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A formalism developed previously to study the interlayer exchange coupling between ferromag-
netic layers separated by a nonmagnetic metal spacer is applied to the case of an insulating spacer.
It allows a unified treatment of both cases (metal and nonmetal spacer), provided one introduces
the concept of a complez Fermi surface. In contrast to the metal-spacer case, where the exchange
coupling decreases with increasing temperature, the coupling across an insulating spacer is found to
increase with temperature. This finding is in agreement with recent experimental observations.

The exchange coupling between ferromagnetic layers
separated by a nonmagnetic metal spacer has been a
subject of intense research in the past few years. This
activity has been triggered by the discovery of oscilla-
tions of the interlayer exchange coupling versus spacer
layer thickness.! The periods of oscillations have been ex-
plained successfully in terms of the spacer Fermi surface;2
in particular, the periods predicted for noble metal spac-
ers have been verified experimentally in numerous cases.?

Recently, renewed interest in this field has been
brought by the observation of interlayer exchange cou-
pling across a nonmetallic spacer layer (amorphous Si).*
A striking feature is that the coupling, in contrast to the
metal case, increases with increasing temperature.® Fur-
thermore, the coupling may be induced by illumination
by visible light.® It is important to note then in all the ex-
periments mentioned above, the nonmetallic spacer was
disordered or even amorphous.

A model for the interlayer exchange coupling at T =
0 across a tunneling barrier has been proposed by
Slonczewski.” However, to our knowledge, no theory of
the thermal dependence of the interlayer exchange cou-
pling across a nonmetallic spacer has been given yet.

In the present paper, a formalism developed previously
for studying the interlayer exchange coupling through a
metal spacer® is extended to the case of a nonmetallic
spacer. The treatment and the formulas are completely
analogous to the metallic case, provided one introduces
the concept of complex Fermi surface. The physical be-
havior of the coupling, however, differs strongly from the
metal spacer case. At T = 0, the coupling is found to
decrease exponentially with spacer thickness. The most
striking result concerns the thermal dependence of the
coupling: whereas the exchange coupling across a metal-
lic spacer decreases with temperature, in the case of an
insulating spacer, it is found to increase strongly with
temperature. This result provides a plausible explana-
tion for the experimental observations of thermally in-
duced coupling.

Let us briefly summarize the formalism and the results,
which have been presented previously, for the case of a
metallic spacer.® We ascribe the interlayer coupling to
the interferences of electron waves in the spacer layer,
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due to (spin-dependent) reflections at the paramagnetic-
ferromagnetic interfaces. It is thus clear that the reflec-
tion coefficients will play a key role in the formalism.
Electron states in the spacer can be propagative Bloch
waves, as in a bulk material, but also evanescent waves,
because of the finite thickness of the spacer. It must be
realized that the concepts of reflection and transmission
coefficients pertain to evanescent waves as well. Prop-
agative states give rise to oscillatory contributions to the
coupling, while evanescent states yield exponentially de-
creasing terms. Thus, both kinds of states contribute a
priori to the coupling; their respective importance de-
pends essentially on the nature of the states that are
present at the Fermi level.

For the sake of simplicity and clarity, we shall re-
strict our discussion to a simple free-electron model, as
sketched in Fig. 1; the results can be generalized to the
case of a more complicated band structure. The spacer,
of thickness D, is sandwiched between two semi-infinite
ferromagnetic layers F4 and Fp, whose respective mag-
netizations are at an angle @ with respect to each other.
The zero of potential is taken at the bottom of the ma-
jority band of the ferromagnetic layers; the potential of
the minority band is given by the exchange splitting A,

ferromagnet spacer
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FIG. 1. Sketch of the free-electron model; the dashed line
indicates the position of the Fermi level, (a) for the metallic
spacer case, (b) for the insulating spacer case.
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while the potential of the spacer is U. Thus U > ef
(U < eF) corresponds to an insulating (respectively
metallic) spacer.

Since the in-plane translational invariance is not bro-
ken, the in-plane component k| of the wave vector is a
good quantum number, i.e., it is conserved under reflec-
tion and transmission. For an incident electron of wave
vector k* = (k, k%), the wave vectors of the reflected and

transmitted waves are, respectively, k™ = (k|, —k?) and

k* = (kj, k%), and the (complex) reflection amplitude is
given by
ki — kt
=i 2 1
ki + kL 2

It may be seen easily that the above relation holds both
for propagative waves (i.e., with k, real) and for evanes-
cent waves (i.e., with k, imaginary).

