unconstrained and
constrained, respectively) contained 216 Si atoms per
configuration, whereas the other pair (sample 3 and sam-
ple 4, in the same order as above) contained 1728 atoms.
The number density was always 0.05 A. . Sample 1 can-
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FIG. 1. Pair-correlation functions, and
two- and three-particle contributions to the
configurational entropy, S2 and S3, for sam-
ples 1 and 2 (216 Si atoms per configuration).
(Solid curves: sample 1; dashed curves: sam-
ple 2.) The inset shows for emphasis an en-
largement of a characteristic qualitative dif-
ference between S3 curves of unconstrained
and constrained structures. (Upper curve:
sample 1; lower curve: sample 2.)

sisted of 100 independent configurations with no addi-
tional constraint applied when fitting to the structure
factor of Kugler et al. Sample 2 contained 100 inde-
pendent configurations that were generated while 100%
fourfold coordination was required, and fitted to the pair-
correlation function g(r) calculated over the 100 configu-
rations of sample 1. Sample 3 was built in the same way
as sample 1 except that the number of particles was in-
creased to 1728. Sample 4 consisted of 100 configurations
collected by RMC applying 100% fourfold coordination
constraint and fitting, again, to the structure factor S(Q)
of Ref. 3.

In Fig. 1 the PCF's, as well as S2's and S3's calculated
for samples 1 and 2 are shown. During the entropy cal-
culation a resolution of Er = 0.1 A was applied. While
the PCF's and the S2's are practically the same for the
two samples, i.e. , the structure does not differ at the
two-particle correlation level, the S3's already differ re-
markably after the first coordination sphere. At higher r
values the two S3 curves diverge greatly, S3 for sample 2
(100% fourfold coordination) being much more negative.
Also, the S3 function for sample 2 is more structured
than for sample 1. Note also the qualitative difFerence in
the Ss curves around the first peak of g( ) (see inset of
Fig. 1): Ss for the unconstrained structure has a mini-
mum at about 2.1 A, while for the constrained structure
S3 decreases monotonically.

As can be seen from Fig. 1, S2 changes only slightly
after about r = 4.5 A, i.e. , after the second peak of g(r).
This means that the two-particle correlations are so small

above that value that they do not give rise to any con-
tribution to S2.

As was shown in Ref. 6, S3 can be considered converged
if the curve reaches its terminal flat plateau and does not
decrease any longer. This status would be connected to
the distance(s) where there is no more correlation in the
positions of three particles, that is, where g (ri, r2, rs)

~ ~ (3)

oscillates to a lesser extent than g(2) (r) above 4.5 A, in
our case. One would expect that this happens at no larger
distances than for g(2)(r) (and consequently, S2). This
would also be logical since in general, higher-order cor-
relations are known to be more short-ranged than lower
correlations. In practice, however, S3 always seems to
diverge, and the generic cause for that lies in the finite-
ness of the sample on which g( ~ is calculated. When
evaluating g( ~ for such a sample, the situation at large
r is much worse, compared to that at low r, although
the volume elements are increasing as functions of inter-
particle distances. Furthermore, it should be noted that
the integration algorithm cannot separate real oscilla-
tions &om statistical fluctuations, that is, both give rise
to contributions to Ss (and also to S2). This is why the
extrapolation technique of Ref. 6 had to be implemented,
even for rather disordered systems.

In light of the above, it is now possible to interpret
the behavior of S2 and Ss for samples 1 and 2 (Fig. 1).
S2, according to the good statistical accuracy of g( ~, is
convergent. S3, due to the poor statistics at higher r,
diverges (steadily decreases) for both samples. However,
the divergence of S3 for sample 2 is enormous, partic-
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FIG. 2. Pair-correlation functions, and
two- and three-particle contributions to the
configurational entropy, S2 and Sz, for sam-
ples 3 and 4 (1728 Si atoms per configura-
tion). (Solid curves: sample 3; dashed curves:
sample 4.)
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FIG. 3. Three-particle contribution to the
configurational entropy, S~, calculated over 1,
10, 20, 30, 70, and 100 configurations. Note
that the curves for 70 and 100 configurations
are merged.
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ularly if we consider that the sizes of the samples were
identical. Thus the difference between Ss's of the two
structures, which is precisely what we are looking for,
cannot be considered as merely an artefact of the statis-
tics, but it does have strong structural origin.

Samples 3 and 4 represent considerably larger systems,
so that calculations at this scale cannot be carried out
routinely yet. A value of 0.2 A. was chosen for Ar in
samples 3 and 4 so that the effects of statistical uncer-
tainities should be much smaller. As is evident from Fig.
2, there is a slight difference between the PCF's, particu-
larly around the first peak, and this deviation also shows

up in the S2's. The asymptotic value of S2 for sam-
ple 3 is a greater negative value than that for sample 4,
by about 25%. However, the difFerence between Ss's of
the unconstrained (sample 3) and constrained (sample 4)
configurations is already larger than a factor of three (i.e. ,

300%), in the first coordination sphere. At higher r val-
ues it becomes enormously large, just as in the case of
the smaller systems.

