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Thermodynamics of integrable chains with alternating spins

H. J. de Vega
Laboratoire de Physique Theorique et Hautes Energies, Universite Paris VI, Tour 16

(Premiere Etage) 4 place Jussieu, 75252 Paris Cedex 05, France

Luca Mezincescu and Rafael I. Nepomechie
Department ofPhysics, University ofMiami, Coral Gables, Florida 33124

(Received 26 February 1993;revised manuscript received 1 September 1993)

We consider a two-parameter (c,V) family of quantum integrable isotropic Hamiltonians for a chain of
alternating spins of spin s =

2 and s = 1. We determine the thermodynamics for low-temperature T and

small external magnetic field H, with T &&H. In the antiferromagnetic (c & 0,2' & 0) case, the model has
two gapless excitations. In particular, for c=V', the model is conformally invariant and has central
charge e„;,=2. When one of these parameters is zero, the Bethe ansatz equations admit an infinite num-

ber of solutions with lowest energy.

The one-dimensional Heisenberg model, like the hy-
drogen atom, has served as the guiding example for a
very large body of both experimental and theoretical
work. Progress has recently been made on closely related
models, consisting of chains with alternating spins, such
as spin- —, and spin-1. On the experimental side, materials

(e.g., ' [MnCp2 ] [tetracyanoethylene]) have been syn-

thesized, which, at temperatures above a certain transi-
tion temperature T„behave as one-dimensional fer-
romagnets of alternating spins. On the theoretical side,
quantum integrable models of chains with alternating
spins have recently been constructed. In this paper we
investigate the thermodynamics of a two-parameter fami-

ly of such integrable models. Depending on the values of
the parameters, we find both antiferromagnetic and fer-
romagnetic behavior. When one of these parameters is
zero, the Bethe-ansatz equations admit an infinite number
of solutions with lowest energy.

We consider a system of N spins —,'o2, —,'o4, . . . , —,'tr2~
of spin- —,

' and N spins s1,s3 S2N 1 of spin-1 in an
external magnetic field H( &0) with the Hamiltonian %
given by

&=c%+V& HS', —

where S'=X =1 g
tr 2n +Xn =1$2n —t

%=—
—,
' g (2tr2n S2n+i+1)(2O'2n+2 ~ S2n+1+3),

n=1
N

JY= —
—,
' g (2tr2„s2„,+1)

n=1

(2)

X [(1+s2n ) s2„+,)(2o2n s2n+i+1)+2],
(3)

and c and 2' are real constant parameters. (In this paper,
bars and tildes are interchanged with respect to Ref. 2.)
Note that the Hamiltonian contains both nearest-
and next-to-nearest-neighbor interactions. We assume

periodic boundary conditions: ~2„=~~„+» and

s2„+,—=s2„+&+2N. Evidently, % is constructed from sca-
lar products of spin operators, and thus [%,S ]=0.

The corresponding energy eigenvalues are given by

E =cE+2'E H( ,'N ——M),—

where

(4)

M
E= ,'N —i g—

, dA,
,+(i /, 2)

l(,J
—(i/2)

A,t+(i/2) A,J+i
AJ. (i/2) ,

—
A, . i—M AJ

—Ak+i

J 1p n ~ ~ )3f n

We consider here a strictly alternating arrangement of
spins, with spins- —, at even sites and spins-1 at odd sites.
For any other ordering of the spins, one can construct a
corresponding Hamiltonian, which has the same energy
eigenvalues and BA equations. Similar systems of equa-
tions, with either c or V'equal to zero, arise for spin chains
with impurities.

This system of equations admits the same string solu-
tions that are found for the Heisenberg model. In the
thermodynamic limit, the model is characterized by par-
ticle densities p„(A.) and hole densities p„(A, ). Following
the standard procedure (see, e.g., Refs. 4 and 5), we find
that these densities obey the constraints

00 min(n, 2)

Pn+ g ~nm +Pm an + g an+3 —21
m=1 1=1

where

A,I+i
E= —,'N i g ——ln

j= 1 ~J J

where the variables A, satisfy the Bethe-ansatz (BA)
equations
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a„(A,)= 1 n

2~ A, +(n /4)

a„(X)=fi„ fi(a)+(1 —fi„)ai„,(X)
min(n, I ) —1

+a„+ (A, )+2
1=1

a i. — i+xi(~»

and e denotes the convolution (fe g)(A, ) =I "„dA, 'f (A,
—k')g (A, ').