The exact expression of the interlayer coupling per unit
area, in terms of these reflection coefficients, is®

Eap(0) = ——Im/dzk”/ de f(e

x In [1 — 2 (Fafp + Ar4Arpcosf) ea:D
+ (Fi — ATAZ) (FZB - Argz) eZiq‘D] ,  (2)

where g, = k7 — k¢, f(e) is the Fermi-Dirac function, and
74(B) and Ar4(p) are, respectively, the spin-average and
spin-asymmetry of the reflected amplitudes on F4 (FB),
ie.,
) 1
ram tram)

TAB) = — 5 (3a)

and

rAB) = Tam)

The derivation of Eq. (2) involves integrations over k,
from —oo to +o00, which are closed in the upper and lower
complex half planes for the incident and reflected waves,
respectively, by using the theorem of residues. There are
two kinds of poles: those lying on the real axis correspond
to propagative states, while those lying off the real axis
correspond to evanescent states, and both kinds of states
contribute on an equal footing to the coupling in Eq. (2).

In the present case the reflected amplitudes on F4 and
Fp are equal, so that we can drop the corresponding
indices. In Eq. (2), the sign convention is such that the
state k¥ = (ky, k) is such that £): = € and k¢ < 0 in the
case of a propagative wave, or Imk? < 0 for an evanescent
wave. The expression of E4p(f) can be expanded in
powers of cos 0 as

Esp(9) =

with the Heisenberg coupling constant

1 2 Hoe
Jl = — mIm/d k” o de f(E)

2Ar2eie=D
x 3 : (5)
1 — 272eia:D 4 (72 — Ar?)” e2ia:D

Jo+ Jycos@ + Jycos26 + - - (4)
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For the metal-spacer case, in the limit of large spacer
thickness, one gets®

1 h%k% 2_2ikpD
an? Dzl (Are F)

27rkBTDm/ﬁ2kp (6)
sinh 2nkgTDm/h2kF) ’

Jy =

where kp = [2m(z-:p — U)/fiz] /2 is the Fermi wave vec-
tor of the spacer.

Let us now derive the corresponding result for an insu-
lating spacer. For large thicknesses, the denominator in
Eq. (5) is = 1. We first perform the integration over the
energy; the leading contribution arises from the neighbor-
hood of e, where the evanescent waves have the longest
range, and where the Fermi-Dirac function varies rapidly.
Thus, the factor Ar? may be kept constant, equal to its
value at ep; the exponential factor €90 = ¢=25D with
K = [kf +2m(U — ) /h*]'/?, may be expanded around e
as

2mD
exp(—2kD) = exp(—2kpD) exp [(e - EF)EZLF] , ()

where K corresponds to € = ep. The integration over
energy is performed easily,’ and one gets, in the limit of
low temperatures (kgT < h2kp/mD),

2 F
e—2nFD

1
J1 = —4—3 Im /de” 2A1‘2

» 2rkgTDm/hkp 8
sin (2rkgTDm/k2kp) )

Next, one performs the integration over k;;; the leading
contribution arises from the neighborhood of k; = 0,
where £r is minimum (= k}) and the sum is calculated
in a standard way, by taking all factors (but the expo-
nential) constant, equal to their value at k; = 0, and by
expanding the exponential around k|, :

k2 + k2
:c+* yD) , (9)
Kp
1 ﬁzn

DT Im(Ar2e=2%FD)

y 27rkBTDm/h2n},-
sin (2rkgTDm/A2K})

exp (—2krD) = exp (—2kFD) exp (—
and one finally gets

J1=—

(10)

At T = 0, this reduces to Slonczewski’s result for the
interlayer exchange coupling across a tunneling barrier.”
The sign of the coupling is determined by the argument
of Ar?; the coupling is antiferromagnetic (respectively
< k}k (k32 ki), where k;.
(k%) is the Fermi wave vector for maJonty spin (minority
spin) electrons in the ferromagnet.