It is useful to compare the corresponding uncon-
strained (samples 1 and 3) and constrained (samples 2
and 4) systems, since up to the limitations of the smaller
systems (i.e. , up to about 8 A) they should behave rather
similarly. The effect of better statistics can be noticed al-
ready on the asymptotic values of S2. for the smaller
systems (and at the same time, of finer r resolution)
these values are consistently greater then for the larger
systems, where the resolution was coarser, as well. The
minimum difference is about 10%, between samples 1 and
3. Better statistics of sample 3 reduced the value of Sq
to less than half, compared to sample 1. Roughly the
same ratio applies for the other pair as well. It should
be noted that the S~ values calculated up to about 3.5
A. , where relatively well-defined plateaus can be found
in all cases, show hardly any dependence on system size
or on r spacing. On the basis of this finding, it is sug-
gested that if what is required is not the calculation of
the total configurational entropy, but only a measure for
characterizing different degrees of structural order that
correspond to identical pair correlations, then Sq could
be truncated at an appropriate value of r. This sensible
r value has to be well over the first maximum of g~ ~ in
order to assure us that the main contribution &om g& ~

to Sq is accounted for.
In samples 1 and 3 the main part of the entropy comes

&om the two-particle contributions, whereas in samples 2
and 4 the Sq exceeds S2 at an early stage, after the sec-
ond coordination sphere. Since S~ for the similar systems
behaves consistently and qualitatively similarly, it is ob-
vious that there is a structural basis for this. However,
from earlier experience ' it seems unlikely that Ss would
so greatly exceed S2. This phenomenon might have some-
thing to do with the nature of the systems of samples 2
and 4, namely, with the way they were constrained. Such
a stiff coordination constraint, which holds a covalentlike
network together, may restrict the explorable volume of
the phase space, which is attributed to the given system,
in a finite period of time. This would effectively mean
that whatever the number of configurations (i.e., phase-
space points, in this terminology) that could be sampled,
they would be too close to each other. Therefore averages
taken over them that are sensitive to statistics would not
be representative of the system. This kind of nonergodic
behavior, known as bottlenecks in Monte Carlo termi-
nology, could be responsible for the seemingly irrational
behavior of the S~'s of samples 2 and 4. Note that this
behaviour, achieved through a computer code, is remark-
ably similar to what happens to an amorphous covalent
network in reality.

The validity of this sort of reasoning should be properly
checked. The testing procedure should involve sampling
of an extremely large number of configurations, at least
one or two orders of magnitude larger than the present
samples. Therefore the costs for this calculation are at
the moment prohibitive. The behavior of Sq as a function
of N, the number of configurations, can be investigated
up to N=100, and that is given by Fig. 3 for sample 4.
There is a large improvement between the calculations
over 1 and 10 configurations, but after 70 configurations
the change is negligible. It is important to collect some
configurations, purely for better statistics, but it is use-
less to exceed a relatively small number.

Summarizing the difFerences in the three-particle con-
tribution to the total configurational entropy, Sz, found
for systems with identical (samples 1 and 2), or near
identical (samples 3 and 4) pair correlations, qualitative,
as well as quantitative description can be given. Quali-
tatively speaking, Ss for the constrained systems (sam-
ples 2 and 4) greatly overshot S2, whereas for the un-
constrained structures Ss was only half (sample 3) of S2.
This is fundamental, even if the total difFerence proba-



13 254 ORSOLYA GEREBEN, LASZLO PUSZTAI, AND ANDRAS BARANYAI 49

bly cannot be attributed to structural differences. The
qualitative difference in the shape of S3 curves around 2
A (see inset of Fig. I, as well as Fig. 2) is also consistent
and rather characteristic, although it could not yet be
fully interpreted. It is clear that the behavior of the un-
constrained systems resemble that of simpler disordered
systems. s s Quantitatively, Ss of the constrained struc-
tures calculated up to 3.5 A. , whose value served as a good
reference distance where all four systems were compara-
ble, was consistently a negative value about three times
greater than S3 for the unconstrained structures. All
these characteristics are consistent with the fact that the
constrained systems have more ordering in their struc-

tures, and therefore their configurational entropy should
be less than that of the unconstrained systems.

There seem to be great potentialities in calculating S3
for shorter distances, such as up to the second minimum
of the PCF. This can be done routinely, and the results
of these calculations bear all the characteristics of much
larger, longer ranged samples. This, it is believed, opens
up new routes for characterizing structural differences
quantitatively.
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