The thermodynamic Bethe-ansatz (TBA) equations
describing the equilibrium system at temperature T are

Tln(1+e " )= g A„+Tin(1+e )
m=1

min(n, 2)—2~ ca„+c X an+3 —2I +nH
1=1

(10)

where

e„(A,) =T in[p„(A, )/p„(A, )] .

(The particle and hole densities are understood to be
those at equilibrium. ) The equilibrium free energy is
given by

in mind that e„)0 for H )0 and n ~ 3, we obtain from
the TBA equations the following system of linear integral
equations for c1 and c2..

g1 ——27TCS +S O'C2

~2 20 —27Tcs+A 4&2 +$4 E
(13}

where h =sea, , and the superscript + on a function
denotes the positive part of that function; i.e.,
e+ —=

—,'(s+ iEi).
The qualitative behavior of the solutions depends on

the sign of the parameters e and e, and the various cases
must be studied individually. Let us first consider the an-
tiferromagnetic case e)0, e)0. In this case, for H=0
the solutions e|(A, ) and s2(A, ) are readily found, and are
seen to be negative for all A, . Hence, for the ground state,
p, (A, ) =p2(A, ) =s (A, ), and all other particle and hole densi-
ties are equal to zero. Thus, the ground state is a "sea"
of strings of length 1 and a "sea" of strings of length 2, in
agreement with the alternative analysis of Ref. 2. This
corresponds to the antiferromagnetic ground states of in-
tegrable chains of spin s =

—,
' and 1.

For H small but nonzero, we can solve for c.
&

and c,2 by
generating from (13) a system of Wiener-Hopf equations.
To this end, we define a„ to be the zeros of s„(A, ), i.e.,
e„(a„)=0,for n =1,2. We assume

I' =2Neo NT f —dk, s(A, ) ln[(1+e '
)

1 1e„=——lnH + lnv„+0
'1T lnH

(14)

where s(A, ) =1/(2chmi, ), and

(12) where the constants a„(which are independent of H)
have still to be determined. Introducing the functions

2e, =c [-,' —(2 ln2+4 —~)]+c[——,
' —(6—~)] .

In the high-temperature limit with zero field, these
equations give the expected value for the entropy, name-
ly, S =E ln6. We now consider small values of T and 8,
with T «H. We define e„(A,)= limT oe„(A, ). Keeping

I

e "v„e„(A,+a„), A, )0
S'~}= o, ~&o, (15)

we obtain (for H~O) the following system of Wiener-
Hopf equations

S&(A,)= 2mcx, e— + f dA, 's(A, —A, '+a, —a2)S2(A, '),
0

S2(A, )=—,
' —2ncvze "+f dk, ' [s(A, —I,'+a& —a, )S,(k'}+h (A, —A, ')S2(A.')], A, )0 .

0

(16)

In order to find the leading-order temperature dependence of the free energy, we must compute the leading correc-
tion to the solutions e„=s„ofthe linearized Eqs. (13). Hence, we set e„(A,) =s„(A,)+ri„(A, ) in the TBA equations and

expand to leading order in g„, as is explained in Refs. 8 and 9. In terms of the functions

(17)

we obtain (for H ~0) a second system of Wiener-Hopf equations:

s ( A, +cx, —cK2 )
T, (k)= + f dA, 's(A, —

A, '+a, —a~}T~(A,'),S' (0)

Tz(k)=, + + f dA. '[s(A, —A, '+a2 —a, )T, (A, ')+h(A, —k')T (A, '2)], X~O,h (g) s(A, +a~ —a&)

S2(0) S', (0)
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where S„'(0)=dS„/dA,
~& o+.

Both systems (16) and (18) involve the same 2X2 ma-
trix kernel, which in Fourier space is given by

i—rA a) a—&)0
irO(a/ —a2)

e ' '&(~)
(19)

[1—E(co)] '=6+(co)G (co), —~ &co& ~, (20)

where G+(co) and 6+'(co) are analytic in the upper-half
complex co plane with 6+(+~ )=1, and (for co in the
lower-half plane) 6 (co)=6+(—co) .