If one compares the above result with the correspond-
ing one for the metal-spacer case, Eq. (6), one notes
that the only difference is the replacement of kr by ik%.

ferromagnetic) if n}z
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This striking result may be interpreted in a very simple
manner provided one generalizes suitably the concept of
Fermi surface: since evanescent and propagative waves
contribute to the coupling on an equal footing, it is quite
natural to introduce the concept of complex Fermi sur-
face, by allowing k, to have a nonzero imaginary part.?
The complex Fermi surface is thus defined as the variety
e(ky, k;) = eF, with k; real and k, complex. This adds
to the usual real portions of the Fermi surface, complex
portions, in particular, in the regions of the k; plane
where there no real portions are found. This concept
holds, not only for free electrons, but for any arbitrary
band structure: this follows from the fact that Bloch’s
theorem holds for complex wave vectors as well.!l One
also notes in passing that the complex portions of the
Fermi surface depend on the choice of the z axis, i.e., on
the crystalline orientation of the layers.

The complex Fermi surface of free electrons is shown
in Fig. 2, both for the metal and insulator cases. In the
metal case, the complex Fermi surface has, in addition to
the usual real sphere of radius kr, an imaginary portion
with the shape of a one-sheet revolution hyperboloid. In
the insulator case, on the other hand, there is no real
portion for the Fermi surface: the latter consists of an
imaginary portion, with the shape of a two-sheets revo-
lution hyperboloid; the distance between the two sheets
of the hyperboloid is 2x%.
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FIG. 2. Imaginary Fermi surface, for free electrons: (a)
metal spacer and (b) insulating spacer. The solid (respec-
tively dashed) line corresponds to real (imaginary) perpen-
dicular component k..
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The concept of complex Fermi surface allows a unified
approach to the problem of interlayer exchange coupling,
both for metallic and insulating spacer materials; in par-
ticular, in the limit of large spacer thickness, the coupling
variation versus spacer thickness, and its temperature de-
pendence, are determined by the extrema of the complex
Fermi surface of the spacer material.

Of course, the coupling behavior is completely different
in both cases. While it is oscillatory for a metal spacer,
it decreases exponentially with spacer thickness in the
insulator case. Another striking difference concerns the
temperature dependence, which is given by the last fac-
tor in Egs. (6) and (10). For a metal the coupling de-
creases with increasing temperature. On the other hand,
when we consider the insulator case, replacing kr by ik%
amounts to replacing the hyperbolic sine denominator by
a sine; thus the exchange coupling increases with tem-
perature for an insulating spacer. This may be under-
stood easily: at finite temperature, the contribution of
states below the Fermi level is lowered, at the expense of
states above the Fermi level; since the penetration length
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FIG. 3. Calculated interlayer exchange coupling for the
free-electron model with e = 10.0 eV, A = 1.5 €V, and
U — er = 0.1 €V: (a) exchange coupling vs spacer thickness
at T = 0 and (b) exchange coupling vs temperature for vari-
ous spacer thicknesses, corresponding to the solid points: (A)
15.0 &, (B) 20.0 A, and (C) 30.0 A.
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of the latter is larger than the one of the former, the ex-
change coupling is thereby enhanced.

To illustrate the above results more quantitatively, we
have performed numerical calculations of the exchange
coupling for the free-electron model, with e = 10.0 eV,
A =1.5eV,and U—cp = 0.1 eV; the calculation uses the
exact expression (5), not the asymptotic result (10). The
results are displayed in Fig. 3. With the above choice
of parameters, the coupling at large spacer thicknesses
is antiferromagnetic (J; > 0). One clearly observes the
strong temperature increase of the coupling; as expected
from Eq. (10), the relative thermal variation increases
with increasing thickness.

One should be careful when comparing the results
with experimental observations of coupling across non-
metallic spacers: indeed, as already mentioned, the latter
concern materials that are disordered or even amorphous,
whereas the theory presented here pertains to ordered
systems; the importance of disorder for the thermally in-
duced coupling remains to be clarified. Nevertheless, the
finding of a positive temperature coeflicient for the ex-
change coupling through an insulating spacer provides a
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plausible explanation for the experimental observations
of thermally induced exchange coupling.® Note that the
latter result is not restricted to the free-electron case, and
may be shown to hold for any insulating spacer material.
The explanation of the photoinduced coupling is more
difficult: it probably involves localized excited states due
to disorder, having a long lifetime, and which can be
populated by optical pumping.

In conclusion, the general formalism of interlayer
exchange coupling presented in Ref. 8, together with
the concept of complex Ferm:i surface, allows a unified
description of the interlayer exchange coupling across
metallic and insulating spacer layers. It has been illus-
trated by analytic and numerical calculations for a simple
free-electron model, and provides a simple tentative ex-
planation for the recent observation of thermally induced
exchange coupling across nonmetallic spacer layers.
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