Using standard Wiener-Hopf methods, we conclude
that the solutions of Eqs. (16}and (18) are given (in ma-
trix notation) by

i 1 1(~)=—
2 co+i 0 co+i m

0
6+ (co)6 (0) (21)

and

1/S', (0)
~(co)=(6+(~) 1)

1 S, ( )2
(22)

[Our convention for Fourier transforms is that
f(a))= f" dk, e' "f(A).] Results from Ref. 10 imply
that the following factorization exists:

heat, to lowest order, are given by

dH 2m c dT

(28)

respectively.
This model has '" two gapless excitations, with corre-

sponding speeds of sound v =2' and 8'=2~c. Evidently,
the case c =c is the unique case for which the two speeds
of sound coincide, and the model is conformally invari-
ant. For a critical chain, the low-temperature free energy
per site is given by' '

~~virf =eo — T +.
6v,

where c„;, is the central charge of the Virasoro algebra
and v, is the speed of sound. Therefore, from (27) we see
that c„;,=2. Presumably it is no coincidence that pre-
cisely for the conformally invariant case, explicit expres-
sions for 6+(co) and 6 (co) are not needed to evaluate
the free energy.

We now consider the case c =0, V'&0. For this case,
there is a one-parameter (a) family of lowest-energy
states. Indeed, consider the following one-parameter
family of densities:

where

7r 0
S'(0)= — lim aPS(co) =—6 (0) (23)

p, =as, P, =(1—a}s,
p2=s +(1—a)s es, 0& a & 1,

(30)

Moreover, the parameters a„ introduced in Eq. (14) are
given by

K) 1/c

4~ 0

0 0
6 ( in ) 'G —(0)

7r'T2f =e HA — B—0 (25)

with

1/S'I (0)
A =aS(im), B .=a .f'(in. )+

2

(26}

For chic, the quantities A and B cannot be explicitly
evaluated without having explicit expressions for the fac-
tors G+(co}and G (co},which we have not yet found.

For the special case c =c =c, the quantities A and B
can be readily evaluated, and we conclude (for T «H)

1 2 1f =eo — H T—
4 c 6c

(27}

It follows that the magnetic susceptibility and specific

(24)

In order to calculate the free energy per site f =F/2N,
we substitute e„=e„+2}„into the expression (12) for the
free energy, as is explained in Refs. 8 and 9. We obtain

and all other particle and hole densities are equal to zero.
These densities obey the constraints (7), and give (in-
dependently of the value of a} the same lowest value for
the energy. Moreover, to leading order in N, the spin is
S'=0, and the entropy is

S = ——[alna+(1 —a) ln(1 —a)] .
2

In particular, for a%0, 1, the entropy is nonzero and is
proportional to N, implying an infinite degeneracy of
states. This degeneracy is consistent with the fact that,
above the a=1 vacuum, there are excitations (namely,
holes in the sea of real roots), which have zero energy and
nonzero momentum. We are not aware of any other
model with such properties. '

We speculate that the system can be brought to these
various states by first preparing the system at finite T and
H, and then approaching the origin ( T =0, H =0}of the
(T,H) plane from appropriate directions. The ground
state of the system is the state, which is reached by ap-
proaching the origin along the line H =0. Unfortunate-
ly, we cannot determine the particular value of a corre-
sponding to this state, since this would entail computing
limz olimH oe&/T, while we know how to calculate
only for T«H. ' By approaching the origin of the
(T,H) plane along the line T =0, the state with a=0 is
reached.

We have calculated the free energy for small values of
T and H, with T «H. The calculation is similar to the
one above, except that now one must take into account
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that e,(A, ) does not have a zero. We find that, to leading

order, the free energy per site is given by

f =eo+ H lnH+ T lnH .1 1

4m c 127TC
(31)

Contrary to appearance, this result does not imply that f
diverges for H ~0, since in the region where the calcula-
tion is valid ( T «H), the last term is finite. This result is
nevertheless unusual, since it implies that CH/T is a
function of H. It would be interesting to find a Fermi-
liquid-type explanation' for the lnH factors.

Similar results are obtained for the case c=0, c &0.
For the case c & 0, c & 0 and c )0, V &0, the model either
has a ferromagnetic ground state and a finite gap, or it
has no gap, depending on the precise values of c, 0; and

H. For the cases c, c & 0, the model is ferromagnetic.
Note added. After this work was completed, we re-

ceived a copy of Ref. 17, which discusses chains of alter-
nating spin- —,

' and spin s. However, that paper considers
neither the efFect of an external magnetic field, nor the
behavior of the models away from the conformally invari-
ant point (i.e., for chic ).
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